
Deterministic� silence and self�stabilizing leader

election algorithm on id�based rings

Colette Johnen

L�R�I��C�N�R�S� Universit�e de Paris�Sud� Bat� ��	� Campus d
Orsay� F����	� Orsay
Cedex� France� phone 
 ����� � �� �� �� 	�� fax 
 ����� � �� �� �� ��� colette�lri�fr�

Research Note 
 NO

Abstract� We present in this paper a deterministic� silence and self�
stabilizing leader election algorithm on unidirectional� id�based rings
which have bound on their id�values� The id�values of processors in a
ring whose size is N � have to be inferior to N � k� The size of commu�
nication registers required by the algorithm is constant� The algorithm
stabilizes in �k � ��N � � time�
In �DGS���� Dolev� Gouda and Schneider have established that the mem�
ory requirement of a silent self�stabilizing leader election protocol is
O�lgN� in the general case� Here� we present a silent algorithm requir�
ing constant memory space
 We conjecture that we have found the only
case where a silent protocol requiring constant memory space can be
designed
 id�based rings with bound id�values�
Topic
 �	 �Distributed Systems and Algorithms��
keywords
 self�stabilization� leader election� silent algorithm� memory
space�
Comments� other topic of interest 
 �	 �Fault Tolerant Computing��

� Introduction

Robustness is one of the most important requirements of modern distributed
systems� Various types of faults are likely to occur at various parts of the sys�
tem� These systems go through the transient faults because they are exposed
to constant change of their environment �memory corruptions� processors and
communication�channels crashing and recovering �i�e� dynamic networks��� The
concept of self�stabilization �Dij�	
 is the most general technique to design a sys�
tem to tolerate arbitrary transient faults� A self�stabilizing system� regardless of
the initial states of the processors and initial messages in the links� is guaran�
teed to converge to the intended behavior in �nite time� Such a property is very
desirable for any distributed system� because after any unexpected perturbation
modifying the memory state� the system eventually recovers and returns to a
legitimate state� without any outside intervention� Furthermore� self�stabilizing
systems do not require particular initial state when a processor recovers assum�
ing that processor codes are not corrupted�

In this paper� we present a deterministic� silence and self�stabilizing algorithm
that elects the processor having the minimal id�value on id�based unidirectional
N �rings such that the id�values of its processors is inferior to N � k�



In an id�based system� as processor ids are not part of the local variables�
whatever is the current state each processor as distinct identity� There is sev�
eral deterministic self�stabilizing leader election protocols on id�based systems
whose the memory space requirement is N states per processor� Some of these
algorithms build a spanning tree � the leader will be the tree root � �AG
�
 �in
that protocol� processors need to know a bound on the network size� the same
protocol is presented in the read�write model �AG
	
� in �AKY
�
 the knowledge
of ring size is not required� the algorithm presented in �Dol
�
 assume only the
read�write atomicity and processors does not need to know the network size�
Ghosh and Gupta have designed a self�stabilizing algorithm on unidirectional
rings that contained faults� after a fault� the ring will recovers in O��� time
�GG
�
�
Mayer� Ostrovsky and Yung� in �MOY
�
 have proposed a compiler that trans�
forms any self�stabilizing protocol on bidirectional uniform rings to a self�stabili�
zing protocol which run on unidirectional uniform rings �their compiler to break
the symmetric �ip coins�� Afek and Bremler in �AB
�
 have proposed a general
paradigm for the development of self�stabilizing algorithm on unidirectional gen�
eral id�based processors that communicate by messages�passing� The size of the
exchanged messages is log�N��

There are two principal measures of e�ciency for self�stabilizing algorithms�
stabilization time� and memory requirements per processor� On huge� distributed
networks �containing several millions of processors� managed by several organi�
zations� the properly functioning of network management protocols should not
depend on global properties �as network size� which can be modi�ed at any
time� by anybody� Therefore� we propose an algorithm whose space complex�
ity is constant �thus it is independent of ring size�� When� the ring grows� the
local algorithm implementations do not need to be changed� There is several
self�stabilizing protocols where the required memory space is constant �GH
�
�
�JABD
�
� �Joh
�
� �Pet
�
� �PV
�
� and �Vil
�
� On general uniform rings� there
is no deterministic and self�stabilizing leader election protocol ��BJ
�
�� Only
on bidirectional and prime size rings� one can designed a protocol requiring
only constant memory space �such a protocol is presented in �ILS
�
�� To my
knowledge� we present here the �rst self�stabilizing leader election algorithm on
id�based rings where the required memory space is constant�

A self�stabilizing algorithm is silent if once the system is stabilized� proces�
sors do not change their state �processors only check that their neighbor states
have not be corrupted�� The silence property of self�stabilizing algorithms is a
desirable property in terms of simplicity and communication overhead� Our al�
gorithm completes� in some sense� the result by Dolev� Gouda and Schneider
�DGS
�
� They state that the memory requirement to a silent self�stabilizing
leader election protocol is O�log N� in the general case �i�e� when there is no
bound on the id�values��

Section � describes our model� In section �� we present the algorithm� Sec�
tion 	 is devoted to the proof of convergence and section � to the proof of cor�
rectness� Finally� the paper ends with complexity proofs�



� Model

Distributed Unidirectional Ring� A distributed unidirectional ring is a con�
nected ring of processors� A processor may only obtain �information� from its left
neighbor� and give �information� to its right neighbor� Communication among
processors is carried out by communication registers� A processor can write and
read in its register� and read the register of its left neighbor� Thus� processors
have two types of variables� local variables and �eld variables� The �eld variables
of a processors are in its register �which is readed by its right neighbor�� The
local variables are used strictly locally� meaning that they can be only accessed
�writing�reading� by their owner� The path from p� to p is the processors se�
quence �p�� p�� ���� pm� such that �i� p� � p�� �ii� p � pm� �iii� �j � 
��m�� the left
neighbor of pj is pj�� and its right neighbor is pj���
On bidirectional rings� a processor may give and obtain �information� from its
both neighbors� it can read the communication register of its both neighbors�
An algorithm on unidirectional rings may be performed on bidirectional rings�
the converse is not true�
States and Con�gurations� The register state of processor is de�ned by the
values of its �eld variables� The state of processor is de�ned by the values of its
local variables and �eld variables� A con�guration of an unidirectional ring is a
product of the states of all processors of ring� The set of con�gurations of the
ring is denoted as C�
Id�based ring� In an id�based ring� processors have distinct identities� processor
are distinct� An id�based ring whose size is N is k�bounded if and only if id�values
of its processors is inferior or equal to N � k�
Actions� Each processor executes an algorithm� The algorithm consists of a set
of variables and a �nite set of actions� Each action is uniquely identi�ed by a
label� and is of the following form� � label ��� � guard � �� � statement �

The guard of an action in the algorithm of p is a boolean expression involving
the local� �eld variables of p� and the �eld variables of its left neighbor� The
statement of an action of p updates some local variables and�or �eld variables of
p� An action can be executed only if its guard evaluates to true� We assume that
the actions are atomically executed� the evaluation of a guard and the execution
of the corresponding statement of an action� if executed� are done in one atomic
step�
Computations� During a computation step� one or more processors execute an
atomic step� and a processor may take at most one atomic step� this is known
as the distributed daemon �BGM�

� Since the system is asynchronous� we de�
�ne a time unit� round� to compute the time complexity� A round is a maximal
computation step where all processors that hold the guard of an action� execute
the corresponding action during the step� A round is called by some authors
a synchronous computation step� A computation e of an algorithm A is a fair�

maximal sequence of con�gurations c�� c�� � � � such that for i � �� �� � � �� the con�
�guration cn�� is reached from cn by a computation step� c� is called the initial

con�guration of e� Along a fair sequence� if a processor may continuously per�
form an action then it will eventually perform an action� A maximal sequence is



either in�nite� or it is �nite� in that case no action is enabled in the �nal con�g�
uration� The set of computations of an algorithm A starting with a particular
initial con�guration c � C is denoted by Ec� The set of computations of A whose
initial con�gurations are elements of B � C is denoted as EB � E is the set of all
possible fair and maximal computations �E � EC��
Register space complexity� The register space complexity of a self�stabilizing
algorithm is the number of register states of a processor performing the self�
stabilizing algorithm� An algorithm requires only constant register space if the
number of register states on each processor required by the algorithm is a con�
stant�
Predicates� Let X be a set� x � P means that an element x � X satis�es
the predicate P de�ned on the set X � We distinguish a special predicate� true

�satis�ed by each element of X � formally de�ned as follows� x � true�
Self�Stabilization� We use the following term� attractor in the de�nition of
self�stabilization�

De�nition � Attractor� Let X and Y be two predicates de�ned on C� In C� Y
is an attractor for X if and only if the following conditions are true�

� convergence �e � EX � �e � c�� c�� � � �� �� �n 	 �� cn � Y

� closure �c � Y � �c� where �c�c�� is a computation step�� c� � Y

Let LS be a predicate de�ned on C� The system self�stabilizes to LS if only if
LS is attractor for true�

De�nition � trap� Let Pr be a predicate de�ned on processor state� Pr is a
trap if only if Pr veri�es the closure property� Let c be a con�guration where
p � Pr� �c� where �c�c�� is a computation step�� p � Pr in c��

To prove the correctness of our algorithm� we use the convergent stair �GM
�

theorem�

Theorem�� Let Y and X be two predicates de�ned on C� if X is an attractor

for true and if Y is and for X then Y is an attractor for true�

Time complexity The temporal activities of a self�stabilizing protocol can be
divided into three phases� �i� The fault phase during which faults occur in the
system �these faults corrupt the variables value of processors�� �ii� the stabilizing
phase during which the system does not exhibit the correct behavior �however� no
new fault occurs during this phase�� �iii� the stabilized phase during which every
computation satis�es the speci�cation predicate �LS�� The time complexity of a
self�stabilizing algorithm is the maximal number of rounds needed to reach the
stabilized phase after the faults cease to occur�

� Algorithm

In this section� we present a deterministic� silence and self�stabilizing algorithm
that elects the processor having the minimal id�value on id�based unidirectional
rings with a k�bound on its id�values�



On a k�bounded ring� the value of the smallest id�value is inferior to k � �
�id�values are greater or equal to ��� Only processors whose id�value is inferior to
k�� can be a leader� other processors will never be elected� Thus� we de�ne two
processors sets� One set �SI� contains the processors that may have the smallest
id�value� only these processors compete to the leadership� The other set �BI�
contains processor that cannot be the leader� these processors do not compete to
the leadership and are as �quiet� as possible� Formally SI� the set of processors
whose id�value is inferior or equal to to k � �� BI� the set of processors whose
id�value is greater than k � ��

The algorithm is designed such way that once the ring is stabilized processors
know id�value of each processor of SI �these values are stored in an array called
F �� Thus� each processor knows the smallest id�value in the ring �the id�value
of the leader�� Nevertheless� a processor knows at most k � � id�values �all of
them inferior to k � ��� That why� the register size required by the algorithm is
constant whatever is the ring size�

Leader election algorithm on k�bounded rings

Field Variables�
Fp is an array of k � � elements taking value in ��� k � ���
Ldp is a boolean�

Notation�
lp is the left neighbor of p�
Flp is the value of F on lp�
idp is the value of the p identi�er�

Predicate�
Next�p� p�� 
 ��i � ��� k � ��� Fp�i
 � Fp� �i� �
� � �Fp�k � �
 � idp��
Following�p� 
 Next�p� lp��

Macro�
Update�p� � �i � ��� k � ��� Fp�i
 �� Flp�i� �
 �Fp�k � �
 �� idp�

Action�
fThe two following actions are executed by the processors of BIg
A�� �idp � k � �� � �Fp �� Flp� �� Fp �� Flp�

A�� �idp � k � �� � �Ldp � �� �� Ldp �� ��

fThe three following actions are executed by the processors of SIg
B�� �idp 
 k � �� � �Following�p� �� Update�p�

B�� �idp 
 k � �� � Following�p� � idp is not the smallest value in Fp
� Ldp � � �� Ld �� �

B�� �idp 
 k � �� � Following�p� � idp is the smallest value in Fp
� Ldp � � �� Ldp �� �



De�nition ��

A leader is a processor p such that Ldp � ��
A con�guration is a deadlock if only if no processor may perform an action�
We call LS� the set of deadlock con�gurations where one and only one processor
is elected�

9

3

8 (0,1,3,0,1)

(1,3,0,1,3)

(1,3,0,1,3)

(1,3,0,1,3)

(3,0,1,3,0) 13

(3,0,1,3,0) 6

(3,0,1,3,0) 5

11(3,0,1,3,0)
(0,1,3,0,1)1

0
(3,0,1,3,0)

10

leader

Fig� �� the deadlock con�guration in a �	�Ring that is ��bounded

The processors of BI �transmit� the array �A��� and they also set up their Ld
variable to � �A��� The processors of SI left�shift the F array elements �the �rst
value is withdrawn�� and then they add their own id�value at the end of the array�

�B��� This simple action will ensure that �once the ring is stabilized� the array of
each processor contains all the id�values of SI processors that are in the ring and
only these id�values� though processors of SI have di�erent arrays �the id�values
are not in the same order�� Thus once the ring is stabilized� a processor of SI
may decide if it is the leader or not� it compares its id�value with the smallest
id�value of its F variable �B� or B��� In the section 	 we prove that from any
con�guration� whatever the computation performs� a deadlock con�guration is
reached� In the section �� we will prove that the reached deadlock con�guration
belongs to LS � one and only one processor is elected� We will also proof that the
elected processor has the smallest id�value of the ring�

� Convergence

De�nition 	�

� REG� � f�p � SI � Fp�k � �
 � idpg� Let p be a processor of SI � Thus� in
REG�� Fp�k � �
 is the id�value of p�

� this action is similar to an action on a FIFO list where the processors gets the �rst
value of the list and adds it id�value at the end of the list�



� i � ��� k � �
� REG�i � REGi � f�p � BI� Fp�k � � � i
 is the id�value of the
i���th previous processor of p in the ring that belongs to SIg�
� i � ��� k � �
� REGi � REG�i�� � f�p � SI� Fp�k � �� i
 is the id�value of the
i�th previous processor of p in the ring that belongs to SIg�

In the ring of the �gure �� SI contains � processors �processors whose id�
value are �� �� or ��� Call p the processor whose id�value is �� � is the id�value
of the �rst previous processor of p that belongs to SI� � is the id�value of the
second one� � is the id�value of the third one� � is the id�value of the forth one�
Notice that third previous processor of p in SI is p itself�

The �gure � illustrates how a ring stabilizes� From any con�guration� what�
ever the computation performsREG� is reached in at most one round� After that�
REG�� is reached in at most N � � rounds� then REG� in one round� REG�� in
at most N � � rounds ��� � We will prove that REG� is an attractor� Then� we
will �nish the convergence veri�cation by proving that �i� REG�i is an attractor
if REGi is an attractor� �ii� REGi�� is an attractor if REG�i is an attractor� �iii�
from any con�guration of REGi� REG

�
i is reached in at most N � � rounds� �iv�

from any con�guration of REG�i� REGi�� is reached in � round� Thus� we will
prove that REG�k�� is an attractor that is reached in at most �k � ��N �

Lemma
� Let p be a processor of SI� Whatever the computation performs�

Fp�k � �
 will eventually get the value idp� Then� Fp�k � �
 will keep this value

forever� Whatever the current con�guration� after a round� each processor p of

SI verify the equality� Fp�k � �
 � idp�

Proof� Closure After an action� p veri�es the Following predicate according
to the de�nition of guard actions that p may perform �B�� B�� or B��� thus no
action may change the value of Fp�k � �
� once Fp�k � �
 � idp�
Convergence if Fp�k��
 �� idp� then p holds the B� guard till Fp�k��
 �� idp�
Thus� p will eventually perform this action�
Stabilization time all processors of SI such that Fp�k � �
 �� idp hold the B�
guard� During the �rst round� they perform this action� thus after the round all
processors of SI verify the equality Fp�k � �
 � idp� �

The following lemma is a direct consequence of lemma � and its proof�

Lemma�� REG� is attractor for true� Whatever the initial con�guration� REG�
is reached in one round�

De�nition �� Let p be a processor of BI� Let us call p� the �rst previous
processor of p belonging to SI� p veri�es the predicate stablei if only if �i�
Fp�k � � � i
 � Fp� �k � � � i
� and if �ii� lp� veri�es stablei predicate� or lp

belonging to SI �

Remark� Let c be a con�guration of REGi� c is a con�guration of REG�i if and
only if all processors of BI verify the stablei predicate�

� lp is the left neighbor of p�



Lemma
� If REGi is closed then stablei predicate is a trap in REGi�

Proof� Let p be a processor of BI that veri�es the stablei predicate inREGi� Call
p� the �rst previous processor of p belonging to SI � Let �p�p be the path from
p� to p� If p veri�es the stablei predicate then each processor in the path �p�p

veri�es the stablei predicate� Assume that p stops to verify the stablei predicate�
Let us call ps the �rst processor in the path �p�p that has stopped to verify the
stablei predicate �such a processor exists by assumption�� In order to stop to
verify the stablei predicate in REGi� ps has to change its Fps�k � � � i
 value
although Fps�k���i
 was equal to Flps�k���i
 value and lps� has not modi�ed
the Flps�k � �� i
 value� Such a change cannot be done� �

REG 0

REG 1

1unstable

��
��
��

��
��
��

��
��
��
�� ��

��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

3

2

6

5

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0) (0,1,0)

4

REG’0

��
��
��

��
��
��

��
��
��
�� ��

��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

3

2

6

5 4

(1,0,2)

(1,0,2)

(1,0,2)(1,0,2)

(1,0,2)

�
�
�

�
�
�

�
�
�
� �

�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

REG’2

3

2

6

5 4

(2,2,2)

(2,2,2)

(2,2,2)(2,2,2)

(2,2,2)

4 rounds

1stable

2 rounds

�
�
�

�
�
�

�
�
�
� �

�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
�� ��

��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

����
������
��
��
��
��
��
��

��
��
��
��
��
��

1 round

1quasi-stable

3

2

6

5

(0,1,0)(0,1,0)

(0,1,0) (0,1,0)

4

3

2

6

5 4

(1,0,2)

(0,2,2)

(0,2,2)

(0,2,2)(1,0,2)

(1,0,2)

3

2

6

5 4

(0,2,2)

(0,2,2)

(0,2,2)(1,2,2)

(1,2,2)

REG’1

3 rounds

5 rounds

Fig� �� stabilization in a ��Ring that is ��bounded

� lps is the left neighbor of ps�



De�nition ��� Let p be a processor of BI� p veri�es the predicate quasi stablei
if only if �i� p does not verify the stablei predicate� and �ii� lp veri�es the stablei
predicate or lp � SI�

Lemma��� If it exists a processor p of BI that does not verify the stablei� then

there is a processor ps that veri�es the quasi stablei predicate�

Proof� Call p� the �rst previous processor of p belonging to SI � Let �p�p be the
path from p� to p� Call pj the �rst processus on the path �p�p that pj does
not veri�ed the stablei predicate� If j � � then p� does not satisfy the stablei
predicate and its left neighbor belong to SI� thus p� veri�es the quasi stablei
predicate� If j � �� pj does not satisfy the stablei predicate but its left neighbor
satis�es this predicate� In both cases� pj veri�es the quasi stablei predicate� �

Lemma��� �i � ��� k � �
� if REGi is closed then REG�i is an attractor for

REGi From any con�guration of REGi� REG
�
i is reached in at most N � �

rounds�

Proof� Let us call nbr the number of processors of BI that does not verify the
stablei predicate�
Closure nbr cannot increase in REGi �lemma 
�
Convergence if REG�i is not reached� then there is a processor p of BI that
does not verify the stablei predicate �remark 	�� Thus� there is a processor ps
that does verify the quasi stablei predicate �lemma ���� Let us call ps� the �rst
previous processor of ps that belongs to SI � Fps�k � � � i
 �� Fps� �k � � � i

�ps does not verify the stablei predicate� and Flps�k � � � i
 � Fps� �k � � � i

�lps veri�es the stablei predicate or belongs to SI�� Thus� ps holds the A� guard
�Fps�k���i
 �� Flps�k���i
�� As stablei predicate is a trap in REGi �lemma 
��
ps veri�es the quasi stablei predicate till it has not executed A� action� And�
ps holds the A� guard till it veri�es the quasi stablei predicate� By fairness
scheduling� ps will eventually execute A� action� After this action� ps veri�es
the stablei predicate �Fps�k � �� i
 � Flps�k � �� i
 � Fps� �k � �� i
�� nbr has
decreased� When nbr � �� REG�i is reached �remark 	��
Stabilization time according to the round de�nition� at each round nbr de�
creases� As nbr is bounded by N � � �BI has at most N � � processors�� after
at most N � � rounds� REG�i is reached� �

Lemma��� �i � ��� k � �
� if REG�i�� is closed then REGi is attractor for

REG�i��� Whatever the current con�guration of REG�i��� REGi is reached in

one round�

Proof� Let p be a processor belonging to SI� Call p� the �rst previous processor
of p belonging to SI �
Let ��� be the equation de�ned as follows� Flp�k � �� i
 � Fp� �k � �� i

If lp belongs to SI� ��� is always veri�ed� If lp belongs to BI� Flp�k��� i
 is the
id�value of the �i��th previous processor of lp� and also the id�value of i � ��th
processor previous of p�� Therefore� the equation ��� is veri�ed in REG�i���



In REG�i��� Fp� �k � � � i
 is the id�value of the �i��th previous processor of p�
Thus REGi is not reached if only if there is a processor p of SI verifying the
following condition� ��� Fp�k � �� i
 �� Flp�k � �� i
�
Let us call nbr the number of processors verifying ����
Closure nbr cannot increase in REG�i��� because lp cannot change the value
of Flp�k � �� i
 �REG�i�� is closed� see the hypothesis� and once the following
equality is veri�ed Fp�k��� i
 � Flp�k��� i
� it stays verify forever �de�nition
of guard and statement actions��
Convergence a processor p verifying ��� holds the B� guard� By fairness� p will
perform the action B�� After that action� Fp�k � �� i
 � Fp� �k � �� i
� nbr has
decreased�
Stabilization time all processors verifying ��� hold the B� guard� during the
�rst round in REG�i��� all of them perform this action� After one round� no
processor veri�es ���� REGi is reached� �

Theorem��� �i � ��� k � �
� REGi is an attractor for true and REG�i is an

attractor for true�

Proof� REG� is attractor for true �lemma ��� �i � ��� k � �
� if REGi is closed
then REG�i is attractor for REGi �lemma ���� �i �
�� k��
� if REG�i�� is closed
then REGi is attractor for REG

�
i�� �lemma ���� According to the theorem ��

REG��� REG�� REG
�
�� REG�� REG

�
�� ��� REGk��� REG

�
k�� are the attractors

for true� �

Lemma�	� From REG�k��� any computation will eventually reach a deadlock

con�guration� The deadlock con�guration is reached in one round�

Proof� In REG�k��� the array F of a processor never change its value� the action
A� and B� cannot be performed� A processor can only update its Ld variable
according to its F variable� The action that updates its variable �A�� B�� or B��
will be performed at most one time�

In a no�deadlock con�guration of REG�k��� processors that need to update
their Ld variable verify an action guard� After a round� no processor need to
update their Ld variable� a deadlock con�guration is reached� �

� Correctness

In the previous section� we have proven that whatever the computation performs�
a deadlock con�guration is reached that belong to REG�k��� In this section� we
will prove that in a deadlock con�guration of REG�k��� one only one processor
is elected� the processor having the smallest id�value�

Remark� Let c be a deadlock con�guration of REG�k��� In c� the array F of any
processor of SI contains only id�values of processors in the ring �processors that
belongs to SI�� The processor having the smallest id�value in the ring �processor
that belongs to SI� is a leader in c�



Lemma�
� Let c be a deadlock con�guration of REG�k��� In c� the array F of

any processor of SI contains all id�values of processors in the ring that belongs

to SI�

Proof� Let R be a k�bounded ring� Let p be a processor of SI� Call S the size
of SI� S 
 k � � �SI contains at most k � � processors��

�Fp�k��
� ���Fp�k���S
� is the list of id�values of S previous processors of SI
in the ring�Thus� Fp contains all id�values of processors in the ring that belongs
to SI� �

Theorem��� Let c be a deadlock con�guration of REG�k��� c � LS�

Proof� In c� there is at least one leader �see remark ���

In c� the array F of any processor of SI contains all id�values of processors in
the ring that belongs to SI �lemma ���� Only the processor of SI having the
smallest id�value is a leader� �

� Conclusion

Theorem��� The algorithm � requires only constant register space�

Proof� In the algorithm �� the �eld variables of a processor p are Ldp and Fp�
Thus� the register space required by the algorithm � is ���k � ��k�� states� �

We have proven that the algorithm � is a a self�stabilizing leader election algo�
rithm on unidirectional k�bounded rings� The algorithm � is a silent one� the
legitimate con�guration is deadlock one �notice that there is only one legitimate
con�guration on a ring��

Theorem�
� Whatever is the initial con�guration� the system stabilizes in at

most �k � ��N � � rounds�

Proof� Whatever the initial con�guration� REG� is reached in one round �lemma
��� From any con�guration of REGi� REG

�
i is reached in at most N � � rounds

�lemma ���� Whatever the current con�guration of REG�i��� REGi is reached
in one round �lemma ����

According to lemma � and ��� REG�� is reached in at most N rounds� What�
ever the current con�guration ofREG�i��� REG

�
i is reached in N rounds �lemma

�� and ���� Thus REG�k�� is reached in at most �k���N rounds� Whatever the
current con�guration of REG�k��� the deadlock con�guration is reached in at
most one round� According to the theorem ��� this con�guration is legitimate�
�



References

�AB��� Y Afek and A Bremler� Self�stabilizing unidirectional network algorithms by
power�supply� In Proceedings of the Eighth Annual ACM�SIAM Symposium
on Discrete Algorithms �SODA���� pages ������	� �����

�AG��� A Arora and MG Gouda� Distributed reset� In FSTTCS�� Proceedings of
the ��th Conference on Foundations of Software Technology and Theoretical
Computer Science	 Springer�Verlag LNCS
���� pages �������� �����

�AG��� A Arora and MG Gouda� Distributed reset� IEEE Transactions on Com�
puters� �����
�	����	��� �����

�AKY�	� Y Afek� S Kutten� and M Yung� Memory�e�cient self�stabilization on gen�
eral networks� In WDAG�� Distributed Algorithms �th International Work�
shop Proceedings	 Springer�Verlag LNCS
�
�� pages ������ ���	�

�BGM��� JE Burns� MG Gouda� and RE Miller� On relaxing interleaving assump�
tions� In Proceedings of the MCC Workshop on Self�Stabilizing Systems	
MCC Technical Report No� STP�����
�� �����

�BJ��� J� Beauquier and C� Johnen� Deterministic and self�stabilizing leader elec�
tion protocol� Technical report� Laboratoire de Recherche en Informatique�
Universit�e Paris�Sud� �����

�DGS��� S Dolev� MG Gouda� and M Schneider� Memory requirements for silent sta�
bilization� In PODC�� Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing� pages ������ �����

�Dij��� EW Dijkstra� Self stabilizing systems in spite of distributed control� Com�
munications of the Association of the Computing Machinery� ��
��������
�����

�Dol��� S Dolev� Optimal time self�stabilization in dynamic systems� In WDAG��
Distributed Algorithms �th International Workshop Proceedings	 Springer�
Verlag LNCS
���� pages ��	����� �����

�GG��� S Ghosh and A Gupta� An exercise in fault�containment
 self�stabilizing
leader election� Information Processing Letters� ��
�������� �����

�GH��� MG Gouda and FF Haddix� The stabilizing token ring in three bits� Journal
of Parallel and Distributed Computing� ��
������ �����

�GM��� MG Gouda and N Multari� Stabilizing communication protocols� IEEE
Transactions on Computers� �	
�������� �����

�ILS��� G Itkis� C Lin� and J Simon� Deterministic� constant space� self�stabilizing
leader election on uniform rings� In WDAG�� Distributed Algorithms �th
International Workshop Proceedings	 Springer�Verlag LNCS
���� pages ����
�	�� �����

�JABD��� C Johnen� G Alari� J Beauquier� and AK Datta� Self�stabilizing depth��rst
token passing on rooted networks� In WDAG�� Distributed Algorithms ��th
International Workshop Proceedings	 Springer�Verlag LNCS
����� pages
��	����� �����

�Joh��� C Johnen� Memory�e�cient self�stabilizing algorithm to construct BFS
spanning trees� In Proceedings of the Third Workshop on Self�Stabilizing
Systems� pages ������	� Carleton University Press� �����

�MOY��� A Mayer� R Ostrovsky� and M Yung� Self�stabilizing algorithms for syn�
chronous unidirectional rings� In Proceedings of the Seventh Annual ACM�
SIAM Symposium on Discrete Algorithms �SODA���� pages �������� �����



�Pet��� F� Petit� Highly space e�cient self�stabilizing depth��rst token circulation
for trees� In V� Villain A� Bui� M� Bui� editor� On Principles Of DIstributed
Systems	 OPODIS���� pages �������� Hermes� �����

�PV��� F Petit and V Villain� Color optimal self�stabilizing depth��rst token circu�
lation� In I�SPAN���	 Third International Symposium on Parallel Architec�
tures	 Algorithms and Networks Proceedings	 IEEE Computer Society Press�
IEEE Computer Society Press� ����� To appear�

�Vil��� V� Villain� A new lower bound for self�stabilizing mutual exclusion algo�
rithms� Technical Report RR������ LaRIA� University of Picardie Jules
Verne� France� �����

This article was processed using the LATEX macro package with LLNCS style


