
Self�stabilization with causally synchronized wave on tree network

Colette Johnen�� S�ebastien Tixeuil�� Ajoy K� Datta��

Luc O� Alima�

� L�R�I��C�N�R�S�� Universit�e de Paris�Sud� France
� Dept of Computer Science� University of Nevada� Las Vegas

� Unit�e d�Informatique� Universit�e catholique de Louvain� Belgium

Abstract

In this paper� we focus on the description of a technique called �causally synchronized waves��
de�ned on a tree networks� This technique is a self�stabilizing one� meaning that starting from an
arbitrary state �in response to an arbitrary perturbation modifying the memory state	� the network
is guaranteed to converge to a proper execution�

As an application of our method� an e
cient self�stabilizing broadcast algorithm is provided� only
O��	 memory space �in addition to the tree structure maintenance	 is required at each processor�
this algorithm will stabilize in O�h	 �rounds� �where h is the height of the tree network	� only
h
 � 
 �n rounds are needed to broadcast n messages in the whole network�

Keywords� distributed algorithm� self�stabilization� waves chain� propagation with feedback�
broadcast algorithm�

R�esum�e

Dans ce papier� nous pr�esentons une technique appel�ee �vagues causalement synchronis�ees� qui
est d�e�nie dans les r�eseaux arborescents� Cette technique est auto�stabilisante� ce qui signi�e qu��a
partir de n�importe quel �etat �obtenu apr�es une perturbation qui modi�e la m�emoire	 le syst�eme
va automatiquement converger vers un �etat coh�erent�

Un algorithme de di�usion est propos�e comme application de notre technique� seulement O��	 bits
est n�ecessaire �a l�algorithme� Le temps de stabilisation est O�h	 pas de calcul �h �etant la hauteur
de l�arbre	 et la di�usion dans le r�eseau de n messages demande seulement h
�
�n pas de calcul�

Mots cl�es� algorithme distribu�e� auto�stabilisation� train de vagues� propagation avec feedback�
algorithme de di�usion�

�



� Introduction

As distributed systems are getting larger and larger� thus leading to more possible malfunctions
in some of their base element� the issue of fault�tolerance is becoming of primary importance�
Two approaches are possible to achieve the fault�tolerance property in distributed system� One�
called �robust�� uses redundancy to mask the e�ect of faults� The other one� known as self�

stabilization �Dij���� allows systems to temporarily present an �abnormal� behavior� After any
unexpected perturbation modifying the memory state� and leaving the whole system in an arbitrary
con�guration� the system is allowed to exhibit �faulty� behavior for a �nite time only� then it
must converge to a proper execution� Such a property is very desirable for any distributed system�
because self�stabilizing systems cope with memory corruptions� and with processors �or processes	��
and communication�channels crashing and recovering �i�e� dynamic networks	� Furthermore� self�
stabilizing systems do not require particular initial state when a processor recovers assuming that
processor codes are not corrupted� In order to build self�stabilizing systems� a number of paradigm
and techniques have been designed� such as �GM��� Sch��� BGM��� DH����

Chang �Cha��� and Segall �Seg��� have de�ned the concept of propagation with feedback �also
called wave propagation	� the initiator of propagation wave will receive a noti�cation of the propa�
gation termination� Broadcast with feedback have been used intensively in distributed computing
��Awe���� �AG���� �APSV���	� For instance� the synchronizers �� and �	 presented by Awerbuch in
�Awe���� use the technique of propagation with feedback to transform any synchronous protocol into
a version for asynchronous network in the message passing model� A self�stabilizing version of the
synchronizer � was presented by Awerbuch and Varghese in �AV���� In a complete propagation� all
processors of the network are involved in the ebb and �ow wave� We de�ne the concept of causally
synchronized wave� which is a partial and causally synchronized propagation with feedback� In a
causally synchronized d�wave� only processors at distance up to d of the wave initiator are involved�
Some processors that are involved in waves initiated by other processors initialize their own waves�
These processors synchronize both wave chains� Therefore wave chains are causally synchronized�
A causally synchronized d�waves chain provides a simple global synchronizer ��ABDT���	� when d
is equal to height of the tree network� It also provides a broadcast algorithm where at the end
of a wave� the tree root is ensured that all processors have get the broadcasted data� Unfortu�
nately� this broadcast schema is very ine
cient because the initiator needs to wait all processor
feedbacks before beginning a new broadcast� We present� in this paper� a very e
cient broadcast
algorithm as an application of the causally synchronized ��wave technique� This algorithm requires
only O��	 memory space �in addition to the tree structure maintenance	 at each processor� It will
stabilize in O�h	 rounds �where h is the height of the tree network	� and only h 
 � 
 �n rounds
are needed to broadcast n messages in the whole network� Although our algorithm relies upon
an underline tree network topology it is not less general than the algorithm in �AEYH��� since a
spanning tree of a network can be obtained by a number of self�stabilizing algorithms ��AKY����
�CYH���� �HC���� �SS���� �DIM�����TH���� �Dol���� �BLB���� and �AB���	 whose a memory e
cient
algorithm requiring only O��	 bits of memory per incident network edge in �Joh���� Notice that
our algorithm requires less memory space that the self�stabilizing algorithm on general network
presented in �AEYH��� �where the size of the messages is ��log�N��		 bits � N being the network
size and � being processor�s degree �	�

The remainder of the paper is organized as follows� In Section � we present the distributed
systems we consider and de�ne self�stabilization in that context� In Section �� we de�ne the
causally synchronized d�wave� parent� A self�stabilization solution to the causally synchronized

�We assume that each processor runs exactly one process�

�



��wave problem is presented in Section ���� We present a self�stabilizing broadcast algorithm as
application of this solution in section �� The correctness of the broadcast algorithm is proven in
section ���� and in section ���� the performance of the algorithm is established�

� Model

In this section� we de�ne the distributed systems� actions� and computations considered in this
paper� and state what it means for an algorithm to be self�stabilizing�

Distributed System� A distributed system is an undirected� connected graph S � �V�E	 where
V is the set of processors �jV j � n	 and E is the set of links or edges�

A link connecting processor i to processor j is uniquely identi�ed by the two�tuple �i� j	� and
for every �i� j	 � E� processors i and j are called neighbors�

We use only tree networks in this paper� The root processor of a system S is denoted by Sr�
the set of leaf processors by S l� and the set of other processors �called hereafter the intermediate

processors	 by Ss� So� the set of all processors is fSrg � Ss � S l � V � The parent of processor i is
denoted by P i� and the set of children of processor i by Cldi� The height of a system S is denoted
by h�S	�

The height of a particular processor i �i�e�� its distance from the root Sr	 is denoted as i� and

the set of processors that are up to distance d from processor i is denoted by V
d
i � For the sake of

convenience� we denote the set of processors that are up to distance d from the root as V
d
� The

set of processors that are exactly at distance d of the root is denoted by V �d	�

Communications� The processors have two types of variables� local variables and �eld variables�
The �eld variables are part of the shared register which is used to communicate with the neighbors�
The local variables are de�ned in the program of processor i are used strictly locally� meaning that
they cannot be accessed by the neighbors of i� A processor can only write to its own shared register�
and can only read shared registers owned by the neighboring processors�

States and Con�gurations� The state of processor is de�ned by the values of its local variables
and �eld variables� A con�guration of a distributed system S � �V�E	 is a product of the states of
all processors of S� The set of con�gurations of S is denoted as C�

Actions and Computations� Each processor executes an algorithm� The algorithm consists of
a set of variables and a �nite set of actions� Each action is uniquely identi�ed by a label� and is of
the following form�

� label ��� � guard � �� � statement �

The guard of an action in the algorithm of i is a boolean expression involving the local variables
of i� the �eld variables of i� and its neighbors� The statement of an action of i updates some local
variables and or �eld variables of i� An action can be executed only if its guard evaluates to true�
We assume that the actions are atomically executed� the evaluation of a guard and the execution
of the corresponding statement of an action� if executed� are done in one atomic step�

During a computation step� one or more processors execute a step� and a processor may take
at most one atomic step� this is known as the distributed daemon �BGM���� A round is a maximal
computation step where all processors that hold the guard of an action� execute the corresponding
action during the step�

�



A computation e of an algorithm A is a fair� maximal sequence of con�gurations c�� c�� � � � such
that for i � �� �� � � �� the con�guration cn�� is reached from cn by a computation step� c� is called
the initial con�guration of e� Fairness of the sequence means that if a processor may continuously
perform an action along a sequence of A� it will eventually perform an action� Maximum means
that the sequence is either in�nite� or it is �nite� and no action of A is enabled in the �nal global
state� All computations considered in this paper are assumed to be fair and maximal�

The set of computations of an algorithm A in system S starting with a particular initial con�gu�
ration c � C is denoted by Ec� The set of computations of A in system S whose initial con�gurations
are elements of B � C is denoted as EB� E is the set of all possible fair and maximal computations
�E � EC	�

Predicates� Let X be a set� x�P means that an element x � X satis�es the predicate P de�ned
on the set X � We distinguish a special predicate� true �satis�ed by each element of X 	 formally
de�ned as follows � x � true �

De�nition ��� �Attractor	 Let B� and B� be two predicates de�ned on C of system S that

performs an algorithm A� B� is an attractor for B� if and only if the following condition is true�

�b� � B� � �e � Eb� � �e � c�� c�� � � �	 �� �n 	 �� cn � B�

De�nition ��� �Self
stabilization	 The algorithm A is self�stabilizing for the speci�cation predi�

cate SP on E� if the following condition holds� �e � E� �e � c�� c�� � � �	 �� �n 	 ���en � Ecn � en�SP

Informally� an algorithm A is self�stabilizing for SP if only if any execution of A has a su
x that
is a correct execution� The temporal activities of a self�stabilizing algorithm can be divided into
three phases�

 The fault phase� The period during which faults may occur in the system� These faults may

corrupt the volatile memory of processors and links�


 The stabilizing phase� The period during which the system may not exhibit the correct behavior�
However� no external faults may occur�


 The stabilized phase� The period during which every computation of the system is correct �i�e��
satis�es its speci�cation	�

The e
ciency of a self�stabilizing algorithm can be measured in time and memory needed to
achieve the stabilization�

De�nition ��� �Space complexity	 The space complexity of a self�stabilizing algorithm is the

number of local states of a processor performing the self�stabilizing algorithm�

De�nition ��� �Time complexity	 The time complexity of a self�stabilizing algorithm is the

maximal number of rounds needed to reach a con�guration from which all executions satisfy the

speci�cation predicate� after the faults cease to occur�

�



� Causally synchronized wave for tree networks

In this section� we de�ne the scheme of causally synchronized waves� After stating formally the
de�nition of causally synchronized d�wave �section ���	� we describe and prove our self�stabilizing
solution in the case where d � �� in section ����

��� Causally synchronized wave chain�

propagation and feedback Informally� a d�wave of communication �d 	 �	 is a wave propaga�
tion from a processor Ir to every other processors at distance at most d from Ir� followed by a
feedback from every reached processor to Ir� The feedback is an acknowledgment sent back from
these processors to Ir� So at the end of the wave� the initiator knows that processors at distance d
of it have been reached by the wave� The waves are causally synchronized � processors at distance
d from Ir will start d�waves synchronized with the waves initiated by Ir� These processors initiate
their waves when they are reached by the wave initiated by Ir� Thus the propagation is done in
complete sub�tree rooted to Ir through a cascade of waves� although the initial wave does not reach
all processors in Ir sub�tree�

As the system is asynchronous� some processors may perform faster that others� thus the feed�
back phase may start in some parts of the network while other parts of the network are still
performing the propagation phase�

In order to de�ne formally a causally synchronized d�wave� we consider four kinds of processors�
Ir� which may not be the root� is the initiator of the d�wave� Is is the set of processors at distance
�strictly	 less that d from Ir and that have children �the intermediates	� I l is the set of processors

in V
d
Ir n �fIrg � Is	 that does not have any child �the leaves	� If contains the processors of

V
d
Ir n �fI

rg � Is	 that have children� The processors of If are simultaneously initiators of waves
and involved in the waves initiated by Ir �i�e� at distance d from an Ir	�

Color� It is needed in addition to distinguish communication waves from each other within a wave
chain� That way� one may assume that all causally synchronized d�waves are colored� by adding
color to processors participating in the wave� The color of processor i will be noted ijc� This color
may take values in fblack� whiteg�

The only processors that need to check the color of their parent and the color of their children
to evaluate one action guard are processors of If because they synchronize waves�

Processor i being in propagation phase is noted i �� and processor i being in feedback phase is
noted i ��

De�nition ��� �Causally Synchronized Wave	 A causally synchronized d�wave initiated by

Ir� is a �nite minimal sequence of con�gurations c�� � � � � ck such that�

�� In c�� I
r � 
 Irjc � �b 
 �i � Is � I l� i � 
 ijc � Irjc�

�� �n � ��� k�� cn�� is reached from cn with one or more of the following actions�

	a
 Irjc moves to �Irjc if and only if �j � CldI
r
� jjc � Irjc 
 j ��

	b
 j � Is moves from j � to j � and jjc moves from �b to b if and only if P j � and

P j jc �� jjc�

	c
 j � Is moves from j � to j � if and only if �j� � Cldj� jjc � j�jc 
 j� ��

	d
 j � I l� jjc moves from �b to b if and only if P j � and P jjc �� jjc�

�



	e
 j � If � jjc moves from �b to b if and only if P j � and P j
c � �h and �j� � Cldj�

jjc � j�jc 
 j� ��

�� In ck� I
r � 
 Irjc � b 
 �i � Is � I l� i � 
 ijc � Irjc�

A causally synchronized d�wave initiated by Ir is denoted by W �d�Ir	�
The color of the wave W �d�Ir	 is the color of Ir in the last con�guration of the wave� It is denoted
by W �d� Ir	jc�

Observation ��� During a causally synchronized wave� every processor of V
d
Ir changes its color

exactly once�

With these de�nitions� we state the speci�cation of causally synchronized wave chain in a
distributed system working on a tree network�

De�nition ��� �Causally Synchronized Wave Chain	 k causally synchronized d�waves initi�
ated by Ir �W �d�Ir	�� W �d�Ir	�� � � � W �d�Ir	k
 are color synchronized if and only if the following
conditions are veri�ed�

�� �n � ��� k�� W �d�Ir	njc �� W �d�Ir	n��jc�

�� �n � ��� k�� W �d�Ir	njc � fblack� whiteg�

k causally synchronized d�waves initiated by Ir are denoted by WC�k� d�Ir	�

Observation ��� �n � ��� k�� the last con�guration of W �d�Ir	n is the �rst con�guration of

W �d�Ir	n���

When d � h�S	 � �� some processors are wave initiators and receivers� These processors
synchronize the two related wave chains�

Theorem ��� Let w be a leaf of the subtree of height dy rooted at y�

WC�n� �� dw� w	 �WC�n� dy� y	

Proof � w is an element of If � The action �e	 performed by w during a wave initiated by y is also
the action �a	 of a wave initiated by w� Each wave begins with an action �a	� During a causally
synchronized wave rooted at y� w performs an action �e	� and thus starts a causally synchronized
wave rooted at w such that

W �dw� w	�jc � W �dy� y	�jc

During WC�n� dy� y	� w has started n causally synchronized wave chains� thus it has �nished at
least n� � causally synchronized wave chains� �

��� Local Synchronization

We present an algorithm which is an implementation of a solution to the problem speci�ed in
De�nition ��� where d � �� The algorithm provides a �local synchronizer� because once stabilized�
the actions of a processor will alternate with one and only one action of each processor�s neighbor�

!



Formal description� Our technique uses one binary variable per processor� c� the color of the
processor� It may take the values black or white and may be negated �assuming � white � black�
and that � black � white	�

Moreover� a processor has access to the set of its children �denoted by Cld	 and to its parent
�denoted by P	� For each variable v of processor i� referencing this variable is denoted by iv � One
should note that no propagation feedback variable is needed� The initiator of a wave is always in
the propagation phase for its children� and the children of an initiator are always in feedback phase
in regard of the initiator�

According to Algorithm ���� the root of the system executes action A� "implementation of
action�a	"� the leaves execute action A� "implementation of the action �d	"� while the intermediate
processors execute action A� " implementation of action �e	� Each processor will always perform
the same action� In this case� Is is empty therefore there is not implementation of the actions �b	�
and �c	�

A system where each processor performs the algorithm ���� is such that each processor performs
an in�nity of causally synchronized ��waves� In the following� such a system is denoted as LS�

Algorithm ��� Local synchronizer algorithm

Variables�
c is the color of the processor

Constants�
Cld denotes the set of children of the processor�
P denotes the parent of the processor�

fThis action is executed by the root processor onlyg
A�� ��j � Cld� jc � c	 �� c �� �c�

fThis action is executed by the intermediate processors onlyg
A�� Pc �� c 
 ��j � Cld� jc � c	 �� c �� Pc�

fThis action is executed by the leaf processors onlyg
A�� Pc �� c �� c �� Pc�

����� Local synchronizer correctness

We �rst show that within �nite time� any non�root processor will color synchronize with its parent�

Lemma ��� �i � V n fLSrg� if i is enabled� then �j � fP ig �Cldi� j is not enabled�

Proof � The proof follows directly from observation of Algorithm ���� �

Lemma ��� �c� � C� �e � Ec�� �e � c�� c�� � � �	� �i � LS
s � LSl� �n 	 �� ic � P i

c in cn�

Proof � We prove the lemma by induction on the height of the tree�
Base case� Let us assume that there exists some processor i � LSl such that i has never the
color of P i during a computation� called e� All along e� the action A� is and stays enabled until i
performs it because P i cannot change its color �perform an action	 due to lemma ���� By fairness�
whatever the current state� and the computation performed� i will eventually execute the action
A�� After the action � ic � P i

c �

�



Induction step� Let us assume that all processors at a distance inferior to n to a leaf will have
the color of their parent whatever the computation performed� In turn� let us assume that there
exists some processor i at distance n
 � from a leaf such that i has never the color of P i during a
computation� called e� Along e� P i may not change its color since at least one of its children does
not have its color� i never performs the action A� �changes its color	 otherwise the computation
would reach a state where ic � P i

c � Along e� once a child of i� called j� has the color of i� j cannot
perform any action�

All children of i are at distance n of a leaf� thus eventually all of them will get the color of their
parent� during e� Therefore� the system will reach a con�guration where i may perform the action
A� � all children of i have the color of i� and ic �� P i

c � Then along e� i will always be able to perform
this action� By fairness� i will eventually execute it� After the action � ic � P i

c � �

Now� we demonstrate the liveness of LS system�

Lemma ��� �liveness	 �c� � C� �e � Ec�� �j � fLS
rg�LSs�LSl� j performs an action in�nitely

often�

Proof � Let i be a processor that does not perform an action in�nitely often during a computation�
called e� Let i� be the nearest processor of LSr that does not perform an action in�nitely often
during e� During e� at some point i� never performs an action �never changes its color	� Then� all
children of i� will get the color of i� �lemma ���	� As i� cannot change its color� all children of i� will
keep the color of i��


 If i� � LSr� i� holds the guard of the action A� forever� By fairness� i� will eventually execute
the action A��


 If i� �� LSr and i�c � Pc� Processor P i� will eventually performs an action� and changes its
color because according to the hypotheses� i� is the nearest processor of LSr that does not
perform an action in�nitely often�

In any case� i� will reach a state in e where i�c �� Pc� Processor P i� may not change its color
since at least one of its children does not have its color� Thus i will always be able to perform the
action A�� By fairness� i will eventually perform it� �

Lemma ��� �synchronization	 Let i � V and let j � Cldi� Let Ai denote an action executed at

processor i� Let e be a fair and maximal computation� The projection of e on the actions of i and
j is� �

Aj � 	
��
AiAj

��

Proof � After Ai� j does not have the same color as i� i may not perform an action before the
color changing of j� After Ai� j executes an action once� Then its action is disabled while i has
not changed its color �i�e� executed Ai	�

Since i and j change their color in�nitely often �from Lemma ���	� any projection on i and j of
a computation is of the form� �

Aj � 	
��
AiAj

��

�

A direct consequence of the lemma ��� is that between two actions of a processor i� all its
neighbors perform exactly one action� Thus� LS synchronizes locally processors�

�



����� Local synchronizer performance

De�nition ��� �Synchronization	 A processor i is unsynchronized if and only if the following

properties are veri�ed�

�� i � V n fLSrg 	i is not the tree root


�� ic �� P i
c 	i has not the color of its parent


�� �j � Cldi� ic �� jc 	at least one children of i has not its color
�

Lemma ��
 � Starting from any initial con�guration c� �j � V
n
� 	� � n � h�LS	
� if j is

synchronized in c� j remains synchronized�

Proof � Let i be a synchronized processor� Three kinds of actions are possible�

�� i changes its color by taking its parent�s color �it remains synchronized	

�� its parent changes its color� Thus during this round� i did not perform any action �lemma
���	� Some children of i may have the color of i before the round� these children did not
perform any action during the round �they still have the color of i after the �rst round	� The
other ones hold the guard of A� or A�� before the round � as they are synchronized and they
do not have the color of their parent� all their children have their colors� According to the
de�nition of round� they perform an action during the round and change their color�

Thus� at the end of the round� all children of i have the color of i � i remains synchronized�

�� a child of i changes its color� But in this case� the child takes the color of i �and i stays
synchronized	�

In any case� i remains synchronized�
�

Lemma ��� Starting from any con�guration� after h�LS	� � rounds� all processors are synchro�

nized�

Proof � The proof is by induction on the distance of processors to the leaves�
Base case� Let i be a processor at distance h�LS	 � � from the root� The children of i are the
leaves� After the �rst round� i has the color of its parent � i is synchronized� Or i does not have
the color of its parent� Thus� i did not perform any action during the �rst round� Some children
of i have the color of i before the �rst round� these children did not perform an action during the
�rst round �still have the color of i after the �rst round	� the other ones hold the guard of the A��
before the �rst round� �Thus they have performed this action during the �rst round �according to
the de�nition of a round	� Thus after the �rst round� all children of i have its color� In all cases�
processors at distance h�LS	� � from the root are synchronized� after the �rst round�
Induction step� Let us assume that after n � h�LS	 rounds� all processors at distance superior
of h�LS	 � n from the root are synchronized� They will stay synchronized �lemma ���	� Let i be
a processors at distance h�LS	 � n � � of the root� that is not synchronized after the n rounds �
some children of i does not have the color of i� Since� these processors are synchronized �they are
at distance h�LS	� n from the root	� all their own children have their color � they hold A� guard�
and within the n
 �th rounds� they take the color of their parent� �

�



Lemma ��� Let REG� be the set of con�gurations where all processors are synchronized� REG�

is an attractor�

Proof � The proof follows directly from the lemma ��� and ��! �

De�nition ���

Ll
even �

n
c � Cj�i � V ��k	 k ���� l�� ic � P i

c

o

In a con�guration of Ll
even� all processors at a distance �� �� 
 ��� � or �l from the root have the

color of their parent�

Ll
odd �

n
c � Cj�i � V ��k 
 �	 k � ��� l�� ic � P i

c

o

In a con�guration of Ll
odd� all processors at a distance �� �� � ��� � or �l�� from the root have the

color of their parent�

Gleven �
n
c � Cj�i � V ��k	 k ���� l�� ic �� P i

c

o

In a con�guration of Gleven� no processor at a distance �� �� 
 ��� � or �l from the root have the
color of their parent�

Glodd �
n
c � Cj�i � V ��k 
 �	 k � ��� l�� ic �� P i

c

o

In a con�guration of Glodd� no processor at a distance �� �� �� ��� � or �l�� from the root have the

color of their parent�

Notation ���

If �l 	 h�LS	� then Leven � Ll
even � Lh

even Geven � Gleven � Gheven
If �l 
 � 	 h�LS	� then Lodd � Ll

odd � Lh
odd Godd � Glodd � Ghodd

Observation ��� G�even � C

Lemma ��� Starting from any con�guration� after h�LS	 � � or h�LS	 rounds� L�
odd is satis�ed

and all processors are synchronized�

Proof � After h�LS	� � rounds� all processors are synchronized �lemma ���	� Either all children
of the root have its color �then L�

odd is satis�ed	� or some children of the root do not have its color�
Since these processors are synchronized� all their own children have their color� Then they hold A�

guard� and within the next round� they take the root color� Thus after h�LS	�� or h�LS	 rounds�
L�
odd is satis�ed� �

Lemma ��� Let c be a con�guration such that c � Ll
odd�G

l
even and all processors are synchronized�

The processors of V ��k	 	�k � ��� l�
 will perform an action during the round performed from c�
Let c� be the con�guration reached from c after a round� We have c� � Ll��

even � G
l
odd�

Proof � The following two properties are veri�ed �k � ��� l��� �i � V ��k	�

�� �j � Cldi� ic � jc �c � Ll
odd	

��



�� ic �� P i
c �c � Gleven	�

The root holds the guard of A�� and the processors in V ��k	 ��k ���� l�	 hold the guard of an
action in c� During the next round� they will perform an action �according to the de�nition of a
round	� At the end of the round� the following two properties are veri�ed �k � ��� l��� �i � V ��k	�

�� �j � Cldi� ic �� jc �c� � Glodd	

�� ic � P i
c �c� � Ll

even	�

In c�� the processors at distance �l 
 � do not have the color of their parent� As they are
synchronized �lemma ���	� their children �if they exists	 have their color� Thus Ll��

even is satis�ed in
c�� �

Lemma ���� Let c � Ll
even � G

l��
odd be a con�guration such that all processors are synchronized in

c� The processors in V ��k 
 �	 	�k � ��� l� ��
 will perform an action during the round performed

from c� Let c� be the con�guration reached from c after one round� Then c� � Ll
odd � G

l
even�

Proof � The following two properties are veri�ed �k � ��� l��� �i � V ��k � �	�

�� �j � Cldi� ic � jc �c � Ll
even	

�� ic �� P i
c �c � Gl��odd 	�

The processors in V ��k � �	 hold the guard of an action in c� During the next round� they will
perform an action� At the end of the round� the following two properties are veri�ed �k � ��� l���
�i � V ��k � �	�

�� �j � Cldi� ic �� jc �c� � Gleven	

�� ic � P i
c �c� � Ll��

odd	�

In c� the processors at distance �l do not have the color of their parent� To stay synchronized�
their children �if they exists	 have their color �lemma ���	� Thus Ll

odd is satis�ed in c�� �

Theorem ��� REG� � REG� � ��Lodd � Geven	 � �Leven � Godd		� REG� is an attractor�

Proof � Starting from any con�guration� after h�LS	� � or h�LS	 rounds� L�
odd is satis�ed� and

all processors are synchronized �lemma ���	�
Let c� be a con�guration such that c� � L�

odd � G�even� and all processors are synchronized�
During the next round� the processor of V ��	 �LSr	 will perform the actionA�� the con�guration
reached from c�� c� is such that � c� � L�

even � G
�
odd �lemma ���	� All processors are synchronized

in c� �lemma ���	� The processors of V ��	 will perform the action A� during the round performed
from c�� Let c� be the con�guration reached from c� after a round� We have c� � L�

odd � G
�
even

�lemma ����	� All processors are synchronized in c��
Thus� we conclude that from c�� in h�LS	 rounds� the con�guration reached �c	 belongs to

REG�� We also conclude that from c� alternatively� during one round� the processors of V ��k	
��k � ��� h�LS	
��	 will perform an action� then during the next round� the processors of V ��k
�	
will perform an action �lemma ��� and ����	� �

��



����� Complexity

In this section� we study complexity measures for the LS system� De�nitions for this measures are
given in de�nition ��� and ����

Proposition ��� �Space complexity	 The space complexity for the LS system is O��	 at each
processor 	O�n	 for the whole network
�

Proof � Algorithm ��� only need one �eld variable � the color� The color variable may take values
in the set of symbolic constants fblack� whiteg� The number of state of a processor is �� The space
complexity at each processor is O��	� �

Proposition ��� �Time complexity	 The time complexity for the LS system is O�h	�

Proof � The proof follows directly from the proof of the theorem ���� �

� Broadcast � Application of LS

In this section� we use Algorithm ��� as a basis for building a self�stabilizing broadcast algorithm�

��� Broadcast algorithm

Informal problem speci�cation� The root processor of the tree is fed with a number of mes�

sages which are to be sent to all other processors in the network� From this informal de�nition� it
follows that all processors must receive all messages�

A classic way of performing such a broadcast is to use propagation of information with feed�
back� the root processor emits a message� then wait for all processors �not only its children	 an
acknowledgment of the received message� before sending the next message �if any	�

We use a di�erent and more e
cient approach here since the root processor only waits for its
children acknowledgment for sending a new message� Then� in stabilized phase� several messages
may propagate down the tree at the same time�

Informal solution� Every processor in the network is given an m variable� large enough to
contain any single message the root may wish to send� At the root processor is added a helper
function GetNewMessage that takes no arguments and returns the next message to be sent�

Then the actions of Algorithm ��� need to be modi�ed as follows�

�� The root processor changes its message m using GetNewMessage when all its children have
the same color as its own one� If GetNewMessage returns �� the root does not change its color�

�� The intermediate processors copy their parent�s message Pm and change their color when
their parent�s color has changed �i�e� is di�erent from their own color	 and all their children
color is the same as theirs�

�� The leaf processors copy their parent message Pm when taking their parent�s color�

Formal description� According to Algorithm ���� the root processor executes action A�
�� the

leaf processors execute action A�
�� while the intermediate processors execute action A�

��

��



Algorithm ��� Broadcast algorithm using the LS mechanism

Variables�
c is the color of the processor�
m is the message to be broadcasted�

Constants�
Cld denotes the set of children of the processor�
P denotes the parent of the processor�

fThis action is executed by the root processor onlyg
A�
�� ��j � Cld� jc � c	 �� m �� GetNewMessage� c �� �c�

fThis action is executed by the intermediate processors onlyg
A�
�� Pc �� c 
 ��j � Cld� jc � c	 �� m �� Pm� c �� Pc�

fThis action is executed by the leaf processors onlyg
A�
�� Pc �� c �� m �� Pm� c �� Pc�

��� Broadcast correctness

One may informally de�ne the legal behavior of a broadcast algorithm� all broadcasted messages
issued by the root will be received �in the same order� with no lost nor duplication	 by all processors
in the tree� However� in the context of self�stabilizing systems� legitimate con�gurations can not
be properly de�ned because a single con�guration may seem correct while the messages stored in
the processor were not actually sent by the root� No information in a single con�guration allows
an observer from the outside to decide if a message stored by a processor is erroneous�

Therefore� our broadcast speci�cation is given in terms of computation predicates instead of
con�guration predicate�

In the following� we consider the BS system� where each processor performs Algorithm ����

De�nition ��� �Message Reception	 A processor i receives a message if and only if it executes

its enabled action�

Lemma ��� Let i � V � �j � Cldi� any message received by i is eventually received by j in the

same order� with no loss nor duplication�

Proof � From Lemma ���� after i has received one message� all of its children receive exactly one
message �the same message	� There is no loss nor duplication nor de�sequencing since i may not
receive another message before all its children have received the �rst message� �

Theorem ��� Let i � V � any message received by i is eventually received by all processors in the

subtree rooted at i in the same order� with no loss nor duplication�

Proof � The proof is by induction on hi the height of the subtree rooted at i�
Base case� The base case �hi � �	 is proved by Lemma ����
Induction step� Let�s assume that all processors at distance n from i receive all messages received
by i in the same order� without loss nor duplication �i�e� the property is true with hi � n	� In
turn� from Lemma ���� their children receive these messages� in the same order� with no loss nor
duplication �i�e� the property is true with hi � n
 �	� �

��



Lemma ��� Let i � V nfBSrg� after one reception at i� all subsequent messages received by i have
been received by P i�

Proof � The proof is a direct consequence of Lemma ���� �

Note that the �rst received message by i may have not been received by P i�

Theorem ��� Let i � V �di	� after n receptions 	� � n � di
� all messages received by i have been

received by the ancestor of i at distance n�

Proof � The proof is by induction on n�
Base case� The base case is proved by Lemma ����
Induction step� The ancestor of i at distance n is noted in� After n receptions� all messages
received by i have been received by in �induction hypotheses	� Messages are received by i in the
same order� without loss nor duplication �from Lemma ���	 that in has sent them� Thus the n
 �
�rst message received by i was also received by in� If this message is the �rst message received by
in then it may not have been received by in�� �the parent of in	� The following messages will been
received by in and in�� � because they are not the �rst message received by in� �

��� Broadcast performance

Theorem ��� Starting from any initial con�guration c� and considering any possible e � Ec� BR
r

will need at most h�BR	 rounds in e to correctly broadcast its current message� Then� the broadcast

of n
 � � � additional messages from BRr takes h�BR	 
 ��n	 
 � rounds in e�

Proof � Whatever the con�guration initial and the computation performed� after h�BR	 or
h�BR	� � rounds� L�

odd is satis�ed �from Lemma ���	�
Thus the root performs its action �begin the broadcast of a message	 within the �rst h�BR	th

rounds� or during the �h�BR	 
 �	th round� From this point� the root performs its action �broadcast
a message	 each two rounds �proof of the theorem ���	� Therefore� the root needs ��n	 
 � rounds�
to begin the broadcast of n successive messages�

A message broadcasted needs h�BR	 rounds to reach the leaves� During the �rst round� the
children of the root receive the message� during the second round� the processors at distance � of the
root receive the message� After h�BR	 rounds� all processors have received the message� Thus after
h�BR	 
 ��n	 
 � rounds� all messages have being broadcasted by the root� and the last message
has been received by each processor�

From theorem ���� all processors receive the n broadcasted messages in the same order� without
loss or duplication� Thus� after h�BR	
 ��n	
 � rounds� the n messages issued from the root have
being received by each processor� �

We can now state about a bound on the stabilization time of our algorithm� the time needed
so that any message received by a processor has e�ectively been previously sent by the root�

Corollary ��� Starting from any initial con�guration c� and considering any possible e � Ec� after
�h�BR	 
 � rounds the system is stabilized�

Proof � Within h�BR	
� rounds� the root has broadcasted its �rst message� Thus after �h�BR	
�
rounds� the message broadcasted by the root has been received by all processors� In addition�
processors receive the broadcasted messages in the same order� with no loss nor duplication �

��



� Conclusion

In the design of distributed algorithms for various applications several very general problems for
distributed networks appear frequently as subtasks� These elementary tasks include broadcasting
�e�g� propagation of a reseting or a termination message	� achieving global synchronization between
processors� triggering the execution of some event in each processor� ��� � Causally synchronized
wave is a generic construction which once parameterized yields a solution to these problems� A
self�stabilizing global synchronizer in �ABDT���� and a e
cient self�stabilizing broadcast algorithm
�presented in this paper	 is obtained as direct application of causally synchronized wave schema�

The obtained broadcast algorithm propagates messages in a pipeline way � a processor only
ensure the propagation of the message to its children� The cooperation of all processors allows the
broadcasted messages to reach every processor� That way� the obtained algorithm is optimal in
space and time�

References

�AB��� Y Afek and A Bremler� Self�stabilizing unidirectional network algorithms by power�
supply� In Proceedings of the Eighth Annual ACM�SIAM Symposium on Discrete Algo�

rithms 	SODA��
� pages ##"##� �����

�ABDT��� L� O� Alima� J� Beauquier� A� K� Datta� and S� Tixeuil� Self�stabilization with global
rooted synchronizers� unpublished� �����

�AEYH��� E Anagnostou� R El�Yaniv� and V Hadzilacos� Memory adaptive self�stabilizing pro�
tocols� In WDAG�� Distributed Algorithms 
th International Workshop Proceedings�
Springer�Verlag LNCS�
��� pages ���"���� �����

�AG��� A Arora and MG Gouda� Distributed reset� IEEE Transactions on Computers� ������!"
����� �����

�AKY��� Y Afek� S Kutten� and M Yung� Memory�e
cient self�stabilization on general networks�
In WDAG�� Distributed Algorithms �th International Workshop Proceedings� Springer�

Verlag LNCS���
� pages ��"��� �����

�APSV��� B Awerbuch� B Patt�Shamir� and G Varghese� Self�stabilization by local checking and
correction� In FOCS�� Proceedings of the ��th Annual IEEE Symposium on Foundations

of Computer Science� pages �!�"���� �����

�AV��� B Awerbuch and G Varghese� Distributed program checking� a paradigm for building
self�stabilizing distributed protocols� In FOCS�� Proceedings of the ��th Annual IEEE

Symposium on Foundations of Computer Science� pages ���"�!�� �����

�Awe��� Baruch Awerbuch� Complexity of network synchronization� JACM� ����	����"���� �����

�Awe��� Baruch Awerbuch� On the e�ects of feedback in dynamic network protocols� FOCS��
Proceedings of the ��th Annual IEEE Symposium on Foundations of Computer Science�
pages ���"���� �����

�BGM��� JE Burns� MG Gouda� and RE Miller� On relaxing interleaving assumptions� In Pro�

ceedings of the MCC Workshop on Self�Stabilizing Systems� MCC Technical Report No�

STP�������� �����

��



�BGM��� JE Burns� MG Gouda� and RE Miller� Stabilization and pseudo�stabilization� Dis�
tributed Computing� ����"��� �����

�BLB��� F Butelle� C Lavault� and M Bui� A uniform self�stabilizing minimum diameter tree
algorithm� InWDAG�� Distributed Algorithms �th International Workshop Proceedings�

Springer�Verlag LNCS����� pages ���"���� �����

�Cha��� E� Chang� Echo algorithm � Depth parall operations on general graphs� IEEE Trans�

actions on Software Engineering� �����"���� �����

�CYH��� NS Chen� HP Yu� and ST Huang� A self�stabilizing algorithm for constructing spanning
trees� Information Processing Letters� ������"���� �����

�DH��� S Dolev and T Herman� Superstabilizing protocols for dynamic distributed systems� In
Proceedings of the Second Workshop on Self�Stabilizing Systems� pages ���"����� �����

�Dij��� EW Dijkstra� Self stabilizing systems in spite of distributed control� Communications

of the Association of the Computing Machinery� ���!��"!��� �����

�DIM��� S Dolev� A Israeli� and S Moran� Self�stabilization of dynamic systems assuming only
read write atomicity� Distributed Computing� ���"�!� �����

�Dol��� S Dolev� Optimal time self�stabilization in dynamic systems� In WDAG�� Distributed

Algorithms �th International Workshop Proceedings� Springer�Verlag LNCS����� pages
�!�"���� �����

�GM��� MG Gouda and N Multari� Stabilizing communication protocols� IEEE Transactions

on Computers� ������"���� �����

�HC��� ST Huang and NS Chen� A self�stabilizing algorithm for constructing breadth��rst
trees� Information Processing Letters� ������"���� �����

�Joh��� C Johnen� Memory�e
cient self�stabilizing algorithm to construct BFS spanning trees�
In Proceedings of the Third Workshop on Self�Stabilizing Systems� pages ���"���� Car�
leton University Press� �����

�Sch��� M Schneider� Self�stabilization� ACM Computing Surveys� �����"!�� �����

�Seg��� A� Segall� Distributed network protocols� IEEE Transactions on Information Theory�
�����"��� �����

�SS��� S Sur and PK Srimani� A self�stabilizing distributed algorithm for BFS spanning trees
of a symmetric graph� Parallel Processing Letters� �����"���� �����

�TH��� MS Tsai and ST Huang� A self�stabilizing algorithm for the shortest paths problem
with a fully distributed demon� Parallel Processing Letters� ��!�"��� �����

�!


