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Abstract. In this paper we study efficient implementations for deter-
ministic abortable objects. Deterministic abortable objects behave like
ordinary objects when accessed sequentially, but they may return a spe-
cial response abort to indicate that the operation failed (and did not take
effect) when there is contention.
It is impossible to implement deterministic abortable objects only with
read/write registers [3]. Thus, we study solo-fast implementations. These
implementations use stronger synchronization primitives, e.g., CAS, only
when there is contention. We consider interval contention.
We present a non-trivial solo-fast universal construction for determinis-
tic abortable objects. A universal construction is a method for obtain-
ing a concurrent implementation of any object from its sequential code.
The construction is non-trivial since in the resulting implementation a
failed process can cause only a finite number of operations to abort. Our
construction guarantees that operations that do not modify the object
always return a legal response and do not use CAS. Moreover in case of
contention, at least one writing operation succeeds. We prove that our
construction has asymptotically optimal space complexity for objects
whose size is constant.

1 Introduction

With the raise of multicore and many core machines efficient concurrent pro-
gramming is a major challenge. Linearizable shared objects are central in con-
current programming; They provide a convenient abstraction to simplify the de-
sign of concurrent programs. But implementing them is complex and expensive
when strong progress conditions are required, e.g. wait-freedom (every process
completes its operations in a finite number of steps) [10]. The complexity origi-
nates in executions where processes execute concurrent operations. Obstruction-
freedom was proposed to circumvent this difficulty by allowing an operation to
never return in case of contention [11]. This separation between correctness and
progress let devise simpler and more efficient algorithms. In fact any obstruction
free object can be implemented using only read/write registers.
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On the other hand, as pointed out by Attiya et al. in [3], ideally shared ob-
jects should always return the control, and when this happens the caller should
know if the operation took place or not. This behavior is formalized in the no-
tion of deterministic abortable object proposed by Hadzilacos and Toueg [9]. A
deterministic abortable object ensures that if several processes contend to oper-
ate on it, it may return a special response abort to indicate that the operation
failed. And it assures that an operation that aborts does not take effect. Oper-
ations that do not abort return a response which is legal w.r.t. the sequential
specification of the object.

In this paper we study efficient implementations for deterministic abortable
objects. Attiya et al. proved that it is impossible to implement deterministic
abortable objects only with read/write registers [3]. Thus, we study implemen-
tations that use only read/write registers when there is no contention and use
stronger synchronization primitives, e.g., Compare and Swap (CAS), when con-
tention occurs. These implementations are called solo-fast and are expected to
take advantage of the fact that in practice contention is rare.

The notion of solo-fast was defined in [3] for step contention : There is step
contention when the steps of a process are interleaved with the steps of another
process. In the same paper, they prove a linear lower bound on the space com-
plexity of solo-fast implementations of obstruction-free objects. This result also
holds for deterministic abortable objects.

We consider an asynchronous shared-memory system where processes com-
municate through linearizable shared objects and can fail by crashing, i.e. ; a
process can stop taking steps while executing an operation. In this model, we
study the possibility that deterministic abortable objects can be implemented
efficiently if a process is allowed to use strong synchronization primitives even
in absence of step contention, provided that its operation is concurrent with
another one. This notion of contention is called interval contention [1]. Step
contention implies interval contention, the converse is not true. We only con-
sider implementations where a crashed process can cause only a finite number of
concurrent operations to abort. This property, called non-triviality, is formally
defined in [2].

Our results. First we prove a linear lower bound on the space complexity of
solo-fast implementations of abortable objects for our weaker notion of solo-fast.
To prove our result we adapt the notion of pertubable object presented in [14] to
abortable objects and we prove that a k-CAS abortable register is perturbable
according to our definition.

Then, we present a solo-fast universal construction for deterministic abor-
table objects, called NSUC. A universal construction [10] is a methodology for
automatically transform any sequential object in a concurrent one. An imple-
mentation resulting from our universal construction is solo-fast and has asymp-
totically optimal space complexity if the implemented object has constant size.
The NSUC algorithm guarantees that operations that do not modify the object
always return a legal response. Also in case of contention, at least one writ-
ing operation succeeds to modify the object. In particular, writing operations
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are applied one at the time. Each process makes a local copy of the object
and computes the new state locally. We associate a sequence number with each
state. A process that wants to modify the ith state has to compete to win the
i + 1th sequence number. A process that does not experience contention uses
only read/write registers, while a CAS register is used in case of contention to
decide the new state. It may happen that (at most) one process p behaves as if
it was running solo, while other processes were competing for the same sequence
number. In this case, we use a lightweight helping mechanism to avoid inconsis-
tency : any other process acquires the state proposed by p as its new state. If
it succeeds to apply it, it notifies the process p that its state has been applied.
Then the helping process aborts. We ensure that if a process crashes while ex-
ecuting an operation, then it can cause at most two operations per process to
abort. Our construction uses O(n) read/write registers and n+ 1 CAS registers.
Also it keeps at most 2n+ 1 versions of the object.

Related work. Attiya et al. were the first to propose the idea of shared objects
that in case of contention return a fail response [3]. Few variants of these objects
have been proposed [2, 3, 9]. The ones proposed in [2, 3] differ from deterministic
abortable objects in the fact that when a fail response is returned the caller does
not know if the operation took place or not.

A universal construction for deterministic abortable objects is presented in
[9]. This construction can be easily transformed into solo-fast by using the solo-
fast consensus object proposed in [3], but it has unbounded space complexity,
since it stores all the operations performed on the object. Also operations that
only read the state of the object modify the representation of the implemented
object and may fail by returning abort.

Several universal constructions have been proposed for ordinary wait-free
concurrent objects. A good summary can be found in [5]. These constructions
could be transformed in solo-fast by replacing the strong synchronization prim-
itives they use with their solo-fast counterpart. To the best of our knowledge
no solo-fast LL/SC or CAS register exist. Luchangco et al. presented a fast-
CAS register [15] whose implementation ensures that no strong synchronization
primitive is used in execution without contention. But, in case of contention,
concurrent operations can leave the system in a state such that a successive op-
eration will use strong synchronization primitives even if running solo. So, their
implementation is not solo-fast. Even using the solo-fast consensus object by
Attiya at al, which has Θ(n) space complexity, we cannot easily modify existing
universal constructions while ensuring all the good properties of our solution.

Abortable objects behave similarly to transactional memory [12]. Transac-
tional memory enables processes to synchronize via in-memory transactions. A
transaction can encapsulate any piece of sequential code. This generality costs a
greater overhead as compared to abortable objects. Also transactional memory is
not aware of the sequential code embedded in a transaction. A hybrid approach
between transactional memory and universal constructions has been presented
by Crain et al. [6]. Their solution assumes that no failures occur. In addition they
use a linked list to store all committed transactions. Thus, their solution has un-
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bounded space complexity. Finally, the NSUC algorithm ensures multi-version
permissiveness and strong progressiveness proposed for transactional memory
respectively in [16] and in [8] when conflicts are at the granularity of the entire
implemented object.

Paper organization. In Section 2 we present our model and preliminaries. In
Section 3 we prove the lower bound on the space complexity. In Section 4 we
present our solo-fast universal construction. Finally, a sketch of the correctness
proof of our construction is given in Section 5.

2 Preliminaries

We consider an asynchronous shared memory system, in which n processes
p1 . . . pn communicate through shared objects, such as read/write registers and
CAS objects. Every object has a type that is defined by a quadruple (Q,O,R,∆),
where Q is a set of states, O is a set of invocations, R is a set of responses,
and ∆ ⊆ Q × O × Q × R is the sequential specification of the type. A tuple
(s, op, s′, res) in ∆ means that if type T is in state s when op ∈ O is invoked,
then T can change its state to s′ and return the response res.

For each type T = (Q,O,R,∆), we consider the deterministic abortable
counterpart of T as defined in [9] and denoted T da. T da is equal to (Q,O,Rda,
∆da) where Rda = R∪{⊥} for some ⊥ /∈ R, and, for every tuple (s, op, s′, res) in
∆, the sequential specification ∆da contains the following two tuples: (s, op, s′,
res) and (s, op, s,⊥). These two tuples of ∆da correspond to op completing nor-
mally, and op aborting without taking effect.

A universal construction is a method to transform any sequential object
into a linearizable concurrent object. It takes as input the sequential code of
an operation and its arguments. The algorithm that implements this method
is a sequence of operations on shared objects provided by the system, called
base objects. To avoid confusion between the base objects and the implemented
ones, we reserve the term operation for the objects being implemented and we
call primitives the operations on base objects. We say that an operation of an
implemented object is performed and that a primitive is applied to a base object.

In the following, we consider that for any given base object o the set of its
primitives is either historyless or not. Let o be a base object that supports two
operations f and f ′. Following [7], we say that f overwrites f ′ on o, if applying f ′

and then f results in the same state of o as applying just f , using the same input
parameters (if any) in both cases. A set of primitives is called historyless if all the
primitives in the set that may change the state of the object overwrite each other;
we also require that each such operation overwrites itself. A primitive/operation
is a writing primitive/operation if its application may change the state of the
object. Otherwise it is a read-only primitive/operation.

A step of a process consists of a primitive applied to a base object and
possibly some local computation. A configuration specifies the value of each
base object and the state of each process at some point in time. A step e by
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a process p is enabled at a given configuration C, if p is about to apply e at
C. In an initial configuration, all base objects have their initial values and all
processes are in their initial states. An execution is a (possibly infinite) sequence
Ci, φi, Ci+1, φi+1, . . . , φj−1, Cj of alternating configurations (Ck) and steps (φk),
where the application of φk to configuration Ck results in configuration Ck+1, for
each i ≤ k < j. For any configuration C, for any finite execution α ending with
C and any execution α′ starting at C, the execution αα′ is the concatenation of
α and α′; in this case α′ is called an extension of α. An execution α is q-free if
no step in α is applied by the process q.

The execution interval of an operation starts with an invocation and termi-
nates when a response is returned. An invocation without a matching response
is a pending operation. Two operations op and op′ are concurrent in a execution
α, if they are both pending in some finite prefix of α. This implies that their
intervals overlap. An operation op precedes an operation op′ in α if the response
of op precedes the invocation of op′ in α. An operation experiences interval con-
tention in an execution α if it is concurrent with at least another operation in
α.

Processes may experience crash failures. For any given execution α, if a pro-
cess p does not fail in α, we say that p is correct in α.

Properties of the implemented object. We consider universal constructions that
guarantee that all implementations resulting by their application are wait-free
[10], linearizable [13], non-trivial and non-trivial solo-fast. Wait-free implemen-
tations ensure that in every execution, each correct process completes its opera-
tion in a finite number of steps. Linearizability ensures that for every execution α
and for every operation that completes and some of the uncompleted operations
in α, there is some point within the execution interval of the operation called
its linearization point, such that the response returned by the operation in α is
the same as the response it would return if all these operations were executed
serially in the order determined by their linearization points.

Informally, an implementation of an object is non-trivial if for any given
execution α every operation that aborts is concurrent with some other operation
in α, and an operation that remains incomplete, due to a crash, does not cause
infinitely many other operations to abort. A more formal definition can be found
in [2].

Finally, an implementation is said non-trivial solo-fast if for any given exe-
cution α a process p applies some non-historyless primitives while performing an
instance of an operation op, only if op is concurrent with some other operation
in α; and an operation that remains incomplete, due to a crash, does not justify
the application of non-historyless primitives by infinitely many other operations.

3 Lower Bound

In the following we adapt the definition of perturbable objects presented in [3]
and originally proposed in [14] to deterministic abortable objects.
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Definition 1. A deterministic abortable object O is perturbable for n processes,
if for every linearizable and non-trivial implementation of O there is an operation
instance opn by process pn, such that for any pn-free execution αλ where some
process pl 6= pn applies no step in λ and no process applies more than a single
step in λ, there is an extension of α, γ, consisting of steps by pl, such that
the first response res 6= ⊥, that pn returns when repeatedly performing opn solo
after αλ is different from the first response res′ 6= ⊥ it returns when repeatedly
performing opn solo after αγλ.

By adjusting the proof of Lemma 4.7 in [14], in [4] we prove that the set
of deterministic abortable objects which are perturbable is not empty. In par-
ticular, we prove that the k-valued deterministic abortable CAS is perturbable.
A k-valued deterministic abortable CAS is the type (Q,O,R,∆), where Q =
{1, 2, .., k}, O = {Read,CAS(u, v) with u, v ∈ {1, 2, .., k}}, R = {1, 2, .., k} ∪
{true, false,⊥} and ∀s, u, v ∈ {1, 2, .., k}∆ = {(s,Read, s, s)}∪{(s, CAS(s, v), v, true)}
∪ {(s, CAS(u, v), s, false) with u 6= s}∪{(s,Read, s,⊥)}∪{(s, CAS(u, v), s,⊥)}.

In the following we prove that any non-trivial solo-fast implementation of
a deterministic abortable object that is perturbable has space complexity in
Ω(n). The proof is similar to the proof of Theorem 4 in [3]. This proof does not
directly apply because we consider a notion of solo-fast which is weaker than the
one assumed in [3].

The following definition is needed for our proof.

Definition 2. A base object o is covered after an execution α if the set of prim-
itives applied to o in α is historyless, and there is a process that has, after α, an
enabled step e about to apply a writing primitive to o. We also say that e covers
o after α.
An execution α is k-covering if there exists a set of processes {pj1 , ..., pjk}, called,
covering set, such that each process in the covering set has an enabled writing
step that covers a distinct base object after α.

Theorem 1. Let A be an n-process non-trivial solo-fast implementation of a
perturbable deterministic abortable object. The space complexity of A is at least
n− 1.

Proof. To prove the theorem we construct an execution which is pn-free and
(n−1)-covering. The proof goes by induction. The empty execution is vacuously
a 0-covering execution and it is pn-free. Assume that αi, for i < n − 1, is an
i-covering execution with covering set {pj1 , ..., pji} and is pn-free. Let λi be the
execution fragment that consists of the writing steps by processes pj1 ...pji that
are enabled after αi, arranged in some arbitrary order.

Let pji+1
be a process not in {pn, pj1 , ..., pji}. Since i < n − 1, this process

exists. Because of the non-triviality of the solo-fast property process pji+1
applies

only historyless primitives after a finite number of its own steps when executing
solo after αi. Let δ be the shortest execution by pji+1 when executing solo after
αi such that pji+1 applies only historyless primitives (if any) after αiδ if still
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running solo. αi
′ = αiδ is pn-free and the writing steps of processes pj1 ...pji are

enabled at the configuration immediately after αi
′.

By Definition 1, there is an extension of αi
′, γ, by pji+1 such that the first

response different than abort returned to pn when repeatedly executing opn
respectively after α′iλi and α′iγλi is different. We claim that γ contains a writing
step that accesses a base object not covered after α′i . We assume otherwise
to obtain a contradiction. Since all steps in λi and γ apply primitives from a
historyless set, every writing primitive applied to a base object in γ is overwritten
by some event in λi. Thus, the values of all base objects are the same after α′iλi
and after α′iγλi. This implies that opn must return the same response after both
α′iλi and α′iγλi , which is a contradiction.

We denote γ′ the shortest prefix of γ at the end of which pji+1
has an enabled

writing step about to access an object not covered after α′i. We define αi+1

to be α′iγ
′. αi+1 is a pn-free execution and it is (i + 1)-covering. This latter

property is true because at the configuration immediately after αi+1 processes
{pj1 , ..., pji , pji+1

} have enabled writing steps that cover distinct base objects. It
follows that A has an (n− 1)-covering execution. ut

4 A Non-trivial Solo-fast Universal Construction (NSUC)

The NSUC algorithm uses single writer multi reader (SWMR) registers and
Compare&Swap registers (CAS). A register R stores a value from some set and
supports a read primitive which returns the value of R, and a write primitive
which writes a value into R. A CAS object supports the primitive CAS(c, e, v)
and Read(c), If the value of c matches the expected value e, then CAS(c, e, v)
writes the new value v into c and returns true (the CAS succeeds). Otherwise,
CAS returns false and does not modify the state of the CAS (the CAS fails).
Read(c) returns the value in c and it does not modify its state.

In the following we describe the shared variables used by our universal con-
struction.

– An array A of n SWMR registers. Each register contains a sequence number.
In particular, process pi announces its intention to change the current state
of the shared object, by writing into location A[i] the sequence number that
will be associated with the new state if pi succeeds its operation. Initially,
A[j] = 0 for j = 1..n.
An array F of n SWMR registers. The process pi writes < sv, σ > in F [i] if
it has detected that it is the first process to announce its intention to define
a state for the sequence number sv. σ is a pointer to the state proposed by
pi for the sequence number sv. Initially, F [j] =< 0,⊥ > for j = 1..n.

– An array OS of n SWMR registers. If there is no contention process pi writes
< sv, s > into OS[i] where s is the pointer to the new state of the shared
object computed by pi while executing its operation and sv is the associated
sequence number. Initially, OS[j] =< 0,⊥ > for j = 1..n.

– A CAS register OC. It is used in case of contention to decide the new state
of the object among the ones proposed by the concurrent operations. If a
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process pi detects contention, it tries to change the value of OC into a tuple
< sv, id, s > where id is the identifier of the process that proposes the state
pointed by s and associated with the sequence number sv. id may be different
than i if process pi detects that another process pid is the first one to propose
a new state for sv. pi then helps the other process to apply its operation.
Initially, OC =< 0, 0, σ > where σ is the pointer to the initial state of the
shared object.

– An array S of n CAS registers. Before trying to update the CAS register
OC, a process writes the sequence number stored in OC into S. Precisely,
if the value of OC is < sv, i, s >, S[i] will be set to sv. This is necessary to
ensure that a process is always aware that its operation succeeded even if
its operation was completed by another (helping) process. Thus, if S[i] = sv
process i knows that its operation which computed the state associated with
sv succeeded. Initially, S[j] = 0 for j = 1..n.

At any configuration, the tuple with the highest sequence number stored either
in the CAS register OC or in the array OS contains the pointer to the current
state of the implemented object.

NSUC Description

In the following, unless explicitely stated, all line numbers refer to Algorithm 1.
When a process pi wants to execute an operation op on an object of type

T , it first gets the current state of the object and the corresponding sequence
number and stores them locally in variables state and seq respectively (line
1). Then, pi locally applies op to the read state (line 2). The NSUC algorithm
assumes a function APPLYT (s, op, arg) that returns the response matching the
invocation of the operation op on a type T in a sequential execution of op with
input arg applied to the state of the object pointed by s. APPLYT (s, op, arg)
also returns a pointer to the new state of the object.

If op is a read-only operation, pi immediately returns the response (lines 3
to 5). We suppose to know a priori if an operation is read-only. Then, pi checks
if some other process is concurrently executing a writing operation on it. This
is done by reading the other entries of the array A and looking for sequence
numbers greater than or equal to sv + 1.

Three cases can be distinguished :

– lines 10 to 11. A sequence number greater than sv + 1 is found. This
implies that some other process already decided the state for sv + 1, so pi
aborts.

– lines 13 to 17. All the sequence numbers read by pi are smaller than
sv+ 1. Then, pi writes its computed new state together with the associated
sequence number (< sv+ 1, newState >) into the register F [i] (line 14) and
checks again for concurrent operations (line 15). Consider the case where
again all the sequence numbers read by pi in the announce array A are
smaller than sv+1 (the other case will be studied below). Any other process
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competing for sv + 1 will discover that pi was the first process to propose a
state for sv + 1 and then it will abort its own operation, after helping pi to
complete its operation (lines 21 to 24). Finally, pi writes its new state into
the read/write register OS[i] and returns the response of the operation (lines
16-17). The state of the object associated with sv + 1 is the one proposed
by pi.

1 < seq, state >← STATE() ; //Find the object state

2 < newState, res >← APPLYT (state, op, arg);
3 if op is read-only then
4 return res
5 end
6 seq ← seq + 1;
7 A[i]← seq; //The process announces its intention

8 idnew ← i;
9 seqA ← LEV ELA(i);

10 if seqA > seq then //A state is already decided for seq value

11 return ⊥
12 end
13 if seqA < seq then //The process is alone

14 F [i]←< seq, newState >;
15 if LEV ELA(i) < seq then //The process is still alone

16 OS[i]←< seq, newState >;
17 return res

18 end

19 else //There is interval contention

20 < idF , newStateF >←WHOS FIRST(seq);
21 if newStateF 6= ⊥ then //Presence of a first process

22 newState← newStateF ;
23 idnew ← idF ;

24 end

25 end
26 < seqOC , idOC , stateOC >←READ(OC);
27 while seqOC < seq do
28 if (seqOC 6= 0) then OLD WIN(seqOC , idOC);
29 CAS(OC,< seqOC , idOC , stateOC >,< seq, idnew, newState >);
30 < seqOC , idOC , stateOC >←READ(OC);

31 end
32 if (seqOC = seq ∧ idOC 6= i) ∨ (seqOC > seq ∧READ(S[i]) 6= seq) then
33 res← ⊥;
34 end
35 return res

Algorithm 1: NSUC - Code for process pi to apply operation op with the
input arg on the implemented object
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– lines 20 to 35.pi reads sv+1 in one of the other entries. So, it detects that
another process is concurrently trying to decide the state for this sequence
number. If the detection is done on line 13, then pi checks the presence of a
process pj competing for sv+1 and which has seen no contention (i.e. pj has
written its proposal in F [j]) in line 14. If this process exists, pi will help pj
to apply its new state of the object (lines 21 to 24). In particular, since there
is contention pi will try to write state computed by pj into the CAS register
OC (lines 26 to 31). Then it will return abort (lines 32 to 35). Otherwise
pi continues to compete for its own proposal. It tries to write the proposed
state into OC (lines 26 to 31) until a decision is taken for sv+1. If a process
(pi or a helper) succeeds to perform a CAS in OC with pi’s proposal then
pi returns the response of its own operation (line 35). Otherwise it aborts.
We have a similar behavior if a process detects the contention on line 15.

1 seqmax ← 0; σmax ← ⊥;
2 for j = 1..n do
3 < seqOS , σ >← OS[j];
4 if seqOS > seqmaxthen seqmax ← seqOS ; σmax ← σ; end

5 end
6 < seqOC , idOC , σOC >←READ(OC);
7 if seqOC < seqmax then return < seqmax, σmax > end
8 return < seqOC , σOC >

Algorithm 2: function STATE()

STATE returns a pointer to the current state of the shared object and its
sequence number.

1 seqmax ← 0;
2 for j = 1..n | j 6= i do
3 seqA ← A[j];
4 if seqmax < seqA then seqmax ← seqA; end

5 end
6 return seqmax

Algorithm 3: function LEV ELA(i)

LEV ELA(i) returns the highest sequence number written into the announce
array A by a process other than pi.

1 for j = 1..n do
2 < seqF , σF >← F [j];
3 if seqF = sv then return < j, σF > end

4 end
5 return < 0,⊥ >

Algorithm 4: function WHOS FIRST (sv)
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For a given sequence number sv, WHOS FIRST (sv) returns the tuple (j, σ)
where j is the first process (if any) to propose a new state for sv and σ is a pointer
to the proposed state.

1 seqS ← READ(S[idOC ]);
2 if seqOC > seqS then CAS(S[idOC ], seqS , seqOC) end

Algorithm 5: function OLD WIN((seqOC , idOC)

OLD WIN tries to write seqOC in the CAS S[idOC ] if S[idOC ]’s value is
smaller than seqOC . This ensures that a slow process p whose operation suc-
ceeded to modify the CAS OC is aware that its operation was successfully ex-
ecuted. In fact, it may happen that p did not take steps while another process
completed its operation and, then another operation overwrote its changes by
writing into OC. p can recover the status of its operation checking into its loca-
tion in S and then it can return the correct response.

Complexity

Let t be the worst case step complexity to perform an operation on the sequential
implementation of the object (i.e. the time complexity of the function APPLYT ).
By inspecting the pseudocode it is simple to see that the step complexity of the
functions STATE, LEV ELA and WHOS FIRST is in O(n). Also the step
complexity of the function OLD WIN is O(1). We establish that a process can
repeat the loop (lines 27 to 31 of the Algorithm 1) at most n times. Thus, the
step complexity of our construction is O(n + t). Since the execution of every
operation includes the execution of the functions STATE and APPLYT , the
step complexity of the NSUC construction is in Θ(n+ t).

Let s be the size of the sequential representation of the object. The NSUC
algorithm stores at most 2n + 1 sequential representations of the object (n in
the array F , n in the array OS and 1 in OC). So the space complexity of NSUC
algorithm is in O(ns).

5 Proof sketch of NSUC

In this section we sketch the ideas behind the correctness of our construction.
The complete proof can be found in [4]. In the following all the line numbers
refer to Algorithm 1 unless otherwise stated.

Wait-freedom. A process p stays in the loop (lines 27 to 31) only if another
process q succeeds the CAS at line 29 with a sequence number smaller than the
seq value of p when executing line 27, in between the last read of OC by p and
the last application of the CAS primitive to OC by p. After its CAS, q exits the
loop and its operation is terminated.

The sequence numbers written in the CAS object OC and in the register
OS[i] ∀i = 1..n are increasing. Then the next operation of q will have a sequence
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number greater than or equal to seq (from line 1 and from the pseudocode of
the function STATE). So, process q can prevent p to exit the loop at most once.
This implies the next theorem.

Theorem 2. Every invocation of an operation by a correct process returns after
a finite number of its own steps.

Deterministic Abortable Object. Roughly speaking, the next theorem states that
an operation that aborts does not modify the state of the object.

Theorem 3. Let op be an operation instance executed by a process p in an
execution α such that op aborts. Let sv be the sequence number computed by p
at lines 1 and 6 of Algorithm 1 while executing op. The tuple with the sequence
number sv and the corresponding pointer to the state computed by p will never
be written either into OC or into OS.

By inspecting the pseudocode of NSUC algorithm, a process p can abort only
on line 11 or line 33. If op completes succesfully it defines the sv-th state of the
object. If p aborts on line 11, it did not write into the shared register OS or any
CAS. So, consider the case where process p aborts on line 33. According to line
32, one of the two following conditions has to be verified.

Either, the process p reads in OC a pointer to the state corresponding to
the sequence number sv and the process identifier associated with this sequence
number is different than p. This means that another operation has succeeded to
define the sv-th state of the object. We complete the proof by proving that each
sequence number is associated with a single state.

Or the process p reads in OC a sequence number greater than sv. We prove
that if a state corresponding to a sequence number v has been written into OC
So, a state < sv, i, state > has been defined for the sv-th sequence number
and it has been overwritten. We prove that before the overwritting of the tuple
< sv, i, state > in OC a process has written in S[i] the sequence number sv,
in order to notify process i that the state it proposed for sv has been applied.
Therefore, process p aborts only if S[p] 6= sv. This means that the state computed
by p while executing op has not been associated with sv.

Non-triviality. In its first steps, a process p executing an operation op computes
sv, the sequence number associated with the state it will define if op succeeds.
To compute sv, (line 1) p reads the greatest sequence number associated with a
state of the object and it increments this value by one (line 6). Then, p announces
its intention to define the sv-th state by writing sv in a shared register A[p] (line
7). p may abort its operation op only if it detects (by reading A) an operation
op′ with a sequence number greater than or equal to sv. We prove that op is
concurrent with op′.

Also, we prove that if op aborts, at the configuration immediately after it
aborts the sv-th state has been defined. As the sequence number written in CAS
OC and OS are increasing, if process p executes a new operation, this latter will
be associated with a greater sequence number than sv. An operation does not
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change its sequence number.Thus, for any operation op′ that does not complete,
process p will eventually only execute operations whose sequence number are
greater than the sequence number of op′. Thus, op′ cannot cause the abort of
these latter operations. In particular, we prove that an operation that does not
complete can cause the abort of at most two operations per process.

Theorem 4. The universal construction NSUC is non-trivial.

Non-trivial solo-fast. Similarly to the non-trivial property, we prove that during
the execution of an operation a process applies some no-histoyless primitives
only if this operation is concurrent with another one. Also, an operation op that
does not complete can cause a process to apply no-histoyless primitives for only
2 consecutive operations.

Theorem 5. The universal construction NSUC is non-trivial solo-fast.

Linearizability. For any given execution α we construct a permutation π of the
high-level operations in α such that π respects the sequential specification of the
object and the real-time order between operations. Since the operations that
abort do not change the state of the object and return a special response abort,
they do not impact on the response returned by the other operations and on the
state computed by writing operations. Thus, in the following we discuss how to
create the permutation without taking into account aborted operations; then we
put aborted operations in π respecting their real-time order.

First, we order all writing operations according to the ascending order on the
sequence number associated with them. Secondly, we consider each read-only
operation in the order in which its reponse occurs in α. A read-only operation
that returns the state of the object corresponding to the sequence number k is
placed immediately before the writing operation with sequence number k+ 1 or
at the end of the linearization if this latter write does not exist.

By inspecting the pseudocode it is simple to see that the total order defined
by the sequence numbers respects the real-time order between writing operations.
Also a read-only operation r that starts after the response of a successful writing
operation w with sequence number i, will return a state of the object whose
sequence number is greater than or equal to i. Thus r follows w in π. Similarly,
consider two read-only operations op and op′. If op precedes op′ in α, the sequence
number of op′ is greater than or equal to the sequence number of op, then op′ is
not ordered before op in π.

Theorem 6. The universal construction NSUC is linearizable.

6 Conclusion

We have studied solo-fast implementations of deterministic abortable objects.
We have investigated the possibility for those implementations to have a better
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space complexity than linear if relaxing the constraints for a process to use strong
synchronization primitives.

We have proved that solo-fast implementations of some deterministic abor-
table objects have space complexity in Ω(n) even if we allow a process to use
strong synchronization primitives in absence of step contention, provided that its
operation is concurrent with another one. To prove our result we consider only
non-trivial implementations, that is implementations where a crashed process
can cause only a finite number of concurrent operations to abort.

Then, we have presented a non trivial solo-fast universal construction for
deterministic abortable objects. Any implementation resulting from our con-
struction is wait-free, non-trivial and non-trivial solo-fast : without interval
contention, an operation uses only read/write registers; and a failed process
can abort at most two operations per process. Similarly at most two operations
per process use strong synchronization primitives being concurrent with a failed
operation. Moreover, in case of contention our universal construction ensures
that at least one writing operation succeeds to modify the object. Finally, a pro-
cess that executes a read-only operation does not apply strong synchronization
primitives and the operation always returns a legal response.

If t is the worst time complexity to perform an operation on the sequential
object, then Θ(t + n) is the worst step complexity to perform an operation on
the resulting object. If the sequential object has size s, then the resulting object
implementation has space complexity in O(ns). This is asymptotically optimal
if the implemented object has constant size. On the other hand to prove our
lower bound we consider base objects accessed via a set of historyless primi-
tives, e.g., read/write registers. Thus, it does not imply that n CAS objects are
needed to implement a non trivial solo-fast universal construction for determinis-
tic abortable objects. The possibility to design this universal construction using
O(n) read/write registers but just a constant number of CAS objects is an open
problem.
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