EWD387

n I showed it —in strict
Naur, at the end of my
or more than a minute
here were too few Peter

ad “an evening” at the
- dinner, a sherry party,
with a true archeologist
an absolute delight!—
re kept quite busy!

- a success. If you set
t was successful. The
y related field that was
at are they going to do
, 1 observed a general
ement was lacking —in
and the little bit there
| considerations would
> it was not only not
ce nearing its comple-
vond recovery? Or are,
sors tired and discour-

. EDSGER W. DIUKSTRA

EWD391
Self-Stabilization in Spite of
Distributed Control

A systematic way for finding the algorithm ensuring some desired form of
co-operation between a set of loosely coupled sequential processes can in
general terms be descril;eq ,as follows: the relation “the system is in a
legitimate state” is kept invariant. As a consequence, each intended individ-
ual process step that could possibly cause violation of that invariant relation
has to be preceded by a test that it won’t do so, and depending on the
outcome of that test the critical process step is either caused to take place or
it —and with it the process of which it is a part— is delayed until a more
favourable system state has been reached. With a suitable choice of the set
of legitimate states one can indeed introduce the rule that a critical process
step will be delayed only as long as its execution would lead to violation of
the corresponding invariant relation.

The resulting design is readily implemented if the different sequential
processes can be granted mutually exclusive access to a common store in
which the current system state is recorded. Then a relation between (the
values of) the variables in that commonly accessible store is the core of what
we could call “the centralized control”.

A complication arises when there is no such commonly accessible store
and “the system state” must be recorded in variables distributed over the

various processes, and furthermore the communication facilities are limited

in the sense that each process can only exchange information with “its
neighbours”, a (possibly small) subset of the total set of processes. (We can
view the processes as nodes of a connected graph in which each of the
(sparse) set of edges denotes the neighbour relation.) The complication is
that a node’s behaviour can only be influenced by the part of the total
system state description that is available in that node: local actions taken on
account of local information must accomplish a global objective. Such

41

W

1y ‘ﬁ

42 EWD391

systems (with what is quite aptly called “distributed control”) have been
designed, but all such designs I am familiar with are unstable in the sense
that, when once in an illegitimate state, they could remain so forever. I call a
system “self-stabilizing” when, regardless of its initial state, it is guaranteed
to arrive at a legitimate state in a finite number of steps. (Whether the
property of self-stabilization is interesting as a start procedure, for the sake
of system robustness, or merely as an intriguing problem, is a question that
falls outside the scope of this article.)

Unable to decide on theoretical grounds whether non-trivial self-stabiliz-
ing systems with distributed control could exist at all, I decided to try to
design one under the following constraints and objectives.

We consider a system built from N + 1 finite state machines numbered
from O through N. (The state space for the total system is then the Cartesian
product of the N + 1 individual state spaces of the respective machines.)
The machines are arranged in a ring, i.e. for 0 <i <N, machine nr.i has

machine i + 1 as its right-hand neighbour, and machine N has machine 0 as-

its right-hand neighbour.
In the middle of the ring stands a demon, each time giving, in “fair
random order”, one of the machines the command “to adjust itself”. (In

n, “fair random order” means that in each infinite sequence of successive

X

commands issued by the demon, each machine receives the command to
(adjust itself infinitely often.) Upon “adjustment” a machine goes into a
(new) state, which must be a function of its own (old) state and the current
states of its (two) neighbours.

Furthermore, as a function of its own state (and possibly of the states of
its neighbours) a machine may be “privileged”. The legitimate states are
defined as those states in which exactly one machine is privileged and for
which all possible successor states are legitimate as well; furthermore it is
required that then the privilege will rotate around the ring.

SIDE REMARK. 1 was hoping for an existence proof of self-stabilizing systems
with distributed control: a ring is then one of the most natural, simple
connection graphs. My choice of legitimate states, viz. requiring conver-
gence towards a solution of the mutual exclusion problem, is understand-
able for historical reasons [1], [2], [3]. [4], it is also justified by its central
position in the whole field of controlling co-operation between loosely
coupled processes. Finally, the choice of the demon was suggested by a
recent experience with a cyclic relaxation problem in which “fair random
relaxation” would converge to a limit, while simultaneous relaxation could
lead to oscillation (EWD386, unpublished). So much for the justification of
the problem choice.

Again I beg my intrigued readers to stop reading here and to try to solve
the stated problem themselves, for only then will they (slowly!) build up
some sympathy with my difficulties: the problem has been with me for
many months, while I was oscillating between trying to find a solution

-

Self-Stabilization in Spite 0

—and many an at fir
— and trying to pro
had no indication i
simplicity or complex
question.

The crucial obsery
if, in addition, we rec
machines is non-prin
degreen (2<n<N
gives his first n co
symmetry will not h
fair (but nasty) bel
forever, a single m
identical can be accc
all different or by 1
enforce asymmetry,
seems the most pron

Secondly, it is no
“adjust yourself” is
command was giver
particular desire to |
to a machine far aw
look for a solution i
directed towards a ¢
of whose adjustme
function “privilege
privileged, then “d
alive, and we can c
to the state from wi

Thirdly, we may
because we are con
the best we can hop
sufficiently large cc
K, the maximum
establish progress |
counter value” decr
applied a limited n
defined. This sugge
equality of states.

In terms of equ
that at least one n
that one machine
1 < i< N machin

—_

EWD391

lled “distributed control”) have been
amiliar with are unstable in the sense
e, they could remain so forever. I call a
less of its initial state, it is guaranteed
finite number of steps. (Whether the
sting as a start procedure, for the sake
) intriguing problem, is a question that
)

rounds whether non-trivial self-stabiliz-
| could exist at all, I decided to try to
traints and objectives.

‘N + 1 finite state machines numbered
or the total system is then the Cartesian
ate spaces of the respective machines.)
g, ie. for 0<i< N, machine nr.i has
hbour, and machine N has machine 0 as

s a demon, each time giving, in “fair
es the command “to adjust itself”. (In
in each infinite sequence of successive
each machine receives the command to
n “adjustment” a machine goes into a
on of its own (old) state and the current

s own state (and possibly of the states of
2 “privileged”. The legitimate states are
xactly one machine is privileged and for
are legitimate as well; furthermore it is

Il rotate around the ring.

 existence proof of self-stabilizing systems
is then one of the most natural, simple
f legitimate states, viz. requiring conver-
mutual exclusion problem, is understand-
, [3], [4], it is also justified by its central
controlling co-operation between loosely
hoice of the demon was suggested by a
elaxation problem in which “fair random
Jimit, while simultaneous relaxation could
yublished). So much for the justification of

ers to stop reading here and to try to solve
for only then will they (slowly!) build up
blties: the problem has been with me for
illating between trying to find a solution

"

Self-Stabilization in Spite of Distributed Control 43

—and many an at first sight plausible construction turned out to be wrong!
— and trying to prove the non-existence of a solution. And all the time I
had no indication in which of the two directions to aim, nor of the
simplicity or complexity of the argument —if any!— that would settle the
question.

* *
*

The crucial observation is that, in general, the problem cannot be solved
if, in addition, we require our machines to be identical. For if the number of
) machines is non-prime, our starting situation can have a cyclic symmetry of
vdegreen(2<n<N/ 2) and if then the demon —and he is free to do so!—
gives his first n commands equally spaced around the ring, the cyclic
symmetry will not have been destroyed. If the demon continues with such
fair (but nasty) behaviour, we shall never reach the state after which,
forever, a single machine will be privileged. Making not all machines
identical can be accomplished in two extreme ways: either by making them
all different or by making one exceptional. In view of our obligation to
enforce asymmetry, one exceptional machine and all others mutually equal
seems the most promising choice.

Secondly, it is not a priori excluded that the nett effect of the command
“adjust yourself” is nil, viz. that the new state of the machine to which the
command was given equals its old state. In a legitimate state we have no
particular desire to let the adjustment command have any effect when given
to a machine far away from the privileged one. To simplify matters we can
look for a solution in which the adjustment command has only effect when
directed towards a machine that at that moment is privileged, and the result
of whose adjustment will be that it loses its privilege. When now the
function “privileged” is chosen such that at least one machine must be
privileged, then “dead ends” are excluded a priori: the ring will remain
alive, and we can concentrate on the requirement that the system converge
to the state from which a single privilege will rotate past all machines.

Thirdly, we may feel tempted to introduce some sOTt of counter, but
because we are confined to finite machines, true counters are excluded and
the best we can hope for are counters counting modulo K, where K is some
sufficiently large constant (certainly > 1). For two counter values modulo

K, the maximum or minimum is not defined and we cannot hope to
establish progress towards the legitimate state because some “maximum
counter value” decreases. But equality and a successor function that can be
applied a limited number of times without leading to ambiguity are well-
defined. This suggests defining the function “being privileged” in terms of
equality of states.

In terms of equality we can define a function “being privileged” such
that at least one machine is privileged quite easily when bearing in mind
that one machine —let it be machine 0— should be exceptional. Let for
| <i< N machine i be privileged when its state differs from that of

44 EWD391

machine i — 1, i.e. when x[i] # x[i — 1]. We choose this —rather than the
other way round— because now non-privileged implies x[i] = x[i — 1] and
equality is transitive: in other words, when all machines except machine 0
are non-privileged, x[0] = x[N] and when we define this as the condition
for machine O being privileged, our requirement of at least one machine
being privileged is therefore met.

Furthermore we had suggested that adjustment would cause the machine
in question to loose its privilege. For the normal machines (1 <i < N) we
have no freedom anymore: adjustment of machine i means

“if x[i] = x[i — 1] then x[i] := x[i — 1] fi"
For the exceptional machine, 0, I now suggest
“if x[0] = x[N] then x[0] := (x[0] + I)mod K fi”

and it is only here, where a new state has to be generated, that it becomes
significant that we consider the machine states x as a counter modulo K.

To start with, we remark that when a machine “fires” —if we may use
that term for the non-nil adjustment that takes place when the demon gives
the command to a privileged machine— it loses its privilege, it may give the
privilege to its righthand neighbour and to no one else. Because at least one
machine must be privileged, firing of the only privileged machine will
always give the only privilege to its righthand neighbour: once in a legiti-
mate state the system will remain in a legitimate state and the privilege will
rotate around the ring.

Furthermore: suppose that the exceptional machine is not privileged, i.e.
x[0] # x[N], then in a finite number of commands it will become privi-
leged. For let j be the minimum value such that x[j] # x[0]; because j is the

- minimum value, x[j — 1] = x[0] and therefore x[J1# x[j — 1], ie.

machine ; is privileged. In a finite number of commands the demon will
point to it, thus increasing j if j < N or making x[N] = x[0] if j = N, i.e.
making the exceptional machine privileged. So the exceptional machine will
continue forever to get the opportunity to fire.

Let us now investigate what happens when we start the system in an
arbitrary state. When the exceptional machine fires for the first time, we
colour its new state blue and all other states white; from then onwards each
state created by the exceptional machine or copied from a blue state by a
normal machine will be blue as well. If 4 is the number of times the
exceptional machine fires while x[N] is still white, then —because K > 1 —
h will satisfy h < N: after the first firing, the copying process along the
chain of normal machines can supply machine N at most with another
N — 1 further white states, differing in succession.

Without loss of generality we could have chosen initially x[0] = K — 1. If
K > N, then the first N firings of the exceptional machine have created the
blue states from 0 through N — 1, and scanning the blue states, starting at
the exceptional machine and going to the right, we find a sequence of

Self-Stabilizati

non-increas
with x[0] =
ever, x[N]
i.e. the syste
the proof fi
K, counter

So far, s
that may b
agency, can

Each vai
only inspec
equipped W
neous acce:

~ machines w
instead of
does witho

Two sim
mutual int
cannot suf
because x|.
normal ma
single adjus
if x[i —1]
differed fro
behaves as
value equal
had not tak

Conclus

Self-stabiliz
local decisi
global reqt
building bl

Referen

[1] Dijkstrz
Comm. Al
[2] Knuth,
control. C

EWD391

- x[i — 1]. We choose this —rather than the
v non-privileged implies x[/] = x[/ — 1] and
words, when all machines except machine 0
] and when we define this as the condition
|, our requirement of at least one machine
t.

ed that adjustment would cause the machine
e. For the normal machines (1 <i< N) we
1stment of machine / means

h=ixli=1] i
I now suggest
- (x[0] + 1)mod KX fi”

w state has to be generated, that it becomes
machine states x as a counter modulo K.

at when a machine “fires” —if we may use
ment that takes place when the demon gives
achine— it loses its privilege, it may give the
our and to no one else. Because at least one
firing of the only privileged machine will
o its righthand neighbour: once in a legiti-
in in a legitimate state and the privilege will

he exceptional machine is not privileged, i.e.
number of commands it will become privi-
‘value such that x[j] # x[0]; because j is the
x[0] and therefore x[j]+# x[j — 1], ie.
ite number of commands the demon will
J <N or making x[N] = x[0] if j = N, i.e.
e privileged. So the exceptional machine will
rtunity to fire,
Et happens when we start the system in an
ptional machine fires for the first time, we
Fother states white; from then onwards each
machine or copied from a blue state by a
as well. If A4 is the number of times the
x[N]is still white, then —because K > 1—
first firing, the copying process along the
| supply machine N at most with another
Ering in succession.
could have chosen initially x[0] = K — 1. If
}yf the exceptional machine have created the
- 1, and scanning the blue states, starting at
oing to the right, we find a sequence of

Self-Stabilization in Spite of Distributed Control 45

non-increasing blue x-values. At the next firing of the exceptional machine
with x[0] = N — 1, also x[N] = N — 1 must hold. At that moment, how-
ever, x| N] must be blue as well and therefore all states must be = N — 1,
i.e. the system has arrived in one of its legitimate states. And this completes
the proof for self-stabilization provided K > N (and, for smaller values of
K. counter examples kill the assumption of self-stabilization).

* *
*

So far, so good, but one may object to using a rather powerful demon
that may be very awkward to implement. Can we eliminate that centralized
agency, can we replace it by “a distributed demon™?

Each variable x[i] is only inspected and assigned to by machine i and
only inspected by its right-hand neighbour. We assume each variable x[i]
equipped with its own, private, two-way switch, which excludes simulta-
neous access by the two neighbours it connects. And we assume that the
machines will adjust themselves with a finite speed and a finite frequency,
instead of waiting for the demon’s commmand. Does it work? Amazingly it
does without any further refinements.

Two simultaneous adjustments of non-neighbouring machines have no
mutual interference at all. An adjustment by the exceptional machine
cannot suffer from simultaneous activity of its lefthand neighbour N,
because x[N] is inspected only once per adjustment. But adjustment of a
normal machine i, although possibly inspecting x[i — 1] twice during a
single adjustment, cannot suffer from its lefthand neighbour activity either:
if x[i — 1] changes its value between the two inspections, the first value
differed from x[i]; if the second value differs from x[i] as well, the program
behaves as if this value was also offered the first time, while if the second
value equals x[i], the assignment has no effect and it is as if the adjustment
had not taken place at all!

Conclusion

Self-stabilizing systems with distributed control do exist in the sense that
local decisions force the system towards satisfying and then maintaining a
global requirement. In particular, local mutual exclusion is a sufficient
building block for eventually achieving mutual exclusion globally.

References

[1) Dijkstra, EW. Solution of a problem in concurrent programming control.
Comm. ACM 8, 9 (Sept. 1965), 569

[2] Knuth, D.E. Additional comments on a problem in concurrent programming
control. Comm. ACM 9, 5 (May 1966), 321-322

46

[3] de Bruijn, N.G. Additional comments on a
ming control. Comm. ACM 10, 3 (March, 1967)
[4] Eisenberg, M.A. and McGuire, M.R. Further com
rent control problem. Comm. ACM 15, 11 (Nov. 197

EWD391

problem in concurrent program-

ments on Dijkstra’s concur-
2), 999

EWD.
Acce]
Harr

Before fo
Goode M
getting th
of giving
we shoulc

One ar
recipient
award an
one is fac
regard thi
is difficul
Memorial
lack of su
no award
enhances
guess— |

A nex
because ©
sufficientl
some Circ
realizes tl
guide for
bodies of
recipient |
what emb

A third
of fame

