Parallel Processing Letters Vol. 12, Nos. 3 & 4 (2002) 327-340
© World Scientific Publishing Company

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER
IN TREE NETWORKS*

COLETTE JOHNEN

LRI - CNRS UMR 8623, Université Paris-Sud
France

LUC O. ALIMA

Unité d’Informatique, Université Catholique de Louvain
Belgium

AJOY K. DATTA

Department of Computer Science, University of Nevada Las Vegas
USA

and

SEBASTIEN TIXEUIL

LRI - CNRS UMR 8623, Université Paris-Sud
France

Received September 1998
Revised May 2002
Accepted by S.K. Das

ABSTRACT

We propose a snap-stabilizing synchronization technique, called the Neighborhood
Synchronizer (N'S) that synchronizes nodes with their neighbors in a tree network. The
NS scheme has optimal memory requirement — only one bit per processor. NS is
snap-stabilizing [11], meaning that it always behaves according to its specification. The
proposed synchronizer being snap-stabilizing is optimal in terms of stabilization time.
We show an application of the synchronizer by designing an efficient broadcast algorithm
(BA) in tree networks. BA is also snap-stabilizing and needs only 2h 4+ 2m — 1 rounds
to broadcast m messages, where h is the height of the tree.

Keywords: Broadcasting, distributed algorithms, self-stabilization, synchronizer.

1. Introduction

Self-stabilization was introduced in distributed systems by Dijkstra in 1974 [14,15].
The paradigm of self-stabilization is considered to be the most general technique
to design a system to tolerate arbitrary transient faults. A self-stabilizing system,
regardless of the initial states of the processors and initial messages in the links, is

*A preliminary abstract of this paper was presented in [20].

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

guaranteed to converge to the intended behavior in finite time. The concept of Snap-
stabilization was introduced in [10]. A snap-stabilizing algorithm guarantees that
it always behaves according to its specification. In other words, a snap-stabilizing
algorithm is also a self-stabilizing algorithm which stabilizes in 0 steps.

Designing synchronous protocols is simpler than designing asynchronous proto-
cols. However it is more difficult to implement synchronous systems. A synchro-
nizer [5] is a protocol which allows a synchronous protocol to run in an asynchronous

system. Various types of synchronizers were developed in recent years. See [22],
[25], and [26] for details.

Related Work. The research in the area of synchronizers started from the sem-
inal work of Awerbuch [5]. However, the algorithms in [5] are not self-stabilizing.
One approach to designing a self-stabilizing synchronizer is to combine the protocol
of [5] with any self-stabilizing reset protocol [4,1,7]. Self-stabilizing synchronizers
were proposed in [16,28,2] for tree networks, and [27,6,8] for general networks. PIF-
based self-stabilizing synchronizers were proposed in [10,11,21] for tree networks,
and [13,28] for general graphs. The algorithms in [10,11,13] are snap-stabilizing.

n [17], Gouda and Haddix proposed a self-stabilizing neighborhood synchro-
nizer (which they referred to as alternator) for linear networks [17] and arbitrary
networks [18]. Research on local mutual exclusion has been active in the recent
years [9,24,23,3,19]. The solution to the local mutual exclusion problem can be
used to design neighborhood synchronizers.

Our Contribution. We propose a snap-stabilizing synchronization technique,
called the Neighborhood Synchronizer (N'S) that synchronizes nodes with their
neighbors in a tree network. This scheme is optimal both in space and time. N'S
uses only one bit of memory per processor and is instantaneously stabilizing.

We then use the 'S as a tool to design a very efficient snap-stabilizing broadcast
algorithm in tree networks. The local synchronizer of [16] synchronizes only two
neighboring processors, whereas A'S synchronizes a processor with all its neighbors
(parent and children in the tree network). The proposed broadcast algorithm needs
only 2h + 2m — 1 rounds to broadcast m messages. Any (non-self-stabilizing, self-
stabilizing, or snap-stabilizing) PIF algorithm will take at least Q(h x m) rounds,
to broadcast m messages,

Algorithm NS is also a solution to the local mutual exclusion problem [17].

Outline of the Paper. In Section 2, we describe the distributed systems and the
model we consider in this paper. The synchronization scheme, called neighborhood
synchronizer and its correctness proof are presented in Section 3. We present a
self-stabilizing broadcast algorithm as an application of the local synchronizer in
Section 4. Finally, we give the concluding remarks in Section 5.

2. Preliminaries

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER

System. A distributed system is an undirected connected graph, D = (V, E),
where V' is the set of nodes (|V| = n) and E is the set of edges. Nodes represent
processors and edges represent bidirectional communication links. We consider net-
works which are asynchronous and tree structured. We denote the root processor
by r, the set of leaf processors by L, and the set of internal processors by I. So,
the set of all processors, V = {r} Ul U L.

We denote the processors by p (p € {1..n}) and the root processor by r. The
numbers 1..n are used for notation only, since no processor, except the root, uses its
identity. A communication link (p, ¢) exists iff p and ¢ are neighbors. Each processor
p maintains its set of neighbors, denoted as N,. The degree of p is the number of
neighbors of p, i.e., equal to |N,|. We assume that each processor p (p # r) knows its
parent, denoted by P,. We assume that an underlying local topology maintenance
protocol computes IN,. We also assume the existence of a spanning tree algorithm
which maintains P,. So, we consider N, and P, as constants in our algorithm. The
height of a tree is denoted by h. h, denotes the height of the subtree rooted at p.
The distance of a processor p from the root r is denoted by d,.

Programs. The program consists of a set of shared variables (henceforth referred
to as variables) and a finite set of actions. A processor can only write to its own
variables and can only read its own variables and variables owned by the neighboring
processors. So, the variables of p can be accessed by p and its neighbors.

Each action is uniquely identified by a label and is of the following form:

< label >:: < guard > — < statement >

The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one or
more variables of p. An action can be executed only if its guard evaluates to true.
We assume that the actions are atomically executed: the evaluation of a guard and
the execution of the corresponding statement of an action, if executed, are done in
one atomic step. The atomic execution of an action of p is called a step of p.

The state of a processor is defined by the values of its variables. The state
of a system is a product of the states of all processors. We refer to the state of
a processor and system as a (local) state and configuration, respectively. Let a
distributed protocol P be a collection of binary transition relations denoted by
—, on C, the set of all possible configurations of the system. A computation of
a protocol P is a mazimal sequence of configurations € = (Yo, V1, -, Vi, YVitls---)s
such that for ¢ > 0,7v; — 7,41 (a single computation step) if ;41 exists, or ; is a
terminal configuration. Mazimality means that the sequence is either infinite, or it
is finite and no action of P is enabled in the final configuration. All computations
considered in this paper are assumed to be maximal.

During a computation step, one or more processors execute a step and a pro-
cessor may take at most one step. This execution model is known as the distributed
daemon [12]. The predicate Enable (A, p,) is true if the guard of the action A is

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

true at processor p in the configuration 7. Similarly, the predicate Enable(p,~) is
true if the guard of at least one action is true at p in v. We assume a weakly fair
daemon, meaning that if processor p is continuously enabled, p will be eventually
chosen by the daemon to execute an action.

The set of computations of a protocol P in system S starting with a particular
configuration a € C is denoted by &,. The set of all possible computations of P in
system S is denoted as £.

In order to compute the time complexity measure, we use the definition of round
[16]. This definition captures the execution rate of the slowest processor in any
computation. Given a computation e (e € &), the first round of e (let us call it
e') is the minimal prefix of e containing the execution of one action (an action of
the protocol or the disable action) of every continuously enabled processor from the
first configuration. Let e” be the suffix of e, i.e., e = e’e”. Then second round of e
is the first round of ¢, and so on.

Predicates. Let A be a set. £ F P means that an element z € X satisfies the
predicate P defined on the set X'. A predicate is non-empty if there exists at least
one element that satisfies the predicate. We define a special predicate true as follows:
for any © € X, x F true.

Self-Stabilization. We use the following term, attractor in the definition of self-
stabilization.

Definition 1 (Attractor) Let X and Y be two predicates defined on C of system
S. Y is an attractor for X if and only if the following condition is true:

VakX: VYee&y: e=(v,7,..) = 3 >0,Vj>i,v Y. We denote this
relation as X > Y.

Informally, X>Y means that in any computation € &, starting from an arbitrary
configuration satisfying X, the system is guaranteed to reach a configuration which
satisfies Y, and also, Y is closed.

Definition 2 (Self-stabilization) A protocol P is self-stabilizing for a specifica-
tion SPp on & if and only if there exists a predicate Lp (called the legitimacy
predicate) defined on C such that the following conditions hold:

1. VYak Lp: Yee€ &, :: et SPp (correctness).

2. true> Lp (closure and convergence).

3. Neighborhood Synchronizer (NS)

In this section, we first give the specification of the A'S problem. Then we
describe the scheme informally, followed by Algorithm N'S. Finally, we prove the
correctness of Algorithm N'S.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER

Problem Specification. We consider a computation e to satisfy the specification
SPyrs of Algorithm NS if between every two successive actions executed by a pro-
cessor in e, all its neighbors execute exactly one action. We also require Algorithm
NS to be self-stabilizing.

3.1. Algorithm N'S

Informal Description. The main idea about the neighborhood synchronization
is as follows: Every processor p uses a binary color variable, ¢, to indicate the
change of its state to its neighbors, an internal processor p changes ¢, only when it
finds that all its children have the same value as ¢, and its parent has a different
value than ¢,. The protocol of the root and a leaf processor are similar except that
the root (resp., a leaf processor) does not have to check the color of its (non-existent)
parent (resp., children).

The Neighborhood synchronization can be used to simulate a reliable message
passing mechanism using a register-based communication model as follows: The
root sends a new message to its children and then waits until they read that new
message. At that point, the root can send another message. An internal processor
reads a new message from its parent only when it finds that all its children have read
the previous message. The leaves read a new message from their parent whenever
the parent sends a new message. The root changes ¢, to signal to its children that it
has sent a new message. Similarly, the internal and leaf processors change their ¢ to
inform their parent (resp., children) that they have read (resp., hold) the previous
(resp., new) message.

The Neighborhood Synchronizer algorithm NS is shown in Algorithm 1. Every
processor ¢ maintains a variable ¢;, the state of . We denote the set of children of

Algorithm 1 (N'S) Neighborhood Synchronizer Algorithm for processor i.
Variable:
¢;: The color variable.
Constants:
Cld;: The set of children.
P;: The parent processor.
Actions:
{For the root}
S1 = VjeCld; = Cj =C —> Cji= ¢

{For the internal processors}
Syep, e AN(VjECld;icj =¢) — ¢ =cp

{For the leaf processors}
S3icep, ¢ — ¢ = cp,

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

3.2. Correctness of Algorithm N'S

We first prove the liveness of the algorithm. Then, we prove the correct behavior
of the algorithm using the liveness result. The following properties follows directly
from Algorithm NS.

Property 1 Vy € C:Vi €V :: Enable(i,v) = (Vj € N;:: =Enable(],v)).

Informally, Property 1 states that if one particular processor is enabled in a
configuration, then none of its neighbors is enabled in the same configuration (thus
solving the local mutual exclusion problem).

Lemmal Vie ({r}Ul):Vee E:e=mv,v%,...:Fk >1:VjeCld; = ¢; =
¢ in Y.

Proof. Assume that i executes an action (S; or Ss2) during a computation e.
Then, all the children of 4 must had the color of ¢ before i executed the action (see
the guard of Sy and Ss).

Now consider the case where ¢ never executes an action during a computation
e (i.e., i never changes its color). If a child j of ¢ has the color of 4, then j cannot
execute any action until ¢ changes its color. We will prove this case by induction
on the height of the subtree rooted at 4.

e Base Case: h; =1, i.e., i is a parent of some leaf processors.

Assume that there exists a processor j € Cld; such that ¢; never becomes equal
to ¢; during a computation e. Then, in all configurations in e, Enable(Ss, j,7)
will hold until j executes S;. By fairness, j will eventually execute S3 and
¢j = ¢; becomes true. Following the same reasoning, all other children of i
will eventually get the color of 4.

e Hypothesis: Assume that the lemma is true for 0 < h; <m,m < h — 1.

Assume that there exist two processors ¢ and j such that h; = m+1,j € Cld;,
and j never gets the color of i during e. j cannot execute Sy because that
would make ¢; = ¢;. By the induction hypothesis, the system will reach a con-
figuration v where the children of j gets the color of j. Then Enable(S2,,)
will be true and will remain true until j executes S (by Property 1). By
fairness, j will eventually execute Se and c¢; = ¢; becomes true. If ¢; = ¢;, j
cannot change its color. Similarly, all other children of ¢ will get the color of
i

0.
Lemma 2 (Liveness) Ve € £,Vi € V| i executes an action infinitely often.
Proof. We will prove this by contradiction. Assume that there exists at least
one processor that stops executing any action from a configuration v during a
computation e. Let i be one of the processors nearest to the root among these
processors. By Lemma 1, in some configuration v/, v ~» «/, all children of 7 will
have the same color as i. As i cannot change its color, no child of i can also change
its color in any configuration from -/ onwards in e.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER

1. Assume that i = r.

Then Enable(S1,4,7!) is true. By fairness, ¢ will eventually execute S;.

2. Assume that ¢ # r and ¢; # cp,.

Then either Enable(Sz,i,vr) (if i € I) or Enable(Ss,i,~/) (if i € L) will be
true. By fairness, i will eventually execute Sy or S3.

3. Assume that i # r and ¢; = cp,.

P; will eventually execute an action and change its color because according
to the hypothesis, all ancestors of i infinitely change their color. After P;
executes its action, ¢; # cp, will be true. Now, P; cannot change its color
again since ¢ does not change its color. Thus, by fairness, ¢ will eventually
execute Sy or S3. (See Case 2.)

a.

Lemma 3 (Synchronization) Let S; denote an action executed by processor i.
Ve € E,Vi € ({r} UI),Yj € Cld;, the projection of e on the actions of i and j can
be represented by the following expression:

(8iS;)” U (8;8:)

i.e., between any two actions executed by a processor, all of its neighbors execute
exactly one action.

Proof. By Lemma 2, Processor ¢ executes an infinite sequence of actions. Also,
to be able to perform an action, ¢ must be enabled, and when ¢ executes an action,
i becomes disabled. We consider two configurations v, and g such that ¢ executes
an action between v, and 7,41, and s is the first configuration after y,41 where
1 is enabled again. Formally:

VieV:Veef:e=v,%,...:da>1,7 >a+1::
Enable(p,va) A Enable(p,v3) A (V& €]a, B]: "Enable(p,vx))

What we need to prove is that between configurations v,+1 and g, every child of
i executes exactly one action. Since ¢ is disabled in 7yo41...73-1, any child of ¢
can execute at most one action. ¢ is enabled both in v, and ~yg, so every child of
i executes at least one action between configurations 7,41 and yz. By Property 1,
the lemma follows. 0O.

Theorem 1 (Self-Stabilization) Algorithm N'S is a self-stabilizing neighbor-
hood synchronizer algorithm.

Proof. The theorem follows from Lemma 3 and the fact that we did not make
any assumption on the initial configuration to prove Lemma 3. 0O.

Theorem 2 (Optimal Snap-Stabilization) Algorithm N'S is an optimal snap-
stabilizing neighborhood synchronizer algorithm.

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

Proof. Algorithm NS uses only one binary variable c¢. Thus, it requires only
one bit. Since any computation starting from any initial configuration satisfies the
specification, Algorithm A'S has a zero stabilization time, meaning that it always
satisfies its specification. 0.

4. Broadcasting Algorithm (BA): An Application of N'S

The root of a tree has an infinite sequence of messages to be broadcast to all
processors of the tree. The root waits for its children to acknowledge the receipt
of the message before the root sends another message. The root does not need to
wait until the previous message has reached all processors of the tree. Thus, several
messages may simultaneously be propagated down the tree, that is, effectively im-
plementing a pipelining mechanism. We will show then the positive impact of the
concurrent propagation of messages on the performance of Algorithm BA.

Problem Specification. We consider a computation e to satisfy the specification
SPpa of Algorithm BA if the following conditions are true:

1. Every message sent by the root is eventually received by all processors in the
tree in the same order they were sent. We refer to this property as Correct
Delivery.

2. All messages, except (possibly) the first §; messages, received by i were sent
by the root. We call this property Message Validity.

We also require Algorithm BA to be self-stabilizing.

Informal Description. We make a few simple modifications in Algorithm NS
to design Algorithm BA (shown in Algorithm 2). At node i, we use an extra variable
m; to hold the current message received from the parent. The root r reads a new
message from some application program and writes in m,.. The internal processors
and leaf processors copy their parent’s message from mp, into their own message
variable, m;.

4.1. Correctness of Algorithm BA

Lemma 4 Vi€ ({r}UI),Vj € Cld;, the messages sent by i are eventually received
by j in the same order as they were sent with no loss or duplication.

Proof. By Lemma 3 and Algorithm 2, after ¢ receives a message, it cannot
execute its action until all its children execute their action (i.e., read the message
from m;). 0O.

Lemma 5 (Correct Delivery) Every message sent by the root is eventually re-
ceived by all processors in the tree in the same order it was sent.

Proof. The proof follows from Lemma 4 and by using induction on the height
of the tree. 0O.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER

Algorithm 2 (BA) Broadcasting Algorithm for processor i.
Variable:
¢i: color
m;: message
Constants:
Cld;: set of children
P;: parent
Actions:
{For the root}
By :Vj e Cld; :: cj = ¢; — m; :=<next message>; ¢; := —¢;

{For the internal processors}
By :cp, #ci AN(Vj€CU; i cj =c¢;) — m;:=mp,; ¢ = cp,

{For the leaf processors}
Bs :: Cp; 75 C; — M;:=Mmp,; C; = Cp;

Lemma 6 Vi € (I UL), all messages, except (possibly) the first one, received by i
were sent by P;.

Proof. The first message received by i may not have been sent or received by
P; because the message may have been in transit due to some transient faults. 0.
Lemma 7 (Message Validity) All messages, except (possibly) the first 6; mes-
sages received by i were sent by the root.

Proof. The proof follows from Lemma 6 and by using induction on §;, the
distance of ¢ from the root. 0O.

Theorem 3 (Self-stabilization) Algorithm BA is self-stabilizing.

Proof. Follows from Lemmas 5 and 7, and the fact that these lemmas were
proven independent of the initial configuration. 0.

4.2. Complexity

In this section, we present the time and space requirements of Algorithm BA
and the time to broadcast m messages in the tree network.

Space Complexity. Algorithm B.A uses two variables, ¢ and m. Since m is
used only to carry messages for the application level, the extra space used by our
algorithm is only one bit.

Time Complexity. As seen in the proof of correctness of Algorithm B.A, any
computation, starting from any initial configuration, is correct with respect to the
specification SPp4. Then, it is trivial to deduce the 0(1) stabilization time.

Theorem 4 (Optimal Snap-Stabilization) Algorithm BA is an optimal snap-
stabilizing broadcast algorithm.

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

Proof. Algorithm BA uses only one additional binary variable ¢. Thus, it
requires only one bit overhead. Since any computation starting from any initial
configuration satisfies the specification, Algorithm B4 has a zero stabilization time,
meaning that it always satisfies its specification. 0O.

Broadcasting Time. We need to prove some properties to compute the time to
broadcast messages.

Definition 3 (Color Synchronized Processor) A processori € V is color syn-
chronized if at least one of the following conditions is true:

1. ie ({r}uUlL).
2. C; =Cp;.
3. Vjelld;:: c; =cj.

Definition 4 (Color Synchronized Configuration) A configuration is color syn-
chronized when all processors are color synchronized. We characterize any color
synchronized configuration by a predicate, called L.

Lemma 8 Leti be a processor such that i and its children are colored synchronized.
After a round, i is still color synchronized.

Proof. Consider a processor i € I. We do not need to consider the root and
the leaf processors because they are always color synchronized by definition.

1. Assume that i changes its color in this round by copying its parent’s color.
By Property 1, the parent and children of i cannot execute any action during
this round. Thus, ¢ remains synchronized because Condition 2 of Definition 3
is satisfied.

2. Assume that i does not change its color during a round.

Let j be a child of ¢ such that ¢; # ¢; in a configuration v before the round.
Since j is synchronized in 7, 7 must satisfy Condition 3 of Definition 3, i.e.,
all children of j must have the same color as j in . So, either B2 or B3
will be enabled at j. During the round, j will execute its action and ¢; will
become equal to ¢;. Let k be a child of ¢ such that ¢, = ¢; before the round.
k will not execute an action during the round. Condition 3 of Definition 3 at
processor i is satisfied after the round.

3. Assume that P; changes its color during this round. By Property 1, i cannot
execute any action during this round (see Case 2).

0O.
The following corollary follows directly from Lemma 8.

Corollary 1 VyF L., Ve € &,, any configuration reached after one round of com-
putation starting from 7y is also color synchronized.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER

Lemma 9 Starting from any arbitrary configuration, after h—1 rounds, the system
will reach a color synchronized configuration.

Proof. We prove the lemma by induction on h;, the height of the subtree rooted
at 1,

1. Base Case: h; =0

The lemma is true for h; = 0 (the leaf processors) by definition.

2. Hypothesis: Assume that the lemma is true for 0 < h; < m,m < h — 2.
(Note that the lemma is true for h; = h because the root is always color
synchronized.)

Processors which are the root of a subtree of height less than or equal to m
will be color synchronized within m rounds and will remain color synchronized
thereafter. We now need to prove that the lemma is also true for h; = m + 1.

Let ¢ be a processor such that h; = m + 1. Assume that i is not color
synchronized after m rounds and 3j € Cld; =: ¢; # c¢; before the m + 1'h
round. i will not change its color during the m + 1*" round. If & is a child of i
such that ¢, = ¢; before the m + 1** round, then & will not execute an action
during the m + 1*0

Let j be a child of i such that c; # c¢; before the m + 1" round. As, h; < m, j
will be color synchronized within m rounds by the hypothesis. All children of
j will get the color of j after m rounds. So, either B2 or B3 will be enabled
at j. In the m + 1*" round, j will execute its action and ¢; will become equal
to ¢;. Thus, after m + 1 rounds, all children of ¢ have the color of ¢, and 7 is
color synchronized.

round.

0.
A configuration v + £4,,,,
root, have the same color as their parent. Formally:

if all processors at a distance 2,4,6,...2d from the

L., =Yk €]0,d]:Vi €V :6; =2k 2 ¢c; = cp,

even —

A configuration v F £4,, if all processors at a distance 1,3,5...2d + 1 from the
root have the same color as their parent. Formally:

Ll =Vke[0,d]:VieV 6 =2k+1:2: ¢;=cp,

o

d

Even

A configuration v - G if all processors at a distance 2,4,6,...2d from the
root do not have the same color as their parent. Formally:

Gl =Yk €)0,d]: Vi €V : §; =2k 2 ¢; # cp,

A configuration v - G2, if all processors at a distance 1,3,5...2d + 1 from the
root, do not have the same color as their parent. Formally:

GlLy=Vke[0,d:VieV 6 =2k+1:2 ¢; #cp,

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

We also define the following notations:

ggven = ‘CCS
Ee’uen = Ed 2d Z h Ladd = Egdd’ 2d+1 Z h

even’

geven = ggven; 2d Z h godd = ggddy 2d+1 Z h

The following two properties follow from Algorithm 5.A.
Property 2 Let v be a configuration such that v F L.s A Egdd A G4 After

even -

one round of computation starting from -y, the system will reach a configuration
YIE Les AL AGE

Property 3 Let v be a configuration such that v & L.s A L. A gg;dl. After
one round of computation starting from -y, the system will reach a configuration
Y Les A ‘ngd AGE ...

Lemma 10 Starting from any arbitrary configuration v € C, the system will reach
a configuration v/ in h — 1 or h rounds such that y/+ Les ALY,

Proof. By Lemma 9, all processors are synchronized (i.e., L.s is true) within
h — 1 rounds. If all children of the root have the same color as the root, then £°,,
is true. Assume that there exists one child i of the root whose color is not the same
as the root. Since i is synchronized, all its children have its color and Bs is enabled
at i. So, in the next round, ¢ will execute Bs, copy the root’s color, and £2,, will
become true. 0O.

We define Loe = Les A ((Lodd A Geven) U (Leven A Godd))-

Lemma 11 Starting from a configuration y & L.s A L2,,, the system will reach a

configuration ! in h — 1 rounds such that v/ = L.

Proof. Let v be a configuration satisfying L.s A £L9,, A G0,.,,. Starting from ~,

during the next round, the system will reach a configuration v1 F Les ALL,,,, AG%,
(Property 2). Now, starting from 7, the system will reach a configuration v» +
Les ANLL NGl (Property 3). Thus, after h — 1 rounds of computation starting
from -y, the system will reach a configuration v/ + L,.. 0O.

The following properties follow from Lemma 11 and Properties 2 and 3.

Property 4 Starting from a configuration v = Los A Leven N Goda, in one round,
the system will reach a configuration vy = L.s ALoga A Geven - Starting from a config-
uration Yy E Les A Loga N Geven, in one round, the system will reach a configuration
7, l_ Ecs A Eeven A godd'

Property 5 Starting from a configuration v &= Ly, in alternate rounds, the pro-
cessors at odd distance from the root (i.e., §; = 1,3,...) and the processors at even
distance from the root (i.e., §; =0,2,...), execute an action.

Lemma 12 Starting from a configuration y = L.sALY,,, a sequence of m messages
broadcast by the root will reach all processors of the tree within h + 2m — 1 rounds.

Proof. Assume that v+ L5 A £2,,. The root can send its first message in 7.
It takes h rounds for the message to reach all processors of the tree. By Property 5,
the root will be able to send a message once in every two rounds. Thus, starting

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER

from +, the root will send the mth message in 2m — 1th round and this last message
will take another h rounds to reach all processors of the tree. Thus, the maximum
number of rounds necessary to broadcast m messages in the tree starting from = is
h+2m—1. 0O.

Theorem 5 Starting from an arbitrary configuration, it takes at most 2h+2m —
1 rounds for all processors to receive m messages broadcast by the root.

Proof. Follows from Lemmas 10 and 12. O.

5. Conclusions

We presented a new space efficient self-stabilizing synchronizing technique, the
neighborhood synchronizer. This method implements the synchronization between
a processor and its neighbors. This scheme also allows concurrency among proces-
sors which do not have a neighborhood relationship. The concurrency inherent in
this scheme is similar to the pipelining scheme. We show an application of Algo-
rithm NS by extending it into an efficient broadcasting algorithm. Algorithm B.A
requires only 2h + 2m — 1 rounds to broadcast m messages in the tree network.

Both algorithms are optimal in space. 'S makes use of only one bit of memory,
and BA add only one bit overhead to the message size. Both algorithms are also
optimal in time because they are snap-stabilizing. The delay (see [13]) of NS and
BA are zero and O(h) rounds, respectively.

6. References

[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self-stabilization on general net-
works. In WDAGY90 Distributed Algorithms 4th International Workshop Proceed-
ings, Springer LNCS:486, pages 15-28, 1990.

[2] L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Self-stabilization with global
rooted synchronizers. In ICDCS98 Proceedings of the 18th International Confer-
ence on Distributed Computing Systems, pages 102-109, 1998.

[3] S. Antonoiu and P. K. Srimani. Self-stabilizing protocol for mutual exclusion among
neighboring nodes in a tree structured distributed system. Parallel Algorithms and
Applications, 14(1):1-18, 1999.

[4] A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43:1026-1038, 1994.

[5] B. Awerbuch. Complexity of network synchronization. Journal of the Association of
the Computing Machinery, 32(4):804-823, 1985.

[6] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time optimal
self-stabilizing synchronization. In STOC93 Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pages 652-661, 1993.

[7] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In FOCS91 Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 268-277, 1991.

[8] B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In FOCS91 Proceedings of the 31st Annual
IEEE Symposium on Foundations of Computer Science, pages 258-267, 1991.

C. Johnen, L. O. Alima, A. K. Datta € S. Tizeuil

[9]

[10]

[11]

[12]

J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local
mutual exclusion and daemon refinement. In DISC00 Distributed Computing 14th
International Symposium, Springer LNCS:191/, pages 223-237, 2000.

A. Bui, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing pif algorithms in tree
networks without sense of direction. In Proceedings of SIROCCO’99, Carleton Uni-
versity Press, pages 32-46, 1999.

A. Bui, A. K Datta, F. Petit, and V. Villain. State-optimal snap-stabilizing PIF in
tree networks. In Proceedings of the Fourth Workshop on Self-Stabilizing Systems
(published in association with [CDCS99 The 19th IEEE International Conference
on Distributed Computing Systems), pages 78-85. IEEE Computer Society, 1999.
J. E. Burns, M.G. Gouda, and R. E. Miller. On relaxing interleaving assumptions. In
Proceedings of the MCC Workshop on Self-Stabilizing Systems, MCC' Technical
Report No. STP-379-89, 1989.

A. Cournier, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing pif algorithm in
arbitrary networks. In Proceedings of ICDCS’02. IEEE Computer Society Press,
2002.

E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery, 17:643-644, 1974.

S. Dolev. Self-stabilization. The MIT Press, 2000.

S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems, 8(4):424-440, 1997.

M. G. Gouda and F. Haddix. The linear alternator. In Proceedings of the Third
Workshop on Self-Stabilizing Systems, pages 31-47. Carleton University Press, 1997.
M. G. Gouda and F. Haddix. The alternator. In Proceedings of the Fourth Workshop
on Self-Stabilizing Systems (published in association with ICDCS99 The 19th
IEEFE International Conference on Distributed Computing Systems), pages 48—
53. IEEE Computer Society, 1999.

S. T. Huang. The fuzzy philosophers. In Proceedings of Workshop on Advances of
Parallel and Distributed Computational Models, pages 130-136. LNCS 1800, 2000.
C. Johnen, L. O. Alima, A. K. Datta, and S. Tixeuil. Self-stabilizing neighborhood syn-
chronizer in tree networks. In ICDCS99 The 19th IEEE International Conference
on Distributed Computing Systems, pages 487-494, 1999.

H. S. M. Kruijer. Self-stabilization (in spite of distributed control) in tree-structured
systems. Information Processing Letters, 8:91-95, 1979.

N. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

M. Mizuno and M. Nesterenko. A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Information Processing
Letters, 66(6):285-290, 1998.

M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement. In DISC99
Distributed Computing 13th International Symposium, Springer LNCS:1693,
pages 254-268, 1999.

M. Raynal and J. M. Helary. Synchronization and Control of Distributed Systems
and Programs. John Wiley and Sons, Chichester, UK, 1990.

G. Tel. Introduction to distributed algorithms. Cambridge University Press, 1994.
G. Varghese. Self-stabilization by local checking and correction (Ph.D. thesis). Tech-
nical Report MIT/LCS/TR-583, MIT, 1993.

G. Varghese. Self-stabilization by counter flushing. In PODC9/ Proceedings of the
Thirteenth Annual ACM Symposium on Principles of Distributed Computing,
pages 244-253, 1994.

