Deterministic, silence and self-stabilizing leader
election algorithm on id-based rings

Colette Johnen

L.R.I./C.N.R.S. Université de Paris-Sud, Bat. 490, Campus d’Orsay, F-91405 Orsay
Cedex, France, phone : (+33) 1 69 15 67 02, fax : (+33) 1 69 15 65 86, colette@Iri.fr,
Research Note : NO

Abstract. We present in this paper a deterministic, silence and self-
stabilizing leader election algorithm on unidirectional, id-based rings
which have bound on their id-values. The id-values of processors in a
ring whose size is IV, have to be inferior to N 4 k. The size of commu-
nication registers required by the algorithm is constant. The algorithm
stabilizes in (k + 2)N + 1 time.

In [DGS96], Dolev, Gouda and Schneider have established that the mem-
ory requirement of a silent self-stabilizing leader election protocol is
O(lg N) in the general case. Here, we present a silent algorithm requir-
ing constant memory space: We conjecture that we have found the only
case where a silent protocol requiring constant memory space can be
designed: id-based rings with bound id-values.

Topic: 10 (Distributed Systems and Algorithms),

keywords: self-stabilization, leader election, silent algorithm, memory
space.

Comments: other topic of interest : 20 (Fault Tolerant Computing).

1 Introduction

Robustness is one of the most important requirements of modern distributed
systems. Various types of faults are likely to occur at various parts of the sys-
tem. These systems go through the transient faults because they are exposed
to constant change of their environment (memory corruptions, processors and
communication-channels crashing and recovering -i.e. dynamic networks-). The
concept of self-stabilization [Dij74] is the most general technique to design a sys-
tem to tolerate arbitrary transient faults. A self-stabilizing system, regardless of
the initial states of the processors and initial messages in the links, is guaran-
teed to converge to the intended behavior in finite time. Such a property is very
desirable for any distributed system, because after any unexpected perturbation
modifying the memory state, the system eventually recovers and returns to a
legitimate state, without any outside intervention. Furthermore, self-stabilizing
systems do not require particular initial state when a processor recovers assum-
ing that processor codes are not corrupted.

In this paper, we present a deterministic, silence and self-stabilizing algorithm
that elects the processor having the minimal id-value on id-based unidirectional
N-rings such that the id-values of its processors is inferior to N + k.

In an id-based system, as processor ids are not part of the local variables,

whatever is the current state each processor as distinct identity. There is sev-
eral deterministic self-stabilizing leader election protocols on id-based systems
whose the memory space requirement is N states per processor. Some of these
algorithms build a spanning tree - the leader will be the tree root - [AG93] (in
that protocol, processors need to know a bound on the network size, the same
protocol is presented in the read/write model [AG94]) in [AKY90] the knowledge
of ring size is not required. the algorithm presented in [Dol93] assume only the
read/write atomicity and processors does not need to know the network size.
Ghosh and Gupta have designed a self-stabilizing algorithm on unidirectional
rings that contained faults: after a fault, the ring will recovers in O(1) time
[GGI6].
Mayer, Ostrovsky and Yung, in [MOY96] have proposed a compiler that trans-
forms any self-stabilizing protocol on bidirectional uniform rings to a self-stabili-
zing protocol which run on unidirectional uniform rings (their compiler to break
the symmetric flip coins). Afek and Bremler in [AB97] have proposed a general
paradigm for the development of self-stabilizing algorithm on unidirectional gen-
eral id-based processors that communicate by messages-passing. The size of the
exchanged messages is log(N).

There are two principal measures of efficiency for self-stabilizing algorithms:
stabilization time, and memory requirements per processor. On huge, distributed
networks (containing several millions of processors) managed by several organi-
zations, the properly functioning of network management protocols should not
depend on global properties (as network size) which can be modified at any
time, by anybody. Therefore, we propose an algorithm whose space complex-
ity is constant (thus it is independent of ring size). When, the ring grows, the
local algorithm implementations do not need to be changed. There is several
self-stabilizing protocols where the required memory space is constant [GH96],
[JABD97], [Joh97], [Pet97], [PV97], and [Vil97]. On general uniform rings, there
is no deterministic and self-stabilizing leader election protocol ([BJ98]). Only
on bidirectional and prime size rings, one can designed a protocol requiring
only constant memory space (such a protocol is presented in [ILS95]). To my
knowledge, we present here the first self-stabilizing leader election algorithm on
id-based rings where the required memory space is constant.

A self-stabilizing algorithm is silent if once the system is stabilized, proces-
sors do not change their state (processors only check that their neighbor states
have not be corrupted). The silence property of self-stabilizing algorithms is a
desirable property in terms of simplicity and communication overhead. Our al-
gorithm completes, in some sense, the result by Dolev, Gouda and Schneider
[DGS96]. They state that the memory requirement to a silent self-stabilizing
leader election protocol is O(log N) in the general case (i.e. when there is no
bound on the id-values).

Section 2 describes our model. In section 3, we present the algorithm. Sec-
tion 4 is devoted to the proof of convergence and section 5 to the proof of cor-
rectness. Finally, the paper ends with complexity proofs.

2 Model

Distributed Unidirectional Ring. A distributed unidirectional ring is a con-
nected ring of processors. A processor may only obtain “information” from its left
neighbor, and give “information” to its right neighbor. Communication among
processors is carried out by communication registers. A processor can write and
read in its register, and read the register of its left neighbor. Thus, processors
have two types of variables: local variables and field variables. The field variables
of a processors are in its register (which is readed by its right neighbor). The
local variables are used strictly locally, meaning that they can be only accessed
(writing/reading) by their owner. The path from p' to p is the processors se-
quence (p1,p2, ..., pm) such that (i) p’ = p1, (il) p = pm, (iil) Vj €]1,m], the left
neighbor of p; is p;_1 and its right neighbor is p;41.
On bidirectional rings, a processor may give and obtain “information” from its
both neighbors: it can read the communication register of its both neighbors.
An algorithm on unidirectional rings may be performed on bidirectional rings;
the converse is not true.
States and Configurations. The register state of processor is defined by the
values of its field variables. The state of processor is defined by the values of its
local variables and field variables. A configuration of an unidirectional ring is a
product of the states of all processors of ring. The set of configurations of the
ring is denoted as C.
Id-based ring. In an id-based ring, processors have distinct identities: processor
are distinct. An id-based ring whose size is N is k-bounded if and only if id-values
of its processors is inferior or equal to N + k.
Actions. Each processor executes an algorithm. The algorithm consists of a set
of variables and a finite set of actions. Each action is uniquely identified by a
label; and is of the following form: < label >:: < guard > — < statement >
The guard of an action in the algorithm of p is a boolean expression involving
the local, field variables of p, and the field variables of its left neighbor. The
statement of an action of p updates some local variables and/or field variables of
p. An action can be executed only if its guard evaluates to true. We assume that
the actions are atomically executed: the evaluation of a guard and the execution
of the corresponding statement of an action, if executed, are done in one atomic
step.
Computations. During a computation step, one or more processors execute an
atomic step, and a processor may take at most one atomic step; this is known
as the distributed daemon [BGM89]. Since the system is asynchronous, we de-
fine a time unit, round, to compute the time complexity. A round is a maximal
computation step where all processors that hold the guard of an action, execute
the corresponding action during the step. A round is called by some authors
a synchronous computation step. A computation e of an algorithm A is a fair,
mazimal sequence of configurations ¢y, ¢y, ... such that for i = 1,2,..., the con-
figuration ¢4 is reached from ¢, by a computation step. c; is called the initial
configuration of e. Along a fair sequence, if a processor may continuously per-
form an action then it will eventually perform an action. A mazimal sequence is

either infinite, or it is finite; in that case no action is enabled in the final config-
uration. The set of computations of an algorithm A starting with a particular
initial configuration ¢ € C is denoted by &.. The set of computations of A whose
initial configurations are elements of B C C is denoted as £g. £ is the set of all
possible fair and maximal computations (£ = &¢).

Register space complexity. The register space complexity of a self-stabilizing
algorithm is the number of register states of a processor performing the self-
stabilizing algorithm. An algorithm requires only constant register space if the
number of register states on each processor required by the algorithm is a con-
stant.

Predicates. Let X' be a set. z - P means that an element x € & satisfies
the predicate P defined on the set X'. We distinguish a special predicate: true
(satisfied by each element of X) formally defined as follows: z F true.
Self-Stabilization. We use the following term, attractor in the definition of
self-stabilization.

Definition 1 Attractor. Let X and Y be two predicates defined on C. In C, Y
is an attractor for X if and only if the following conditions are true:
e convergence Ve € Ex : (e =c¢y,¢o,...): In>1,¢, FY

e closure Ve Y : V¢ where (¢,c’) is a computation step:: ¢ FY

Let LS be a predicate defined on C. The system self-stabilizes to LS if only if
LS is attractor for true.

Definition 2 trap. Let Pr be a predicate defined on processor state. Pr is a
trap if only if Pr verifies the closure property: Let ¢ be a configuration where
p F Pr, V¢ where (¢,c) is a computation step:: pF Prin ¢

To prove the correctness of our algorithm, we use the convergent stair [GM91]
theorem.

Theorem 3. Let Y and X be two predicates defined on C. if X is an attractor
for true and if Y is and for X then Y is an attractor for true.

Time complexity The temporal activities of a self-stabilizing protocol can be
divided into three phases: (i) The fault phase during which faults occur in the
system (these faults corrupt the variables value of processors); (ii) the stabilizing
phase during which the system does not exhibit the correct behavior (however, no
new fault occurs during this phase); (iii) the stabilized phase during which every
computation satisfies the specification predicate (£LS). The time complexity of a
self-stabilizing algorithm is the maximal number of rounds needed to reach the
stabilized phase after the faults cease to occur.

3 Algorithm

In this section, we present a deterministic, silence and self-stabilizing algorithm
that elects the processor having the minimal id-value on id-based unidirectional
rings with a k-bound on its id-values.

On a k-bounded ring, the value of the smallest id-value is inferior to k + 2
(id-values are greater or equal to 0). Only processors whose id-value is inferior to
k+ 2 can be a leader; other processors will never be elected. Thus, we define two
processors sets. One set (SZ) contains the processors that may have the smallest
id-value; only these processors compete to the leadership. The other set (BZ)
contains processor that cannot be the leader; these processors do not compete to
the leadership and are as “quiet” as possible. Formally SZ: the set of processors
whose id-value is inferior or equal to to k + 1; BZ: the set of processors whose
id-value is greater than &k + 1.

The algorithm is designed such way that once the ring is stabilized processors
know id-value of each processor of ST (these values are stored in an array called
F). Thus, each processor knows the smallest id-value in the ring (the id-value
of the leader). Nevertheless, a processor knows at most k + 2 id-values (all of
them inferior to k + 2). That why, the register size required by the algorithm is
constant whatever is the ring size.

Leader election algorithm on k-bounded rings

Field Variables:
F, is an array of k + 2 elements taking value in [0,k + 2[.
Ld, is a boolean.

Notation:
Ip is the left neighbor of p.
Fy,, is the value of F on Ip.
id, is the value of the p identifier.

Predicate:
Nezxt(p, p')

= ie[0,k+1[: Fpli] = Ey[i+ 1)) A (Fplk + 1] = idp).
Following(p) = N

ext(p, Ip).
Macro:
Update(p) : Vi € [0,k + 1[: Fp[i] := Fipl[i + 1]; Fp[k + 1] :=

Action:
{The two following actions are executed by the processors of BL}
Av: (idy > k+1) A (Fp # Fip) — Fp := Fp.
As: (idp > k+ 1) A (Ldp = 1) — Ld, := 0.
{The three following actions are executed by the processors of ST}
Bi: (idy, < k+1) A =Following(p) — Update(p)

Bs: (id, < k+1) A Following(p) A idp is not the smallest value in F),
ANLd,=1— Ld:=0

Bs: (id, < k+1) A Following(p) A idp is the smallest value in F),
ALd,=0— Ld,:=1

Definition 4.

A leader is a processor p such that Ld, = 1.

A configuration is a deadlock if only if no processor may perform an action.
We call LS, the set of deadlock configurations where one and only one processor
is elected.

1(0,1,30,1
(30130) 11 ()
(30,130) 5 8(0,1,301)
(30,1,3,0) 6 3(13013)
30130 13 9(1,3,013)

0 10
(30,1,30) (1.30.13)

leader

Fig. 1. the deadlock configuration in a 10-Ring that is 3-bounded

The processors of BZ “transmit” the array (A;); and they also set up their Ld
variable to 0 (Az). The processors of ST left-shift the F' array elements (the first
value is withdrawn); and then they add their own id-value at the end of the array!
(B1). This simple action will ensure that (once the ring is stabilized) the array of
each processor contains all the id-values of SZ processors that are in the ring and
only these id-values; though processors of SZ have different arrays (the id-values
are not in the same order), Thus once the ring is stabilized, a processor of SZ
may decide if it is the leader or not: it compares its id-value with the smallest
id-value of its F' variable (By or B3). In the section 4 we prove that from any
configuration, whatever the computation performs, a deadlock configuration is
reached. In the section 5, we will prove that the reached deadlock configuration
belongs to LS: one and only one processor is elected. We will also proof that the
elected processor has the smallest id-value of the ring.

4 Convergence

Definition 5.
e REGy = {Vp € SI,F,[k + 1] = id,}. Let p be a processor of SZ. Thus, in
REGy, Fplk + 1] is the id-value of p.

! this action is similar to an action on a FIFO list where the processors gets the first
value of the list and adds it id-value at the end of the list.

eic[0,k+1], REG"; = REG; N {Vp € BI, F,lk + 1 —i] is the id-value of the
i+1-th previous processor of p in the ring that belongs to SZ}.

eic[l,k+1], REG; =REG i1 N{Vp € ST, F,[k + 1 — 4] is the id-value of the
i-th previous processor of p in the ring that belongs to SZ}.

In the ring of the figure 1, ST contains 3 processors (processors whose id-
value are 0,1,0r 3). Call p the processor whose id-value is 0. 3 is the id-value
of the first previous processor of p that belongs to SZ; 1 is the id-value of the
second one; 0 is the id-value of the third one; 3 is the id-value of the forth one.
Notice that third previous processor of p in S7 is p itself.

The figure 2 illustrates how a ring stabilizes. From any configuration, what-
ever the computation performs REG is reached in at most one round. After that,
REG'y is reached in at most N — 1 rounds; then REG; in one round, REG'; in
at most NV — 1 rounds We will prove that REG, is an attractor. Then, we
will finish the convergence verification by proving that (i) REG’; is an attractor
if REG; is an attractor; (i) REGi4+1 is an attractor if REG'; is an attractor; (iii)
from any configuration of REG;, REG'; is reached in at most N — 1 rounds; (iv)
from any configuration of REG';, REG;11 is reached in 1 round. Thus, we will
prove that REG' 41 is an attractor that is reached in at most (k + 1)N.

Lemma6. Let p be a processor of SI. Whatever the computation performs,
Fplk + 1] will eventually get the value id,. Then, Fplk + 1] will keep this value
forever. Whatever the current configuration, after a round, each processor p of
ST verify the equality: F,lk + 1] = id),.

Proof. Closure After an action, p verifies the Following predicate according
to the definition of guard actions that p may perform (B, Ba, or Bs). thus no
action may change the value of F,[k + 1], once F,[k + 1] = id,,.

Convergence if F,[k + 1] # id), then p holds the By guard till Fj,[k + 1] # id,,.
Thus, p will eventually perform this action.

Stabilization time all processors of ST such that Fp[k + 1] # idp hold the B,
guard. During the first round, they perform this action; thus after the round all
processors of ST verify the equality Fp[k + 1] = id,. |

The following lemma is a direct consequence of lemma 6 and its proof.

Lemma 7. REGy is attractor for true. Whatever the initial configuration, REG,
s reached in one round.

Definition 8. Let p be a processor of BZ. Let us call p’ the first previous
processor of p belonging to SZ. p verifies the predicate stable; if only if (i)
Fylk+1—14i] = Fy[k + 1 —i]; and if (ii) Ip? verifies stable; predicate. or Ip
belonging to SZ.

Remark. Let ¢ be a configuration of REG;. ¢ is a configuration of REG'; if and
only if all processors of BZ verify the stable; predicate.

2 Ip is the left neighbor of p.

Lemma9. If REG; is closed then stable; predicate is a trap in REG,;.

Proof. Let p be a processor of BZ that verifies the stable; predicate in REG;. Call
p' the first previous processor of p belonging to SZ. Let u,, be the path from
p’ to p. If p verifies the stable; predicate then each processor in the path fip,
verifies the stable; predicate. Assume that p stops to verify the stable; predicate.
Let us call ps the first processor in the path p,, that has stopped to verify the
stable; predicate (such a processor exists by assumption). In order to stop to
verify the stable; predicate in REG;, ps has to change its Fps[k + 1 — i] value
although F[k+1—1] was equal to Fj,s[k+ 1—i] value and Ips® has not modified

the Fips[k + 1 — ¢] value. Such a change cannot be done. o
(0,10 (10,2)
(01.0) (0,1,0) 0,10) (01,0
(0,1,0) (0,10 0,1,0) (0,1,0)
REG
1,0.2) 022
unstable;
(1,0.2) (10,2 (102) 0,2,2)
i-stable, — stabl
(10.2) o2 aassaeL ™ 102) 022) 1
REG', REG
(022 (22.2)
122 022 @22 222
5 rounds
(1,22 022) (22.2) (222)
REG'; REG

Fig. 2. stabilization in a 5-Ring that is 1-bounded

3 Ips is the left neighbor of ps.

Definition 10. Let p be a processor of BZ. p verifies the predicate quasi_stable;
if only if (i) p does not verify the stable; predicate, and (ii) Ip verifies the stable;
predicate or Ip € ST.

Lemma 11. If it exists a processor p of BL that does not verify the stable;, then
there is a processor ps that verifies the quasi_stable; predicate.

Proof. Call p' the first previous processor of p belonging to SZ. Let p,, be the
path from p’ to p. Call p; the first processus on the path pu,, that p; does
not verified the stable; predicate. If j = 1 then p; does not satisfy the stable;
predicate and its left neighbor belong to SZ; thus p; verifies the quasi_stable;
predicate. If j > 1, p; does not satisfy the stable; predicate but its left neighbor
satisfies this predicate. In both cases, p; verifies the quasi_stable; predicate. O

Lemmal2. Vi € [0,k + 1], if REG; is closed then REG'; is an attractor for
REG; From any configuration of REG;, REG'; is reached in at most N — 1
rounds.

Proof. Let us call nbr the number of processors of BZ that does not verify the
stable; predicate.

Closure nbr cannot increase in REG; (lemma 9)

Convergence if REG'; is not reached, then there is a processor p of BZ that
does not verify the stable; predicate (remark 4). Thus, there is a processor ps
that does verify the quasi_stable; predicate (lemma 11). Let us call ps’ the first
previous processor of ps that belongs to SZ. Fps[k + 1 —i] # Fpe[k + 1 — 1]
(ps does not verify the stable; predicate) and Fips[k +1 —i] = Fpe[k +1 —]
(Ips verifies the stable; predicate or belongs to SZ). Thus, ps holds the 4; guard
(Fpslk+1—1i] # Fips[k+1—1]). As stable; predicate is a trap in REG; (lemma 9);
ps verifies the quasi_stable; predicate till it has not executed A; action. And,
ps holds the A; guard till it verifies the quasi_stable; predicate. By fairness
scheduling, ps will eventually execute 4; action. After this action, ps verifies
the stable; predicate (Fps[k + 1 —i] = Fips[k + 1 —i] = Fps [k + 1 —i]). nbr has
decreased. When nbr = 0, REG'; is reached (remark 4).

Stabilization time according to the round definition, at each round nbr de-
creases. As nbr is bounded by N — 1 (BZ has at most N — 1 processors); after
at most N — 1 rounds, REG’; is reached. O

Lemmal3. Vi € [1,k + 1], if REG';_1 is closed then REG; is attractor for
REG';_1. Whatever the current configuration of REG';_1, REG; is reached in
one round.

Proof. Let p be a processor belonging to SZ. Call p’ the first previous processor
of p belonging to SZ.

Let (1) be the equation defined as follows: Fip[k + 2 —i] = Fy [k + 2 — i]

If Ip belongs to SZ, (1) is always verified. If Ip belongs to BZ, Fi,[k+2— 1] is the
id-value of the (i)-th previous processor of Ip; and also the id-value of i — 1-th
processor previous of p'. Therefore, the equation (1) is verified in REG' ;1.

In REG';_1, Fplk + 2 — i] is the id-value of the (i)-th previous processor of p.
Thus REG; is not reached if only if there is a processor p of ST verifying the
following condition: (2) Fplk + 1 —i] # Fi,[k + 2 —i].

Let us call nbr the number of processors verifying (2).

Closure nbr cannot increase in REG';_1, because Ip cannot change the value
of Fi,lk +2 —i] (REG';—1 is closed, see the hypothesis) and once the following
equality is verified Fp[k+1—1i] = Fi,[k + 2 — 1], it stays verify forever (definition
of guard and statement actions).

Convergence a processor p verifying (2) holds the By guard. By fairness, p will
perform the action B;. After that action: Fp[k + 1 — 9] = Fjy [k + 2 — i]; nbr has
decreased.

Stabilization time all processors verifying (2) hold the B; guard; during the
first round in REG'; 1, all of them perform this action. After one round, no
processor verifies (2): REG; is reached. i

Theorem 14. Vi € [0,k + 1], REG; is an attractor for true and REG'; is an
attractor for true.

Proof. REGy is attractor for true (lemma 7). Vi € [0,k + 1], if REG; is closed
then REG'; is attractor for REG; (lemma 12). Vi €]0,k+1], if REG';_; is closed
then REG; is attractor for REG';—1 (lemma 13). According to the theorem 3,
REGy, REG1, REG'1, REGs, REG' s, ... REGr+1, REG |11 are the attractors
for true. |

Lemma 15. From REG 11, any computation will eventually reach a deadlock
configuration. The deadlock configuration is reached in one round.

Proof. In REG' 11, the array F of a processor never change its value: the action
A; and B; cannot be performed. A processor can only update its Ld variable
according to its F' variable: The action that updates its variable (As, Ba, or Bs)
will be performed at most one time.

In a no-deadlock configuration of REG 11, processors that need to update
their Ld variable verify an action guard. After a round, no processor need to
update their Ld variable: a deadlock configuration is reached. |

5 Correctness

In the previous section, we have proven that whatever the computation performs,
a deadlock configuration is reached that belong to REG k11. In this section, we
will prove that in a deadlock configuration of REG'k+1, one only one processor
is elected: the processor having the smallest id-value.

Remark. Let ¢ be a deadlock configuration of REG 41. In ¢, the array F of any
processor of SZ contains only id-values of processors in the ring (processors that
belongs to SZ). The processor having the smallest id-value in the ring (processor
that belongs to S7) is a leader in c.

Lemma16. Let ¢ be a deadlock configuration of REG k1+1. In ¢, the array F of
any processor of ST contains all id-values of processors in the ring that belongs
to ST.

Proof. Let R be a k-bounded ring. Let p be a processor of SZ. Call S the size
of ST. S < k+ 2 (ST contains at most k + 2 processors).

(Fplk+1],...Fp[k +2 — S]) is the list of id-values of S previous processors of ST
in the ring.Thus, F}, contains all id-values of processors in the ring that belongs
to SZ. |

Theorem 17. Let ¢ be a deadlock configuration of REG 1. ¢ € LS.

Proof. In c, there is at least one leader (see remark 5).

In ¢, the array F' of any processor of SZ contains all id-values of processors in
the ring that belongs to SZ (lemma 16). Only the processor of SZ having the
smallest id-value is a leader. |

6 Conclusion

Theorem 18. The algorithm 3 requires only constant register space.

Proof. In the algorithm 3, the field variables of a processor p are Ld, and F,.
Thus, the register space required by the algorithm 3 is 2.(k + 2)*+2 states. O

We have proven that the algorithm 3 is a a self-stabilizing leader election algo-
rithm on unidirectional k-bounded rings. The algorithm 3 is a silent one: the
legitimate configuration is deadlock one (notice that there is only one legitimate
configuration on a ring).

Theorem 19. Whatever is the initial configuration, the system stabilizes in at
most (k+ 2)N + 1 rounds.

Proof. Whatever the initial configuration, REG is reached in one round (lemma
7). From any configuration of REG;, REG'; is reached in at most N — 1 rounds
(lemma 12). Whatever the current configuration of REG';_1, REG; is reached
in one round (lemma 13).

According to lemma 7 and 12, REG'y is reached in at most N rounds. What-
ever the current configuration of REG';_1, REG'; is reached in N rounds (lemma
13 and 12). Thus REG k41 is reached in at most (k+2)N rounds. Whatever the
current configuration of REG k11, the deadlock configuration is reached in at
most one round. According to the theorem 17, this configuration is legitimate.
O

References

[AB97]

[AG93]

[AGY4]

[AKY90]

[BGMS9)

[BJOS]

[DGS96]

[Dij74]

[Dol93]

[GGY6]
[GHY6]
[GMO1]

[TLS95]

Y Afek and A Bremler. Self-stabilizing unidirectional network algorithms by
power-supply. In Proceedings of the Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA97), pages 111-120, 1997.

A Arora and MG Gouda. Distributed reset. In FSTTCS90 Proceedings of
the 10th Conference on Foundations of Software Technology and Theoretical
Computer Science, Springer-Verlag LNCS:472, pages 316-329, 1993.

A Arora and MG Gouda. Distributed reset. IEEE Transactions on Com-
puters, 43(9):1026-1038, 1994.

Y Afek, S Kutten, and M Yung. Memory-efficient self-stabilization on gen-
eral networks. In WDAG90 Distributed Algorithms 4th International Work-
shop Proceedings, Springer-Verlag LNCS:486, pages 1528, 1990.

JE Burns, MG Gouda, and RE Miller. On relaxing interleaving assump-
tions. In Proceedings of the MCC Workshop on Self-Stabilizing Systems,
MCC Technical Report No. STP-379-89, 1989.

J. Beauquier and C. Johnen. Deterministic and self-stabilizing leader elec-
tion protocol. Technical report, Laboratoire de Recherche en Informatique,
Université Paris-Sud, 1998.

S Dolev, MG Gouda, and M Schneider. Memory requirements for silent sta-
bilization. In PODC96 Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 27-34, 1996.

EW Dijkstra. Self stabilizing systems in spite of distributed control. Com-
munications of the Association of the Computing Machinery, 17:643-644,
1974.

S Dolev. Optimal time self-stabilization in dynamic systems. In WDAG93
Distributed Algorithms 7th International Workshop Proceedings, Springer-
Verlag LNCS:725, pages 160-173, 1993.

S Ghosh and A Gupta. An exercise in fault-containment: self-stabilizing
leader election. Information Processing Letters, 59:281-288, 1996.

MG Gouda and FF Haddix. The stabilizing token ring in three bits. Journal
of Parallel and Distributed Computing, 35:43—48, 1996.

MG Gouda and N Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40:448-458, 1991.

G Itkis, C Lin, and J Simon. Deterministic, constant space, self-stabilizing
leader election on uniform rings. In WDAG95 Distributed Algorithms 9th
International Workshop Proceedings, Springer-Verlag LNCS:972, pages 288—
302, 1995.

[JABD97] C Johnen, G Alari, J Beauquier, and AK Datta. Self-stabilizing depth-first

[Joh97]

[MOY96]

token passing on rooted networks. In WDAG97 Distributed Algorithms 11th
International Workshop Proceedings, Springer-Verlag LNCS:1320, pages
260-274, 1997.

C Johnen. Memory-efficient self-stabilizing algorithm to construct BFS
spanning trees. In Proceedings of the Third Workshop on Self-Stabilizing
Systems, pages 125-140. Carleton University Press, 1997.

A Mayer, R Ostrovsky, and M Yung. Self-stabilizing algorithms for syn-
chronous unidirectional rings. In Proceedings of the Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODAY6), pages 564-573, 1996.

[Pet97] F. Petit. Highly space efficient self-stabilizing depth-first token circulation
for trees. In V. Villain A. Bui, M. Bui, editor, On Principles Of DIstributed
Systems, OPODIS’97, pages 221-236. Hermes, 1997.

[PV97] F Petit and V Villain. Color optimal self-stabilizing depth-first token circu-
lation. In I-SPAN’97, Third International Symposium on Parallel Architec-
tures, Algorithms and Networks Proceedings, IEEE Computer Society Press.
IEEE Computer Society Press, 1997. To appear.

[Vil97] V. Villain. A new lower bound for self-stabilizing mutual exclusion algo-
rithms. Technical Report RR97-17, LaRIA, University of Picardie Jules
Verne, France, 1997.

This article was processed using the BTEX macro package with LLNCS style

