Robust Self-Stabilizing construction of bounded
size weight-based clusters

Colette Johnen! and Fouzi Mekhaldi®

1 Université Bordeaux, LaBRI UMR 5800, F-33405 Talence, France
2 Université Paris-Sud, LRI UMR 8623, F-91405 Orsay, France

Abstract. We propose the first robust self-stabilizing protocol building
1-hop clusters whose size is bounded, moreover the clusterhead selec-
tion is weight-based. The protocol reaches quickly (in 4 rounds) a safe
configuration, where the safety property is satistfied: network nodes are
partitionned into bounded clusters (clusterheads are not the most suit-
able nodes). During the convergence to a legitimate configuration, where
more desired properties are guaranteed, the safety property is preserved,
ensuring then the continuity functioning of hierarchical protocols.

Keywords: Clustering, Self-stabilization, safety property, robustness.

1 Introduction

Clustering: An Ad Hoc or sensor network consists of wireless hosts that com-
municate without any pre-installed infrastructure. The clustering is introduced
in such networks to facilitate the network management and increase the scal-
ability. Clustering is a hierarchical organization which consists of partitioning
network nodes into groups called clusters. Each cluster has a single clusterhead,
and eventually a set of ordinary nodes. Clustering is attractive hence it allows
the use of hierarchical routing which reduces the amount of stored routing infor-
mations; and decreases the transmission overhead. However, for more efficiency,
the hierarchical structure should be established as soon as possible, and must be
maintained over time. A well maintenance ensures the continuity functioning of
protocols using the hierarchical organization like hierarchical routing protocols.

Bounded clusters: If a certain zone becomes densely populated with nodes,
the clusterhead might not be able to handle all the traffic generated by nodes of
its cluster. In addition, the power consumption of a clusterhead is proportional to
the number of nodes in its cluster; thus the lifetime of a clusterhead is inversely
proportional to its cluster’s size. Therefore, controlling the number of nodes in a
cluster will extend its clusterhead’s lifetime, and will improve the stability of the
cluster. Furthermore, keeping the number of nodes in a cluster smaller than a
threshold facilitates the operation of the medium access control (MAC) protocol.

Self-Stabilization: A technique for designing solutions that tolerate transient
faults is the self-stabilization. A self-stabilizing system guarantees that regardless
of the current system’s configuration, it will converge to a legitimate configu-
ration in a finite number of steps. This convergence implies three important

properties of self-stabilization: embedded tolerance of arbitrary transient fail-
ures, unneeded of correct initialization (as the initial state does not have to be
legitimate) and obvious adaptivity to dynamic changes of the network topol-
ogy: ex. mobility of nodes, or node crashes (as any of them can be treated as a
transient fault). This is why the self-stabilization property is attractive.

Robustness: In the other hand, there are some disadvantages of self-stabilizing
protocols. They are in particular: tolerance of only non-permanent faults, and
no explicit detection of accomplishing convergence. Moreover, self-stabilizing sys-
tems do not guarantee any property during the convergence period, so the system
behaves arbitrarily along the convergence to a legitimate configuration. In addi-
tion, the convergence time may be proportional to the size of the network; partic-
ularly, in weight-based clustering protocols (see Sect. 5.2). Thus, self-stabilizing
weight-based clustering protocols are not scalable. In order to overcome these
drawbacks, we are interested to the robust self-stabilization. The robust self-
stabilization guarantees that from an illegitimate configuration and without oc-
currence of faults, the system reaches quickly a safe configuration, in which the
safety property is satisfied. During the convergence to a legitimate configuration,
the safety property is preserved. The safety property has to be defined in such
a way that the system still performs correctly its task once a safe configuration
is reached. The safety property for our protocol is defined in Section 4.3.

The problem studied is the clustering of a network such that the number of
nodes per cluster is bounded by a pre-defined threshold. This structure is also
known as capacitated dominating set (dominating set with node capacities).

Related works: We are interested to protocols building 1-hop clusters (1-
dominating sets) in which ordinary nodes are neighbor of their clusterhead. [1]
presents a self-stabilizing protocol that constructs a minimal dominating set un-
der synchronous scheduler. In [2,3], self-stabilizing protocols building a connected
dominating set are provided. In [4], a self-stabilizing protocol to construct a maxi-
mal independent set (MIS) is presented. In [5], a probabilistic self-stabilizing MIS
protocol is presented. A self-stabilizing protocol building a minimal k-dominating
set under synchronous scheduler is presented in [6]. A self-stabilizing clustering
protocol is presented in [7]; the density criteria (defined in [8]) is used to select
the clusterheads. In [9], a robust self-stabilizing protocol building a minimum
connected dominating set is proposed. In a safe configuration, the built set is
just dominating set. In [10], a robust self-stabilizing version of DMAC [11] un-
der synchronous scheduler is presented. A robust self-stabilizing weight-based
clustering protocol is proposed in [12]. It is a robust self-stabilizing version of
GDMAC [13] (an extended version of DMAC). In robust self-stabilizing proto-
cols [10,12], a configuration is safe if each node belongs to a cluster.

To our knowledge, the only protocols building bounded size clusters are [14,15,16].
In [15], the obtained clusters have a size bounded by a lower and an upper bound.
This solution cannot be applied to one-hop clusters, because the degree of nodes
may be less than the lower bound. [14,15] are not self-stabilizing. Although [16]
is self-stabilizing, it is not robust. During the convergence period, a node may
not belong to a cluster even if it belongs initially to a well-formed cluster.

Contributions: We propose the first robust self-stabilizing protocol building
1-hop clusters having bounded size, where the clusterhead selection is weight-
based. Our protocol ensures the fault-tolerance, load-balancing, best choice of
clusterheads, and reliability. The load balancing is achieved by building bounded
size clusters. The number of nodes that a clusterhead handles is bounded by a
threshold (SizeBound). Thus, none of clusterheads are overloaded. The fault-
tolerance and the reliability are achieved by the robust self-stabilization property.

Our protocol reaches a safe configuration, in at most 4 rounds, where a minimum
service is guaranteed: the network is partitioned into bounded size clusters having
an effectual leader (it is not the most suitable node within the cluster). From that,
the protocol converges to a legitimate configuration in at most % + 5 rounds
(|V] is the size of network). Any self-stabilizing protocol building weight-based
clusters needs O(V') rounds (see subsection 5.2) from some configurations and
some networks. During the convergence to a legitimate configuration, the safety
property stays verified. Thus, the minimal service is continuously provided. In
a legitimate configuration, a best quality of service is achieved: clusterheads are
the most suitable nodes in their cluster, and their number is locally minimized.

2 Model and Concepts

A distributed system S is modelled by an undirected graph G = (V| E) in which,
V is the set of (mobile) nodes and FE is the set of edges. There is an edge
{u,v} € E, if and only if v and v can communicate between them (links are
bidirectional). In this case, we say that v and v are neighbors, and we note by
N, the set of neighbors of the node v. Every node v in the network is assigned
a unique identifier id.

The state of a node is defined by the value of its local variables. A configuration
of the system S is an instance of the node states. The program of each node is a
set of rules. Each rule has the following form: Rule; : Guard; — Action;. The
guard of a rule of a node v is a Boolean expression involving the local variables
of v, and those of its neighbors. The action of a rule of v updates one or more
variables of v. A rule can be executed only if it is enabled, i.e., its guard evaluates
to true. A node is said to be enabled if at least one of its rules is enabled. In a
terminal configuration, no node is enabled.

A computation step ¢; — c;41 consists of one or more enabled nodes executing
a rule. A computation is a sequence of consecutive computation steps. We say
that a computation e is maximal if it is infinite, or if it reaches a terminal
configuration. A computation is fair, if for any node v which is continuously
enabled along this computation, eventually performs an action. In this paper,
we study only fair computations. We note by C the set of all configurations, and
by £ the set of all (fair) computations.The set of (fair) computations starting
from a particular configuration ¢ € C is denoted .. £4 is the set of computations
where the initial configuration belongs to A C C.

A node v is neutralized in the computation step e, ¢; — ¢;+1, if v is enabled in
¢; and not enabled in ¢;41, but v did not execute any action during e.

We use the round notion to measure the time complexity. The first round of a
computation e = ¢, ..., ¢;, ... is the minimal prefix €’ = ¢4, ..., ¢; such that every
node v enabled in ¢4, either executes a rule or becomes neutralized in ¢;. Let e’
be a suffix of e such that e = e’¢”. The second round of e is the first round of
e”, and so on. We use the attractor notion to define the self-stabilization.

Definition 1. (Attractor). Let By and By be subsets of configurations of C.
Bs is an attractor from By, if and only if the following conditions hold:
e Convergence:
Ve € 531(6 = 01,02,...),3i >1:¢ € Bs.
Ve € By, If (E.=0) then ¢ € Bs.
e Closure: Vee Ep,(e =cy,..),Vi 2 1:¢; € Bs.

Definition 2. (Self-stabilization). A distributed system S is self-stabilizing
if and only if there exists a non-empty set L C C, called set of legitimate config-
urations, such that the following conditions hold:

e L is an attractor from C.

o All configurations of L satisfy the specification problem.

Definition 3 (Robustness under Input Change [12]). Let SP be the safety
predicate, that stipulates safe configurations. Let IC be a set of input changes
that can occur in the system. A self-stabilizing system is robust under any input
changes of ZC if and only if the set of configurations satisfying SP is:

e closed under any computation step.

e closed under any input changes of IC.

3 Weight-based bounded size clustering

The problem studied consists to build 1-hop clusters having bounded size. Both
problems of finding the minimum number of 1-hop clusters (i.e., a minimal dom-
inating set), and the minimum number of bounded clusters (i.e., a minimal
capacitated dominating set) are NP-hard [17,18]. The goal of our protocol is
not to give a distributed solution to these problems, but to propose a robust
self-stabilizing protocol building an useful clustering. Our solution satisfies some
desired properties like: a best choice of clusterheads, number of nodes per cluster
is bounded, and the number of clusterheads neighbor is minimal.

Specifications: The final clusters provided by our protocol satisfy the well-
balanced clustering properties, informally defined as follows:

e Affiliation condition: each ordinary node affiliates with a neighbor cluster-
head, such that the weight of the clusterhead is greater than its weight.

e Size condition: each cluster contains at most Size Bound ordinary nodes.

e Clusterheads neighbor condition: if a clusterhead v has a neighbor clus-
terhead u such that w, > w,, then the size of u’s cluster is SizeBound (v
cannot join u’s cluster without violating the size condition).

As clusterheads have more tasks to ensure than ordinary nodes, then each clus-
terhead must be more suitable than ordinary nodes inside its cluster. This is
the goal of the Affiliation condition. Our protocol selects clusterheads according
to their weight value. Each node has an input variable, its weight, named w,
representing its suitability to be clusterhead. The higher the weight of a node,
the more suitable this node is for the role of clusterhead.

A significant node’s weight can be obtained by a sum of different normalised
parameters like: node mobility, memory and processing capacity, bandwidth,
battery power, and so on. The computation of the weight value is out the scope
of this paper. Nevertheless, we consider that the weight value of a node can in-
crease or decrease, reflecting changes in the node’s status. We assume that nodes
weight are different (the id of nodes breaks the tie).

The proposed protocol provides bounded size clusters; at most SizeBound or-
dinary nodes are in a cluster. This limitation on the number of nodes that a
clusterhead handles, ensures the load balancing: no clusterhead is overloaded.

As clusters have bounded size, several clusterheads may be neighbors. To limit
locally the number of clusterheads, the clusterheads neighbor condition is used. A
node v stays clusterhead only if it cannot join any neighbor cluster: all neighbor
clusters are full (it contains Size Bound members), or v’s weight is bigger than
all neighbor clusterhead’s weight. Notice that clusterhead neighbor condition
ensures that the clusterhead set S, is minimal : there is not clustering structure
satisfying the affiliation and size conditions where the clusterheads set, S’ is a
proper subset of S.

Let we note that, a trivial configuration in which each node of the network is a
clusterhead does not satisfy the specification of the problem: it does not satisfy
the clusterheads neighbor condition. Because, some clusterheads can become
ordinary without violating the affiliation and size conditions.

4 Robust Self-Stabilizing protocol for Bounded Size
Weight-based Clusters

4.1 Variables and Macros

The variables, and macros are presented in Protocol 1. Each node v has three
possible status. It can be a clusterhead (HS, = CH), a nearly ordinary node
(HS, = NO), or an ordinary node (HS, = O). A node v which is clusterhead or
nearly ordinary, is the leader of its cluster, and it is responsible to manage it.
To prevent the violation of the size condition, a node u cannot freely join a
cluster: u needs the permission of its potential new clusterhead. More precisely,
only nodes belonging to the set C'D, may join v’s cluster.

The set N, indicates the clusterhead neighbors of v that are more suitable than
v’s current clusterhead. If the set N is not empty, then v must change its
clusterhead in order to choose a more suitable one: in v’s neighborhood, there is
a clusterhead v having a bigger weight than v and v’s clusterhead, and u accepts
the v’s affiliation (i.e., v € C'D,,).

Protocol 1 : Variables and macros on node v.
Constants
w, € R; Weight of node v.
SizeBound € N; Maximum number of ordinary nodes that may belong to a cluster.

Local variables
HS, € {CH,O, NO}; Hierarchical status of node v.
Head, € {IDs}; Identity of v’s clusterhead.
wh, € R; Weight of v’s clusterhead.
CD, C {IDs}; List of nodes that can join v’s cluster.
Sv € N; Locale value about the size of v’s cluster.

Macros
Size of v’s cluster: Size, :=|{z € N, : Head. = v}|;
v’s neighbors could be clusterheads of v:
NY:={2€N,:(vECD,)A(HS, =CH) A (ws > Wread,) N (W > wy)};
Computation of CD2,:
Begin
CDO0, :={z € Ny : wh, < wy Aw; < Wy}
If |CDO0,| < SizeBound — Size, then CD1, := CD0,;
Else C' D1, contains the SizeBound — Size, smallest members of C'DO0,;
If CD, CCD1,U{z € N, : Head, = v} then CD2, := CD1,;
Else CD2, := ()
End

4.2 Predicates and rules

The predicates and rules are illustrated in Protocol 2. The election rule allows a
node to become clusterhead. The affiliation rule allows an ordinary or a nearly
ordinary node to affiliate with an existing clusterhead. The resignation rule al-
lows a clusterhead to become nearly ordinary node. The correction rules update
if necessary the value of v’s local variables: Head,,CD,,, S,,and wh, without
changing its hierarchical status.

Election and Affiliation processes: When an ordinary node v does not
satisfy the affiliation or size conditions, the predicate Change is satisfied. In this
case, v has to change its cluster (it will affiliate with another clusterhead or
it will become clusterhead). The rule executed by v depends on N, value. If
N, =0, then no node can be clusterhead of v. So, v must become clusterhead
(Election rule). Otherwise (N,” # 0), v has a neighbor that could be its new
clusterhead. So, v affiliates with the best clusterhead of N (Af filiation rule).

Resignation process: A clusterhead v has to resign its status when it does not
satisfy the clusterheads neighbor condition, i.e. N, # (). In this case, v executes
the Resignation rule. In order to maintain the hierarchical structure over the
network, the clusterhead v does not take directly the ordinary status: v takes
the nearly ordinary status, and still performs correctly its task of clusterhead.
Nevertheless, HS, = NO and CD, = (), i.e., no node can join v’s cluster.
All members of v’s cluster verify the predicate Change. So, they will quit the
v’s cluster. Thus, the v’s cluster will eventually be empty (Size, = 0). Then,

either v affiliates with an existing clusterhead (Af filiation rule) if N}F # 0,
or it becomes again a clusterhead (Election rule). This mechanism guarantees
that during the construction/maintenance of clusters, no clusterhead abandons
its leadership. Thus, the hierarchical structure of the network is continuously
available even during its reorganization.

Protocol 2 : Robust Self-Stabilizing Clustering Protocol on node v.

Predicates

/* true if a node has to change its clusterhead */
Change (v) = (Head, ¢ N, U{v})V
(W > WHead,) V (HSHead, # CH) V (Stead, > SizeBound)
/* The guard of Election rule */
Election-g(v) = [(HS, = O) A (N;} = 0) A Change(v)] V [(HS, = NO) A (N,;} = 0)]
/* The guard of Affiliation rule */
Affiliation-g(v) = [(HS, = O)A(N, # 0)V[(HS, = NO)A(Size, = 0)A(N, # 0))
/* The guard of resignation rule */
Resignation-g(v) = (HS, = CH) A (N} # 0)

/* The guards of Correction rules */
Cor-guardCH(v) = (HS, = CH)A

[(Head, # v) V (CD, # CD2,) V (S, # Sizey) V (why # wy)]
Cor-guardN0(v) = (HS, = NO)A[(Head, # v)V(CD, # 0)V (S, # 0)V (why # wy)]
Cor-guard0(v) = (HS, = O) A[(CDy # 0) V (Sy # 0) V (why # WHead,)]
Rules

/* Clustering Construction rules */
Election : Election-g(v) —
HS, :=CH;Head, :=v;CD, := CD2,; S, := Size,; why := wy;
Affiliation : Affiliation-g(v) —
HS, := O; Head, := maz,_ {z € NJ}; CD, :=0; S, := 0; why := WHead,;
Resignation : Resignation-g(v) —
HS, := NO; Head, :=v; CD, :=0; S, :=0; why := wy;
/* Correction rules */
Correction-CH : —Resignation-g(v) A Cor-guardCH(v) —
Head, :=v; CD, := CD2y; Sy := Sizey; why := wy;
Correction-NO : —Election-g(v) A —mAffiliation-g(v) A Cor-guardNO(v) —
Head, :=v; CD, :=0;5, :=0; why := w,;
Correction-O : ~Election-g(v) A —Affiliation-g(v) A Cor-guard0(v) —
CD, = @; Sy 1= 0; why = WHead,)

4.3 Safety predicate

A safe configuration is a configuration satisfying the safety predicate SP. The
safety predicate ensures that the following properties are satisfied:

e each node belongs to one cluster having an effectual leader (no condition on
leader’s weight, but its status is not ordinary node);

e cach cluster has less than SizeBound ordinary members.

Definition 4. The safety predicate SP is defined as follow:
e SP=Vu, SP, =True

e SP, = (Head, € N, U{v}) A(HSHead, # O) N Ps(v)

e Pi(v) = |Cluster, UCD,| < SizeBound

o Cluster, = {z € N, : Head, = v}. Cluster, is the v’s cluster (i.e., the set of
nodes having chosen v as their clusterhead).

Our protocol is robust under the following input changes: (i.e., the safety
predicate SP is preserved) (i) the change of node’s weight, (ii) the crash of
ordinary nodes, (iii) the failure of a link between (1) a clusterhead and a nearly
ordinary node, (2) two clusterheads, (3) two nearly ordinary nodes, or (4) two
ordinary nodes, (iv) the joining of a sub-network that verifies the predicate SP.

The difficulty is to preserve the size condition after any computation step. A clus-
ter whose clusterhead v satisfies the predicate Ps(v), verifies the size condition
in the current configuration and after any computation step. On the contrary, a
cluster whose clusterhead v does not satisfy the predicate Ps(v), may not verify
the size condition after the specific computation step in which all nodes of C'D,,
join v’s cluster (this feature is illustrated in Figure 1). In the initial configuration,
Clusterg = {1}, and CDg = {2,3,4}. Thus, the size condition is satisfied, but
the Ps(6) predicate is not satisfied: |CDg U Clusterg| = |{1,2,3,4}| > 3. After
the computation step where all nodes of C'Dg join 6’s cluster, the size condition
is no more satisfied.

O Clusterhead [0 Nearly ordinary node O Ordinary node W, = id SizeBound = 3

Head, =6 Head, =6
P AN

CDs = {2,3,4} ~ 7™\ I , : ’ A
Heads =6 ~ 7 ! Aﬁ!l!at!on(Z), (,gce<b:cl§2;(z 4}/ ’ N
A /& =« Affiliation(3), - !

< /v Affiliation(4)
v/ Heads = 2)
\ N
Heads =5 Heads
N Heads = 3
Heady = 4

Initial configuration

Fig. 1. Violation of the size condition from a configuration not satisfying Ps(v)

The variable CD, is computed in such a way that the predicate Ps(v) stays
verified after any computation step. For each clusterhead v, the macro CD2,
is used to compute CD, value. CD2, is computed in 3 steps. C D0, is the
set of v’s neighbors that want to enter into v’s cluster, i.e., their weight and
their clusterhead’s weight are smaller than v’s weight. The size of C' D0, can be
greater than Size Bound — Size,: C'D1, is a subset of C'D0,, containing at most
SizeBound—Size, elements. The set C D2, is a subset of C' D1, ensuring that the
predicate Ps(v) stays verified by v after any computation step from the current
configuration (assuming that Ps(v) is verified in the current configuration).

O Clusterhead O Nearly ordinary node O Ordinary node ~ W;, = id SizeBound = 3

Heady =6 Heady =6
Pt ~

) = 7,
@) Affiliation(4), CDs={} ©
’ |
|

CDg = {4,5) -
Heads =6~
2

o Heads =6, 7
. Affiliation(5),

N

; . P
“~(2)! Correction-CH(6) (5) I
) ——— 7
, ~
| Heads = 2 I / Heads =2
N \ !
= |
Heads Zi Heady =6 9
N Heads =3 ~= Heads =3
Heads =5 Heads = 6
Initial configuration :c;. Configuratione,.

Fig. 2. Illustration of C'D value computation

The Figure 2 illustrates the computation of C'D,, value. In the initial configura-
tion, there are 5 clusters satisfying the size condition, and C'Dg = {4, 5}. For sim-
plicity, the weight of a node is its identity. Thus, the clusterhead 6 has the highest
weight in its neighborhood. Nodes 2,3, 4 and 5 want to belong to Clusters (the
node 1 is already in Clusterg); so, CD0g = Ng — Clusterg = {2,3,4,5}.

CD1g contains only two nodes, because SizeBound = 3 and |Clusterg| = 1; so,
CD1g = {2,3}. In the reached configuration co, CDg =) because

CDg(c1) € {CD1g(c1) U Clusterg(c1)}. Notice that in o, Ps(6) is still verified:
|CDg(c2) U Clusterg(ca)| < SizeBound.

5 Convergence

Proofs of convergence to a safe and legitimate configurations, and robustness are
omitted due to lack of space, they can be found in [19]. A legitimate configuration
is a terminal configuration in which the well balanced clustering properties are
verified. The convergence process from an arbitrary configuration to a legitimate
configuration is done in two steps. First, the system converges quickly to a safe
configuration; and after that, it progresses to reach a legitimate configuration.

5.1 Illustration of the convergence process

The convergence process from an unsafe to a safe configuration, is straightfor-
ward: once an ordinary node locally detects an unsafe situation (ex: its cluster
has more than SizeBound members), it becomes clusterhead if it cannot join a
neighbor cluster without violating the affiliation and size conditions. Along any
computation, the time to reach a safe configuration is at most 4 rounds.

The convergence to a legitimate configuration is explained informally in follows
(technical proofs are in [19]). Figure 3 illustrates the convergence process from
an arbitrary configuration to a legitimate configuration. For simplicity in this
example, the weight of a node is its identifier.

The initial configuration 3.a is not safe, because the cluster of 5 does not have
a leader. Node 5 eventually performs the Affiliation rule to affiliate with the
clusterhead 7. The reached configuration, 3.b, is safe.

10

From a safe configuration, the stabilization is done in phases. At the end of i*?
phase, nodes of Set; have their final state (have stabilized).

Notation 1 We denote the set of safe configurations by As, and we denote by
V; =V — Set; the set of nodes not having their final state after the it" phase.

O Clusterhead [0 Nearly ordinarynode (O Ordinarynode W;,; = id SizeBound = 3

@ \ Aff|||at|0n(5)l @ \ Electlon(g)' @ 1
\ T 9 I ’®_@ / \— _ ReS|gnat|on(6)

- ReS| nation(7
CDg = {6 7} 9 ™

Configuration (a) Configuration (b) Configuration (c) :’ iy
l

Affiliation(6) @,_._@
_ EIection(S il -—-=
X . — Configuration (d)
I @ Correctlon CH(9) @ Aff|||at|0n(7)| @ \
CD9=@ CD5—@ CDgf{G 7} CDL;—(Z) CDL;*@
Configuration (g) Configuration (f) Configuration (e)

Fig. 3. Illustration of convergence to a legitimate configuration.

e Sety is the set of nodes having initially their terminal state (they will not do
any action). Usually, Setq = 0.

e We name vhg, the node having the highest weight in V) = V — Sety. In Figure
3, vho = 9. The node 9 has to be clusterhead (it verifies Election-g). Once
node 9 has performed the Flection rule, the system reaches a configuration of
Ly =Asn{ce C| HSyn, = CH} where vhy will never change its status. In
Figure 3, the configuration 3.c belongs to L;. We prove, in [19], that L; is an
attractor, and it is reached from Ag in at most one round along any computation.
e Let L) = Ly N {c € C| |Cluster,p,| = Min(SizeBound, | Ny, N Vo|)} be the
set of configurations where the vhy’s cluster is stable (no node will quit or join
this cluster). In Figure 3, the configuration 3.f belongs to L). We prove that L}
is an attractor, and along any computation, it is reached from L; in at most
five rounds.

e In the last step of phase 1, all nodes of vhg’s cluster reach their final state
(a conﬁguration of Llll) In Figure 3, the configuration 3.g belongs to Llll, where
L = L1 N{c e C|Vuve SetyU{vho}U {Clustervho} CD, = () }; We prove
that L is an attractor, and it is reached from L] in at most one round.

At the end of first phase, the set of nodes having their final state is Set; =
Seto U {vho} U {Clusteryp, }. Each phase i is similar to the first one: the node
of V; = V — Set; having the highest weight, named vh;, becomes clusterhead.
vh;’s cluster is filled out, and the members of vh;’s cluster get their final state.
At the end of i*" phase, the set of nodes having their final state is Set; =

11

Set;—1 U{vh;} U {Clustery, }. Each phase building a cluster with at least one
ordinary node requires at most 7 rounds, whereas the construction of clusters
having just the clusterhead requires 1 round. The number of phases is equal
or less than number of clusters. Thus, the convergence time to a legitimate
configuration is at most % rounds from a safe configuration.

5.2 Upper Bound of stabilization time

Theorem 1. The convergence time of a self-stabilizing weight-based clustering
protocol is intrinsically proportional to the network size.

Proof. Let us study the example network presented in Figure 4.

In the initial configuration 4.a, there are (|[V| — 1)/2 clusters where |V] is the
network size. For any value of ¢ that is old, X; is a clusterhead, X, affiliates
with X;, and X is member of X;i’s cluster. The node weights are ordered as
follows: X; > Xi+1.

The legitimate configuration (assuming that SizeBound > 1) is defined as: for
any value of i that is even, X; is a clusterhead, and X, affiliates with X;.

To reach a legitimate configuration, each node has to change its role. X;;1
detects that it has to change its role only after a change on X;’s role. Clearly,
X; can change its role only after ¢ rounds. Therefore, the convergence time is

O(V') rounds. i O
O Clusterhead O Ordinary node
______________________________ | B |
D Xe X1 Xe i1 Xs Xat 1Xo Xy 11Xs XyuiXg o

I 11 [I

F O—O—O+——0—"0O: 0O T I |

. - | 1 L Y 11— 1
(a) Initial configuration (b) Legitimate configuration

Fig. 4. Convergence time
6 Conclusion

Compared to the self-stabilizing protocol presented in [16], our solution is well-
suited for large-scale modern distributed systems such as mobile ad hoc and
sensor networks. Our protocol unlike [16], is scalable and during the reorga-
nization of clusters, it ensures the maintain of hierarchical organization. The
first benefit is due to the constant time (4 rounds at most) required to reach
a configuration ensuring a minimum useful service. The second one is due to
the robustness property which ensures that this minimum useful service still
provided during the convergence to a legitimate configuration.

The cost of robustness property is the require of more time to ensure the stabi-
lization (i.e., the convergence to a legitimate configuration). In fact, the upper
bound on stabilization time for [16] is |V| rounds, whereas for our protocol is
7| V|

—5— + 5 rounds.

Our protocol is designed for the state model. Nevertheless, it can be easily trans-
formed into a protocol for the message-passing model. Each node v broadcasts
periodically a message containing its state. Based on this message, v’s neighbors
decide whether to update their states or not.

12

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous self-

stabilizing minimal domination protocol in an arbitrary network graph. In:
IWDC’03, Springer LNCS 2918. (2003) 26-32

Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing wireless connected
overlays. In: OPODIS’06, Springer LNCS 4305. (2006) 425-439

Jain, A., Gupta, A.: A distributed self-stabilizing algorithm for finding a connected
dominating set in a graph. In: PDCAT’05. (2005) 615619

Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.: Self-stabilizing protocols
for maximal matching and maximal independent sets for ad hoc networks. In:
IPDPS’03. (2003) 162.2

Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing
distributed algorithm. Theoretical Computer Science 410 (2009) 514-532

Datta, A., Devismes, S., Larmore, L.: A self-stabilizing o(n)-round k-clustering
algorithm. In: SRDS’09. (2009)

Mitton, N., Fleury, E., Guérin-Lassous, 1., Tixeuil, S.: Self-stabilization in self-
organized multihop wireless networks. In: WWAN’05. (2005) 909-915

Mitton, N., Busson, A., Fleury, E.: Self-organization in large scale ad hoc networks.
In: MED-HOC-NET’04. (2004)

. Kamei, S., Kakugawa, H.: A self-stabilizing approximation for the minimum con-

nected dominating set with safe convergence. In: OPODIS’08, Springer LNCS
5401. (2008) 496-511

Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: APDCM’06. (2006)

Basagni, S.: Distributed clustering for ad hoc networks. In: ISPAN’99. (1999)
310-315

Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algo-
rithm. Theoretical Computer Science 410(6-7) (2009) 581-594

Basagni, S.: Distributed and mobility-adaptive clustering for multimedia support
in multi-hop wireless networks. In: VTC’99. (1999) 889-893

Chatterjee, M., Das, S.K., Turgut, D.: WCA: A weighted clustering algorithm for
mobile ad hoc networks. Journal of Cluster Computing 5(2) (2002) 193-204
Tomoyuki, O., Shinji, I., Yoshiaki, K., Kenji, I., Kaori, M.: An adaptive mainte-
nance of hierarchical structure in ad hoc networks and its evaluation. In: ICDCS’02.
(2002) 7-13

Johnen, C.,; Nguyen, L.H.: Self-stabilizing construction of bounded size clusters.
In: ISPA’08. (2008) 43-50

M. Dom, D. Lokshtanov, S.S., Villanger, Y.: Capacitated domination and covering;:
A parameterized perspective. In: Proceedings of Third International Workshop
IWPEC 2008, Springer LNCS 5018. (2008) 78-90

Kuhn, F.; T, M.: Distributed approximation of capacitated dominating sets. In:
SPAA ’07. (2007) 161-170

Johnen, C., Mekhaldi, F.: Robust self-stabilizing construction of
bounded size weight-based clusters. Technical Report N°¢ 1518, LRI,
http://www.Iri.fr/~bibli/Rapports-internes /2009 /RR1518.pdf (2009)

