
Self-Stabilizing Clustering Algorithm for Ad hoc
Networks

Colette Johnen, Le Huy Nguyen
LRI–Université Paris Sud, CNRS UMR 8623
Bâtiment 490, F91405, Orsay Cedex, France

E-mail: colette@lri.fr, lehuy@lri.fr

24 janvier 2006

Abstract

Ad hoc networks consist of wireless hosts that communicate with each other in
the absence of a fixed infrastructure. Such network cannot rely on centralized and
organized connectivity. The clustering problem consists in partitioning network
nodes into groups called clusters, thus giving at the network a hierarchical or-
ganization. Clustering is commonly used in order to limit the amount of routing
information. A self-stabilizing algorithm, regardless of the initial system state,
converges in finite time to a set of states that satisfy a legitimacy predicate wi-
thout external intervention. Due to this property, self-stabilizing algorithms pro-
vide means for tolerating transient faults. In this paper we present a weight-based
Self-stabilizing Clustering Algorithm for Ad hoc network. Our algorithm adapts
to the changes in the network topology due to mobility of the nodes.
Keywords : Self-stabilization, Distributed algorithm, Clustering, Ad hoc net-
work.

Résumé

Les réseaux ad-hoc se composent des postes sans fil qui communiquent les uns avec
les autres en l’absence d’une infrastructure fixe. Un tel réseau ne peut pas se fonder
sur une connectivité centralisée et organisée. Le problème d’agrégation consiste à
partitionner les noeuds d’un réseau en grappes, donc donne au réseau une or-
ganisation hiérarchique. L’agrégation est généralement utilisée afin de réduire
la quantité de l’information échangée en vu du routage. Un algorithme auto-
stabilisant, indépendant de l’état initial du système, converge à un ensemble
de l’état qui satisfait à un prédicat légitime dans un temps fini. Grâce à cette
propriété, les algorithmes auto-stabilisants donnent des moyens pour tolérer les
défaillances transitoires. Dans cet article, nous présentons un algorithme auto-
stabilisant d’agrégation pour les réseaux ad-hoc. Notre algorithme s’adapte aux
changements de topologie de réseau suite à la mobilité de noeuds.
Mots-clés : Auto-stabilization, Algorithme distribué, Agrégation, Réseau ad-hoc.

1

1 Introduction

An ad-hoc network is a self-organized multihop network especially one with
wireless or temporary plug-in connections. Such a network may operate in a stan-
dalone fashion, or may be connected to the larger Internet [11]. In Latin, ad hoc
literally means “for this”, further meaning “for this purpose only” and thus usually
temporary. Mobile routers may move randomly ; thus, the network’s topology may
change rapidly and unpredictably. Such network cannot rely on centralized and
organized connectivity. Significant examples include establishing survivable, ef-
ficient, dynamic communication for emergency/rescue operations, disaster relief
efforts, and military networks, the meeting where participant will create a tem-
porary wireless ad hoc network. Minimal configuration and quick deployment are
needed in these situations.

Clustering means partitioning network nodes into groups called clusters, giving
at the network a hierarchical organization. A cluster is a connected graph inclu-
ding a clusterhead and (possibly) some ordinary nodes. Each node belongs to only
a cluster. In addition, a cluster is required to obey certain constraints that are used
for network management, routing methods, resource allocation, etc. By dividing
the network into nonoverlapped clusters, intracluster routing is administered by
the cluster leader and inter cluster routing can be done in reactive manner by clus-
ter leaders and gateway. Clustering has the following advantages. First, clustering
facilitates the reuse of resource, which can improve the system capacity. Members
in a cluster can share the resource as software, memory space, printer, etc, thus in-
creasing its disposability and its accessibility. Secondly, clustering-based routing
reduces the amount of routing information propagated in the network. Finally,
clustering can be used to reduce the amount of information that is used to store
the network state. The clusterhead will collect the state of nodes in its cluster and
built an overview of its cluster state. Distant nodes outside of the cluster usually
do not need to know the details of specific events occurring inside the cluster.
Hence, an overview of the cluster’s state is sufficient for those distant nodes to
make control decisions.

For these reasons, it is not surprising that several distributed clustering algo-
rithms have been proposed in this area during the last few years [12, 17, 2, 3, 1,
10, 7]. The clustering algorithms appear in [1, 10] build a spanning tree, then on
top of the spanning tree, the clusters are constructed. In [1, 10], the clusterheads
set is not a dominating set (i.e. a processor can be at distance greater than 1 of
its clusterhead). Two network architectures for MANET (Mobile ad hoc Wireless
network) are proposed in [12, 17] where nodes are organized into clusters. The
clustering algorithms in [12, 17] are similar. The built clusterheads set is an in-
dependent (i.e. clusterheads are not neighbours) and also a dominating set. The
clusterheads are selected according to their ids value. In [7] a weight-based dis-
tributed clustering algorithm taking into account several parameters (processor’s
degree, transmission and battery power, processor mobility). In a neighbourhood,
the processors elected are those most suitable to the clusterhead role (i.e. a pro-
cessor optimizing all the parameters). In [3] a distributed and mobility-adaptive
clustering algorithm, called DMAC, is presented ; the clusterheads are selected

2

according a node’s parameter (called weight). The bigger is the weight of a node,
the more suitable this node is for the role of clusterhead. In the both paper, the
clusterheads set is an independent and dominating set. An extended version of
this algorithm, called Generalized DMAC (GDMAC), was proposed in [2]. In the
latter algorithm, the clusterheads set does not have to be an independent set. This
implies that, when due to mobility of the nodes two or more clusterheads become
neighbours, none has to resign. Thus, the clustering management with GDMAC
requires less overhead that the clustering management with DMAC in highly mo-
bile environment. The DMAC and GDMAC algorithms are analyzed respectively
in following paper [6, 5] with respect to their convergence time and message com-
plexity. These two algorithms DMAC and GDMAC are not self-stabilizing.

In 1973 Dijkstra [8] introduced to computer science the notion of self-stabilization
in the context of distributed systems. He defined a system as self-stabilizing when
“regardless of its initial state, it is guaranteed to arrive at a legitimate state in
a finite number of step”. A system which is not self-stabilizing may stay in an
illegitimate state forever. The design of self-stabilizing distributed algorithms has
emerged as an important research area in recent years [18, 9]. The correctness
of self-stabilizing algorithms does not depend on initialization of variables, and a
self-stabilizing algorithm converges to some predefined stable state starting from
an arbitrary initial state. Self-stabilizing algorithms are thus inherently tolerant
to transient faults in the system. Many self-stabilizing algorithms can also adapt
dynamically to changes in the network topology or system parameters (e.g., com-
munication speed, number of nodes). A state following a topology changes is seen
as an inconsistent state from which the system will converge to a state consistent
with the new topology. [13] presents a self-stabilizing algorithm that builds a
maximal independent set (i.e. members of the set are not neighbours, and the set
cannot contains any other processors). Notice that a maximal independent set is
a good candidate for the clusterheads set because a maximal independent set is
also a dominating set (i.e. any processor is member of the dominating set or has a
neighbour that is member of the set). Appears in [19], a self-stabilizing algorithm
that creates a minimal dominating set (i.e. if a member of the set quits the set,
the set is not more a dominating set). Notice that a minimal dominating set is
not always an independent set. We present in this paper a self-stabilizing version
of DMAC and GDMAC algorithm.

The paper is organized as follows. In section 2, the formal definition of self-
stabilization and clustering is given. The self-stabilization version of the DMAC
algorithm is presented in section 3 ; self-stabilization proof is also presented. In
section 4, the self-stabilizing GDMAC algorithm is presented with its proof.

2 Model

2.1 Distributed System

In this paper, we consider the state model [4, 15, 14]. A distributed system S
is a set of state machines called processors. Each processor can communicate with

3

a subset of the processors called neighbors. We model a distributed system by an
undirected graph G = (V, E) in which V , |V | = n, is the set of nodes and there
is an edge {u, v} ∈ E if and only if u and v can mutually receive each others’
transmission (this implies that all the links between the nodes are bidirectional).
In this case we say that u and v are neighbors. The set of the neighbors of a
node v ∈ V will be denotes by Nv. We assume the locally shared memory model
of communication. Thus, each processor i has a finite set of local variables such
that the variables at a processor i can be read by i or any neighbors of i, but
can be modified by i only. Each processor has a program and processors execute
their programs asynchronously. We assume that the program of each processor i
consists of a finite set of guarded statements of the form Rule : Guard → Action,
where Guard is a boolean predicate involving the local variables of i and the
local variables of its neighbors, and Action is an assignment that modifies the
local variables in i. The rule R is executed only if the corresponding guard Guard
evaluates to true, in which case we say guard Guard is enabled. The execution
by processor i of an action rule with enabled guard is called a step of i. The state
of a processor is defined by the values of its local variables. A configuration of
a distributed system G = (V, E) is an instance of the states of its processors.
The set of configurations of G is denoted as C. A computation e of a system G is
a sequence of configurations c1, c2, ... such that for i = 1, 2, ..., the configuration
ci+1 is reached from ci by a single step of one or several processors. A sequence
is fairness if any processor in G that is continuously enabled along the sequence,
will eventually perform an action. Maximality means that the sequence is either
infinite, or it is finite and in this later case no action of G is enabled in the
final configuration. Let C be the set of possible configurations and E be the set
of all possible computations of a system G. Then the set of computations of G
starting with a particular initial configuration c1 ∈ C will be denoted Ec1 . Every
computation e ∈ Ec1 is of the form c1, c2, ... The set of computations of E whose
initial configurations are all elements of B ∈ C is denoted as EB.

In this paper, we use the notion attractor [16] to define self-stabilization. intui-
tively, an attractor is a set of configurations of a system G that ”attracts” another
set of configurations of G for any computation of G.

Definition 1 (Attractor). Let B1 and B2 be subsets of C. Then B1 is an attrac-
tor for B2 if and only if :

1. ∀e ∈ EB2, (e = c1, c2, ...),∃i ≥ 1 : ci ∈ B1 (convergence).

2. ∀e ∈ EB1 , (e = c1, c2, ...),∀i ≥ 1, ci ∈ B1 (closure).

The set of configurations that matches the specification of problems is called
the set of legitimate configurations, denoted as L. In this paper, we treat only static
problems, i.e., once the system reaches a desired configuration, the configuration
remains unchanged forever. For example, the spanning-tree construction problem
is a static problem, and the mutual exclusion problem is not a static problem [9].
C\L denotes the set of illegitimate configurations.

4

Definition 2 (Self-stabilization). A distributed system S is called self-stabilizing
if and only if there exists a non-empty set L ⊆ C such that the following conditions
hold :

1. L is an attractor for C.

2. ∀e ∈ EL, e verifies the specification problem.

2.2 Clustering ad hoc network

Every node v in the ad hoc network is assigned an unique identifier (ID). For
simplicity, here we identify each node with its ID and we denote both with v. We
consider weighted networks, i.e., a weight wv (a real number ≥ 0) is assigned to
each node v ∈ V of the network. In this paper we stipulate that each node has a
different weight.

Clustering an ad hoc network means partitioning its nodes into clusters, each
one with a clusterhead and (possibly) some ordinary nodes. The choice of the
clusterheads is here based on the weight associated to each node : the bigger the
weight of a node, the better that node for the role of clusterhead. In order to
meet the requirements imposed by the wireless, mobile nature of these networks,
a clustering algorithm is required to partition the nodes of the networks so that
the following ad hoc clustering properties are satisfied :

1. Every ordinary node has at least a clusterhead as neighbor (dominance pro-
perty)

2. Every ordinary node affiliates with the neighboring clusterhead that has the
biggest weight

3. A clusterhead has not clusterhead neighbors (independence property)

3 A Self-stabilizing Clustering Algorithm

In the rest of this paper, we will refer to the guard of statement of process v
as Gi(v) and the rule of statement of process v as Ri(v).

constants
wv : N; // the weight of node v

local variables of node v
Chv : boolean ; // indicate that v is or is not a clusterhead
Clusterheadv : IDs // the clusterhead of node v

Figure 2.1 : The algorithm on processor v
Do forever

G1(v) ≡ (∀z ∈ Nv : (Chz = F) ∨ (wv > wz));
G2(v) ≡ (Chv = F) ∨ (Clusterheadv 6= v);
G3(v) ≡ (Chv = T) ∨ (Clusterheadv 6= maxwz{z ∈ Nv : Chz = T));
R1(v) : G1(v) ∧G2(v) → Chv := T ;Clusterheadv := v;
R2(v) : ¬G1(v) ∧G3(v) → Chv := F ;Clusterheadv := maxwz{z : Chz = T};

od

5

3.1 Proof of convergence

Denote Decidedi, i ∈ N a set of nodes which have certainly selected the
clusterhead at end of its step and this clusterhead stays inchange. The convergence
is done in step. During the ith step, ∀p ∈ Decidedi will choose their clusterhead.
We define Decidedi, i ∈ N as the following recursive rule.

1 : Decided0 = ∅.
2 : Denote vHi

the node with the highest weight in V −Decidedi.
Decidedi+1 = Decidedi ∪ {vHi

+ NvHi
}.

We denote Li, L
′
i, i ∈ N a set of predicates on processor state. L′

0 = True. We will
prove that at the end of ith step, L′

i+1 is verified.

Lemma 1 Once L′
i is reached, then vHi

becomes a clusterhead and stays forever
a clusterhead.
(Li+1 ≡ L′

i and {vHi
is a clusterhead }) is an attractor.

Proof : Notice that the guard G1(vHi
) is always verified because wvHi

> wz,∀z ∈
NvHi

. If vHi
is not actually a clusterhead, then vHi

verifies G1(vHi
) and G2(vHi

) up
to the time where vHi

performs the rule R1(vHi
). As all computations are fair vHi

will eventually perform R1(vHi
). After the execution of R1(vHi

), vHi
becomes a

clusterhead. If vHi
is actually a clusterhead then vHi

will stay forever a clusterhead
because vHi

can never perform R2(vHi
). �

Lemma 2 Once Li+1 is reached, all vHi
’s neighbors in Vi choose vHi

as their
clusterhead and keep it.
(L′

i+1 ≡ Li and {∀u ∈ (NvHi
∩ Vi) : Clusterheadu = vHi

}) is an attractor.

Proof : Let u be a vHi
’s neighbor in Vi. Once Li+1 is verified, u will never verify

the guard G1(u) because ChvHi
= T and wvHi

> wu. If Clusterheadu 6= vHi
then

u verifies G3(u), the rule R2(u) is enabled forever thus u will eventually perform
R2(u). Once u have performed R2(u), the clusterhead of u is vHi

, R2(u) becomes
disabled and will never be enabled again. �

Theorem 1 The system reaches eventually a terminal configuration.

Following Lemma 1 and Lemma 2, we have that there exists k ∈ N : Decidedk =
V . When Decidedk = V , no rule is executed in the system. Thus a terminal
configuration is reached. �

3.2 Proof of correctness.

Theorem 2 Once the terminal configuration is reached, the ad hoc clustering
properties are satisfied.

Proof : In the terminal configuration, for every processor v we have G1(v) =
T ∧G2(v) = F or G1(v) = F ∧G3(v) = F .

Case 1. G1(v) = T ∧G2(v) = F .
G2(v) = F means that v is a clusterhead. Hence, we need now to prove that v
satisfies the property 3. Assume that there exits a processor z ∈ Nv : Chz = T .

6

Since G1(v) = T then wv > wz, thus G1(z) = F . Since R2(z) is not executable,
we have then G3(z) = F . G3(z) = F implies that Chz = F , that is contrary. So
there is no processor z ∈ Nv : Chz = T , thus v satisfies the property 3.

Case 2. G1(v) = F ∧G3(v) = F .
(G1(v) = F) ≡ (∃z ∈ Nv : (Chz = T)∧(wz > wv)). Thus v has a clusterhead with
bigger weight than its weight in its neighbors (property 1 is verified). (G3(v) =
F) ≡ ((Chv = F) ∧ (Clusterheadv = maxwz{z ∈ Nv : Chz = T)). That means v
is an ordinary processor which affiliates with a clusterhead that has the biggest
weight. Thus v satisfies the property 2. �

4 A Generalized Self-stabilizing Clustering Al-

gorithm

In the previous algorithm, we have requirement that the clusterheads are
bound to never be neighbors. This implies that, when due to the mobility of
the processors two or more clusterheads become neighbors, those with the smaller
weights have to resign and affiliate with the now bigger neighboring clusterhead.
Furthermore, when a clusterhead v becomes the neighbor of an ordinary pro-
cessor u whose current clusterhead has weight smaller than v’s weight, u has to
affiliate with (i.e., switch to the cluster of) v. These ”resignation” and ”switching”
processes due to processor’s mobility are a consistent part of the clustering mana-
gement overhead that should be minimized. To overcome the above limitations,
we introduce in this section a generalization of the previous algorithm. This al-
gorithm is required to partition the nodes of the networks so that the following
three requirements (called multi-hop clustering properties) are satisfied.

1. Every ordinary node always affiliates with (only) one clusterhead that has
bigger weight than its weight (affiliation condition).

2. For every ordinary node v, for every clusterhead z ∈ Nv : wz ≤ wClusterheadv+
h (clusterhead condition).

3. A clusterhead has at most k neighboring clusterheads (k being an integer,
0 ≤ k < n) (k-neighborhood condition).

The first requirement ensures that each ordinary node has direct access to at least
one clusterhead (the one of the cluster to which it belongs), thus allowing fast intra
and inter cluster communications. The second requirement guarantees that each
ordinary node always stays with a clusterhead that gives it a “good” service. By
varying the threshold parameter h it is possible to reduce the switching overhead
associated to the passage of an ordinary node from its current clusterhead to a
new neighboring one when it is not necessary. With this requirement we want to
incur the switching overhead only when it is really convenient. When h = 0 we
simply obtain that each ordinary node affiliates with the neighboring clusterhead
with the biggest weight. Finally, the third requirement allows us to have up to k
neighboring clusterheads, 0 ≤ k < n. When k = 0 we obtain that two clusterhead
can not be neighbors. Notice that the case with k = h = 0 corresponds to the
previous algorithm.

7

A Generalized Self-stabilizing Clustering Algorithm :
constants

wv : N; // the weight of node v

local variables of node v
Chv : boolean ; // indicate that v is or is not a clusterhead.
Clusterheadv : IDs // the clusterhead of node v.
SRv : N // the highest weight which violates the 3th condition in v’s neigh-

bor.

Macros :
N+

v = {z ∈ Nv : (Chz = T) ∧ (wz > wv)}; // the set of v’s neighboring
clusterhead that has bigger weight than v’s weight.

Clv = |N+
v |; // the number of v’s neighboring clusterhead that has bigger

weight than v’s weight.

Figure 2.2 : The algorithm on processor v
Do forever

G1(v) = G11(v) ∨G12(v)
G11(v) ≡ [(Chv = F) ∧ (N+

v = ∅)]
G12(v) ≡ [(Chv = T) ∧ (Clusterheadv 6= v) ∧ (∀z ∈ N+

v : wv > SRz) ∧ (Clv ≤ k)]

G2(v) = G21(v) ∨G22(v)
G21(v) ≡ [(Chv = F) ∧ {(∃z ∈ N+

v : wz > wClusterheadv + h) ∨ (Clusterheadv /∈ N+
v)}]

G22(v) ≡ [(Chv = T) ∧ {(∃z ∈ N+
v : (wv ≤ SRz)) ∨ (Clv > k)}]

R1(v) : G1(v) → Chv := T ;Clusterheadv := v;
SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T)});

R2(v) : G2(v) → Chv := F ;Clusterheadv := maxwz{z ∈ Nv : Chz = T};SRv := 0;

// update the value of SRv

G3(v) ≡ (Chv = F) ∧ (SRv 6= 0)
G4(v) ≡ (Chv = T) ∧ (SRv 6= max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T)}))

R3(v) : G3(v) → SRv := 0;
R4(v) : G4(v) → SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T)});

od

4.1 Algorithm description

We split the possibles cases of a node v in the following mutually exclusive
ones :

Case 1. v is an ordinary node. v has not a neighbor clusterhead whose weight
is bigger than v’s weight. In this case, G11(v) is verified and v will become a clus-
terhead.

Case 2. v is a clusterhead. v does not violate the k -neighborhood condition
but the value v’s clusterhead is incorrect. In this case, G12(v) is verified and v will
correct the value of its clusterhead.

8

Case 3. v is an ordinary node and v violates the clusterhead condition. In this
case, G21(v) is verified and v will become an ordinary node.

Case 4. v is a clusterhead and v violates the k -neighborhood condition. In
this case, G22(v) is verified and v will become an ordinary node.

Once v becomes a clusterhead, v checks the number of its neighbors that are
already clusterheads. If they exceed k, then v sets up the value of SRv to the
weight of the first clusterhead (namely, the one with the (k+1)th biggest weight)
that violates the k -neighborhood condition. Otherwise, SRv is assigned to 0.

4.2 Proof of convergence

We first prove that the system reaches a terminal configuration.

Lemma 3 A1 = {C | ∀v : G12(v) = F} is an attractor.

Proof : If v verifies predicate G12(v) then v is enabled and will stay enabled up
to the time where v performs R1(v). As all computations are fair, v eventually
performs R1(v). After that G12(v) is never verified (see the rule action). �

Lemma 4 In A1, once v had performed a rule R1(v) or R2(v), the guard of
statements Gi(v) : i = 1, 2 remain false unless there exists a node u, wu > wv,
that performs a rule R1(u) or R2(u).

Proof : In A1, G12(v) is never true.
Case 1. Once v had performed the rule R1(v), we have that Chv = T and
Clusterheadv = v. Thus, the next rule performed by v will be R2(v).
Before doing R1(v), G11(v) is verified, we have N+

v = ∅. At time where v per-
forms R2(v), G22(v) is verified, implies that N+

v 6= ∅, thus there is a node u ∈ Nv,
wu > wv that performed the rule R1(u) in meantime.

Case 2. Once v had performed the rule R2(v), we have that Chv = F and
Clusterheadv := maxwz{z ∈ Nv : Chz = T} , next time v would perform a rule
only if G11(v) or G21(v) is verified. Denote u the clusterhead of v, then after doing
R2(v) we have u ∈ N+

v and wu = max(wz,∀z ∈ N+
v).

Case 2.1. v will performs R1(v) because G11(v) is verified. At time where v
performs R1(v), G11(v) is verified then N+

v = ∅, implies that u performed the rule
R2(u) in meantime.

Case 2.2. v will performs R2(v) because G21(v) is verified. G21 is verified,
means that (∃z ∈ N+

v : wz > wu + h)∨ (u /∈ N+
v), implies that there exists a node

z ∈ Nv, wz > wu +h > wu performed R1(z) or u performed R2(u) in meantime.�

Lemma 5 A2 = A1 ∪ {C|∀v : (G1(v) = F) ∧ (G2(v) = F)} is an attractor.

Proof : We will prove by contradiction. Assume that A2 is not an attractor. A
processor cannot verify forever G1 ∨G2 (this processor would be enabled forever

9

and never performs a rule). Thus along a maximal computation there is a processor
v that infinitely often verifies G1(v) or G2(v) and also infinitely often does not
verify G1(v) or G2(v). Meaning that v executes infinitely often R1(v) or R2(v).
Following Lemma 4, once v have performed a rule R1(v) or, R2(v) it would perform
R1(v) or R2(v) again if there exists a processor u (wu > wv) that performs R1(u)
or R2(u). Since the set of processors is finite, then v performs R1(v) or R2(v)
infinity often only if there exists a processor u (wu > wv) that performs R1(u) or
R2(u) infinity many times. Using a similar argument we have a infinite sequence
of processors having increasing weight that performs R1 or R2 infinity often. Since
the number of processors is finite, this is a contrary. Hence our hypothesis is false,
and for every node v, Gi(v) : i = 1, 2 becomes eventually false and stay false. �

Theorem 3 The system reaches eventually a terminal configuration.

Proof : By Lemma 5, A2 is an attractor. In A2, processor v would only update
of SRv one time if necessary. �

4.3 Proof of correctness.

Theorem 4 Once a terminal configuration is reached, the multi-hop clustering
properties are satisfied.

Proof : In a terminal configuration, for every processor v, we have Gi(v) = F :
i = 1, 2.
Case 1. v is an ordinary node.
G1(v) = F implies N+

v is not empty. G2(v) = F implies (@z ∈ N+
v : (wz >

wClusterheadv + h)) and (Clusterheadv ∈ N+
v). Thus v satisfies property 1 and 2.

Case 2. v is a clusterhead node.
(G2(v) = F) ≡ (∀z ∈ N+

v : wv > SRz) ∧ (Clv ≤ k). G1(v) = F implies that
Clusterheadv = v. We now prove that v has at most k neighboring clusterheads.
Since Clv ≤ k, then v has at most k neighboring clusterheads with bigger weight
than v’s weight. Assume that v has more than k neighboring clusterheads, thus
there exits at least a neighboring clusterhead u of v such that wu ≤ SRv < wv.
Hence, G22(u) = T because v ∈ N+

u (wu ≤ SRv), that is a contrary. �

Références

[1] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in
multi-hop wireless networks. In INFOCOM 2001, pages 1028–1037, 2001.

[2] S. Basagni. Distributed and mobility-adaptive clustering for multimedia sup-
port in multi-hop wireless networks. In VTC’99 : Proceedings of the IEEE
50th International Vehicular Technology Conference, pages 889–893, 1999.

[3] S. Basagni. Distributed clustering for ad hoc networks. In I-SPAN’99 :
Proceedings of the 1999 International Symposium on Parallel Architectures,
Algorithms, and Networks, pages 310–315, 1999.

[4] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements for
self-stabilizing leader election protocols. In PODC ’99 : Proceedings of the

10

eighteenth annual ACM symposium on Principles of distributed computing,
pages 199–207, 1999.

[5] C. Bettstetter and B. Friedrich. Time and message complexities of the genera-
lized distributed mobility-adaptive clustering (gdmac) algorithm in wireless
multihop networks. In VTC’03 : Proceedings IEEE Vehicular Technology
Conference, Jeju, Korea, pages 176–180, 2003.

[6] C. Bettstetter and R. Krausser. Scenario-based stability anlysis of the dis-
tributed mobility-adaptive clustering (dmac) algorithm. In MobiHoc’01 :
Proceedings of the 2nd ACM Symposium on Mobile Ad Hoc Networking &
Computing, pages 232–241, 2001.

[7] M. Chatterjee, S. Das, and D. Turgut. Wca : A weighted clustering algorithm
for mobile ad hoc networks”,. Journal of Cluster Computing, Special issue
on Mobile Ad hoc Networking, 5(2) :193–204, 2002.

[8] E. W. Dijkstra. Selfstabilizing systems in spite of distributed control. Comm.
ACM, 17, 11 :643–644, 1974.

[9] S. Dolev. Self-Stabilization. MIT Press, 2000.

[10] Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks.
In POMC ’02 : Proceedings of the second ACM international workshop on
Principles of mobile computing, pages 31–37, 2002.

[11] M. Frodigh, P. Johansson, and P. Larsson. Wireless ad hoc networking : The
art of networking without a network. In Ericsson Review, No. 4, 2000.

[12] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network.
Wireless Networks, 1(3) :255–265, 1995.

[13] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and Pradip K. Srimani. Self-
stabilizing protocols for maximal matching and maximal independent sets for
ad hoc networks. In WAPDCM’03 : 5th IPDPS Workshop on Advances in
Parallel and Distributed Computational Models, 2003.

[14] C. Johnen. Service time optimal self-stabilizing token circulation protocol on
anonymous unidrectional rings. In SRDS ’02 : Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems, pages 80–89, 2002.

[15] C. Johnen, L. O. Alima, S. Tixeuil, and A. K. Datta. Self-stabilizing neighbo-
rhood synchronizer in tree networks. In ICDCS ’99 : Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, page 487,
1999.

[16] C. Johnen and S. Tixeuil. Route preserving stabilization. In SSS’03 : Procee-
dings of the 6th International Symposium on Self-stabilizing System, Springer
LNCS 2704, pages 184–198, 2003.

[17] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks.
IEEE Journal on Selected Areas in Communications, 15(7) :1265–1275, 1997.

[18] M. Schneider. Self-stabilization. ACM Symposium Computing Surveys,
tm25 :45–67, 1993.

[19] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous
self-stabilizing minimal domination protocol in an arbitrary network graph.
In IWDC’03 : Proceedings of the 5th International Workshop on Distributed
Computing, Springer LNCS 2918, 2003.

11

