Analyze of randomized self-stabilizing algorithms under
non-deterministic scheduler classes

Joffroy Beauquier, Colette Johnen

L.R.I./JC.N.R.S., Université de Paris-Sud,
bat 490, 91405 Orsay Cedex, France
jb@lri.fr, colette@lri.fr

www.lri.fr/~jb, www.lri.fr/~colette

abstract We present a formal model for randomized distributed algorithms that includes the
scheduler (also called adversary or demon).

Through an example related to stabilization, we show that a formal proof that does not use a
formal definition of a scheduler is pointless. As a matter of fact, we show that the same algorithm,
according to different schedulers, can be either correct or incorrect and in the cases where it is
correct, can have different complexities.

The paper is an attempt to better understand what proving a randomized self-stabilizing algorithm
in a non-deterministic environmentmeans.

key words: randomized algorithms, distributed algorithm, self-stabilizing system, scheduler, ana-
lyze of randomized algorithms.

résumé Nous présentons un cadre formel pour analyser les algorithmes répartis et probabilistes.
La spécificité de ce modele est la définition formelle et simple de la notion d’ordonnanceur (aussi
appelé démon).

Via un exemple d’algorithme auto-stabilisant, nous montrons qu’une preuve dans un cadre ou la
notion d’ordonnanceur n’est pas clairement définis est sans intérét. Un méme algorithme, selon
I’ordonnancement des processeurs, peut fonctionner correctement ou non. La complexité en temps
peut varier grandement (par exemple, de borné & non borné) selon I'ordonnancement des pro-
cesseurs.

Un des objectif de cette étude est d’apporter un éclairage nouveau sur 'analyse des algorithmes
probabilistes dans un environnement non-déterministe.

mots clés: algorithmes probabilistes, algorithme répartis, systéme auto-stabilisant, ordonnanceur,
analyse d’algorithmes probabilistes.

1 Introduction

Perhaps the main reason for the difficulty of understanding the behavior of distributed programs
is their inherent non-determinism. Distributed systems are loosely coupled in the sense that the
relative speeds of their local activity is usually not known in advance and in most cases totally
unpredictable. Execution times and message delays may vary substantially for several repetitions
of the same algorithm. But a distributed program has to be correct despite this uncertainty. In

other words, the proof of a distributed program must take into account the non-determinism created
by the environment. That is the reason why the notion of adversary, also called demon or scheduler,
has been introduced. The words adversary or demon refer to a hostile environment, that would
try to disturb program executions, the idea being that to prove the correction of a program in the
”worst” environmental situation, guarantees its validity in a less severe surrounding. Scheduler
refers to the fact that independent events must appear in some given order. In the sequel, we
will use equivalently demon or scheduler. Among the "tasks” devoted to the scheduler appear the
choice of the speeds of processes, the delays for message transmission and the scheduling of tasks.
For instance, if several processes are able to take a step, the scheduler is the entity that chooses
which ones will be activated. In the context of fault tolerance, the scheduler chooses which process
will fail and at what time, or which messages will be lost or delayed. Several impossibility results
like in [11] or [1] use in their proofs such schedulers. As we will show it in this paper, the correction
of a distributed program is meaningless if the external non-determinism is not considered. As a
matter of fact some published algorithms appeared later to be incorrect for having underestimated
the potential behavior of the environment. A consequence is that if the program is proved to be
correct in an abstract model, the scheduler has to be part of this model. A way to deal with an
unpredictable environment is to make it more predictable. That is the case when it is assumed
that the scheduler acts probabilistically [5]. For instance when several processes can take a step
simultaneously, there is some fixed probability for each one to take effectively the step. Or each
time a message is sent, there is a small probability that it becomes lost. Some could argue that
such a scheduler model is sufficient for most practical situations and that in real life environment
follows statistical laws, but we think that, for several reasons, such a point of view is unsatisfactory.
The first reason is that a probabilistic scheduler cannot be invoked for proving that a deterministic
program satisfies a deterministic specification. Introducing a probabilistic scheduler allows only to
check a probabilistic specification derived from the original one. Take the consensus problem and
one of its specifications given in [14]. Suppose that each message can be lost with some probability.
Bracha and Toueg developed a solution under this assumption but what they solved in [5] is a
probabilistic specification of the asynchronous consensus, not the original specification (which is
impossible to solve). This remark is quite general and involves that all that can be proved with a
probabilistic scheduler are programs solving probabilistic specifications.

The second reason is purely theoretical. A probabilistic scheduler is a very poor adversary, that
can be deceived so easily. Some program are able to resist to very powerful adversaries and it is a
challenge to always get a result as strong as possible.

The third reason is that we think that, in real life, some schedulers are not probabilistic at all, in
the sense that the coming out of events does not obey simple independent probabilistic laws. The
point is obvious if malicious adversaries are considered. A software error will always cause the same
failure each time the bad portion of code is executed. and, if at some point of an execution, some
messages become very slow, the chance that following messages be also very slow will increase.
In fact that some bad events are correlated, rather than follow independent probability laws is
expressed in [14] : "However we should keep in mind that this assumption (the bounded number of
failures) is somewhat problematic : in most practical situations, if the number of failures is already
large, then it is likely that more failures will occur.”

For all these reasons, we present in this paper a model of distributed programs and non-deterministic
schedulers. The model is quite general and can take into account whatever scheduler you could
think of. In particular, probabilistic schedulers appear as special cases of the general notion. In the
model, the scheduler can also be responsible for the granularity of the atomic events. Then it covers
the classical schedulers, like the centralized or distributed schedulers or the read /write atomicity

introduced in the self-stabilization framework ([7], [6], [12], [13], and [8]). Our first aim is to show
how this model can be used for proving the correctness or the incorrectness of distributed programs
according to a given specification. In particular, as already mentioned before, we want to show
that a same program can be correct or incorrect for the same specification, according to the choice
of the scheduler. Our second aim is to demonstrate how the presented framework allows a precise
computation of complexity measures in term of expectation. For the sake of clarity, we chose a very
simple example, with a probabilistic specification, to make clear that a powerful non-deterministic
scheduler can indefinitely postpone the realization of the specification, while a feeble one cannot.
This example is closely related to a self-stabilization problem, namely the token circulation [7],
and can be considered as a typical example of how to prove and compute the complexity of self-
stabilizing distributed algorithms. The example is a random walk of two tokens on an unidirectional
ring. In the initial configuration, there are two tokens on the ring, held by two different processes.
There is no assumption on the processes that initially hold the tokens. Only a process holding a
token can take a step. A step consists in tossing a coin (probability 1/2 for head and tail) and if
head to transmit the token. For taking a step, a process must be chosen by the scheduler. The
scheduler must choose processes among those holding a token. Finally, the specification is that one
of the initial tokens catches up with the other one with probability one. To the question whether
the above system meets the specification, most people would answer positively. The idea is that if
one of the token does not move because it always "draw” tail and if the other always (or at least a
number of time at most the size of the ring) "draw” head, the second token will catch up with the
first. Because this scenario can appear at any time with a fixed probability, we are done. As you
have noticed, no scheduler appears in this reasoning, and it is why it is incorrect. The sequel (we
hope) will make this point clearer.

Related works. In [9], Dolev, Israeli and Moran introduced the idea of a two players game
between the scheduler and what they call luck, i.e. the random values, without defining formally
the probabilistic space of computations The structure (informally presented) behind a sl-game is
a strategy (formally defined in this paper) where some branches have being cut. In [18], [15],
and [16], Lynch, Pogosyants and Segala present a formal method for analyzing probabilistic 1/0
automata which modelize distributed systems. A clear distinction between the protocol, which is
probabilistic, and the scheduler, which is non-deterministic, is made. The notion of cone, that is
at the basis of the probabilistic space, is also used. These works do not consider self-stabilization.
In these two approaches, the analyze of a probabilistic algorithm under a class of schedulers is not
defined. Mainly because the notion of scheduler is not presented.

On the other hand there are numerous proofs of self-stabilizing algorithms under some particular
schedulers.

2 Model

Abstract model. A non deterministic distributed system is represented in the abstract model
of transition systems. A distributed system is a tuple DS = (C,T,7) where C is the set of all
system configurations; 7" is a transition function of C to the set of C subsets; and 7 is a subset of
the configuration set called the initial configurations. In a randomized distributed system, there
is a probabilistic law on the output of a transition. A computation step is a pair of configurations
(¢i,¢;) where ¢; is an output of a transition starting to ¢;. A computation e of DS is a sequence of
consecutive computation steps e = (cg, ¢1), (c1, ¢2) where ¢g € 7.

Let ¢ be an initial configuration of a distributed system. The ¢ tree is the tree composed of all
maximal computations whose initial configuration is ¢. The computation forest of a distributed
system (C,T,Z) is the set of all ¢ trees where ¢ € 7.

Interpretation. In fact, the distributed system is the collection of processes (Proc) computing
protocol P. A protocol has a collection of variables (internal and/or field) and has a code part. A
process communicates only with its neighbors (a subset of Proc). Communication among neighbors
is carried out by field variables.

The state of a process is the collection of values of the process’s variables (internal or field). A
configuration of a distributed system is a vector of process states. A local configuration is the
part of a configuration that can be “seen” by a process (i.e. its state and the field variables of its
neighbors). The code is a finite set of guarded actions (i.e. label:: guard — statement). The guard
of an action on p is a boolean expression involving p local configuration. The statement of a P
action updates the p state. If the action is randomized, several statements are possible, and each
of them has some probability. A process p is enabled at a configuration ¢, if an action guard of p is
satisfied in ¢. The set of enabled processes for ¢ is denoted by Fnabled(c).

Computation step versus transition. Let ¢ be a configuration, and C'H be a subset of enabled
processes at ¢. We denote by < ¢: C'H > the set of configurations that are reachable from ¢ after
that the processes of C'H have performed an action. A computation step has three elements: (1) an
initial configuration: ¢, (2) a set of enabled processes: C'H, and (3) a configuration of < ¢ : C'H >.
Clearly, the transitions in the abstract model can be interpreted in terms of computation steps.
In the case of a deterministic protocol, a computation step is totally defined by the initial con-
figurations and the set of enabled processes. But in the case of randomized protocol, the final
configuration depends on the output of each process action. Therefore, in the case of randomized
protocols, the computation step has a fourth characteristic element: the probabilistic value associ-
ated to the computation step. This value depends on the probabilistic law of the random variable
of each process involved in the computation step.

A computation is mazimal, if the computation is either infinite, or finite and no process is enabled
in the final configuration. In this case, the configuration is said to be terminal.

Strategy. Basically, a scheduler is intended to be an abstraction of the external non-determinism.
Because the effect of the environment is unknown in advance, the scheduler notion must be able
to formalize any external behavior. At the extremity, one should consider that the environment
is possibly depending of a malicious adversary, trying to prevent the algorithm for performing its
tasks. This powerful adversary should be assumed to have a global knowledge of the system, of its
past, but also of its possible futures. At the contrary, it seems a valid model to assume that this
adversary is unable to know in advance the result of a random experience. Defining a scheduler in
some operational way - at that point of the computation the scheduler has such or such choice -
raises the problem to define exactly in function of what the choice is made. If the choice depends
of the actual configuration and of the history, the generality of the scheduler is restricted. How, for
instance, express that the scheduler must be fair. That is the reason why we define a scheduler as
a property (subset) on infinite runs. In our approach the key notion is the strategy.

Definition 2.1 Let DS be a distributed system. Let T be a tree of DS. A strategy is a subtree of
T where at a node, there is only one outgoing transition.

Figure 1 presents a strategy. Formally, a scheduler is completely defined by the set of strategies
which it may “produce”. For instance, a pseudo-fair scheduler is the set of strategies st such that
in st, the set of fair computations has probability 1 (we associate a probabilistic space to each
strategy).

In the case of a deterministic protocol, a strategy is a maximal computation; and a scheduler is a
subset of maximal computations. In the case of a randomized protocol, we will define a probabilistic
space for every strategy of a scheduler.

3 Probabilistic model

In a randomized distributed system, each process has a random variable. The fundamental problem
solved in this section is the definition of a probability measure on the system computations related
to the random variables (thus to define a probabilistic space). Once this probability defined, we
will be able to give a definition of the self-stabilization of a randomized protocol.

The basic notion that we will use to define a probabilistic space on the computations of a given
strategy is the cone. Cones have been introduced in [17].

Let st be a strategy. A cone (), of st is the set of all st’s computations with the common prefix
h. h is called the history of the cone. Let ('), be a cone of st. The subcone (' of the cone (7}, is
the set of all computations of C}, having h' as a prefix. last(h) denotes the last configuration of h.
The number of computation steps in the history h is denoted by |h|. Let st be a strategy. st is a
particular cone with an empty history. This cone is denoted by C*.

Theorem 3.1 Let st be a strateqy. We note Fy the set of all finite unions of pairwise independent
cones of the strategy st. Fg is a field.

In a randomized protocol, each process has a random variable. The output of an action of a
process p depends on the value of p random variable. The random variables are independent,
thus the output of a p action is independent of the output of an action of another process. The
probability of a computation step is the product of probability of every output of actions that have
been performed during the computation step.

Definition 3.1 The probabilistic value associated to a computation step, pr(c,CH,c') is defined
by: pric,CH,d) = [l,ccn pr(X, = valy), where X, is the random variable of the process p, val,
is a value of X, and ¢ is the obtained configuration after that all processes of CH have set their
X, variable to val, and have performed an action.

It is easy to prove that Y .c.cmgs pric, CH,d) = 1.

Let st be a strategy. We associate to the cone C', a value, function of its history, by extending the
probability pr defined on computation steps. The value of) is the product of the probabilities
of each computation step of h (the computation step probabilities are independent). From these
values, we will build a probability measure on Fi;.

Definition 3.2 Let st be a strategy. The value attached to the cone Ch in st is:
Py (Cy) = Hi:o pr(cy, CHy, cpq1), where h = [(co,C'Ho, ¢1)(c1,CHy,c2) ... (¢;,CHj, cj4q)].

c1 -CH1 p4 o CLL o

c13
pl
_ CH6 R —
/ -p12
CHO | p2 0C2 CH2 o1 .
1-p5-pb6
N N
o cl6
o cl7

1-pl-p2 y/
c9_ CH9 __—e Cl8

o €19 R NTTURPRTPP

pl

cQo

p

3 .CHS3 o 10 _CH10

1-p15 o 20 R
@ terminal configuration

Figure 1: A strategy with the probabilities of the computation steps

Example 3.1 See the figure 1, hl = [(co, CHop,c1)(c1,CHy,cs)], Pst(Cr1) = pl.(1 —pd). h2 =
[(co, CHg, ¢3)(c2,CHz, c7)(c7, CHz, c16)], Pot(Ch2) = p2.p6.(1 — pl13).

Let st be a strategy. The following properties are verified :
Pst (CSt) =1
o Let (', be a cone of st. Let Cq,Cho, ... be a series of pairwise independent cones of st such

that Cj = Ulgign Chi. Then Py (Ch) = Zlgign Pyt (Chy).

e Let A =J,c;c, C? be afinite union of pairwise independent cones of st. Let B = |J, <, C?
be a finite union of pairwise independent cones of st. If A = B then > ;. Pu(C?) =

Zlgzgm Pt (Czb)
Definition 3.3 Let st be a strategy. Let Py be the function defined as follow:
o Py(Ch) = Hfgzopr(ck,CHk, Cht1), where h = [(co, CHg, c1)(c1,CHy,¢3) ... (¢;,CHj,c541)].
o Py(A)=73"", Pyu(C;) where A =], C; and the cones C; are pairwise independent.

P is a function, because the image of an element of Fy; by Fj; is unique. Let A be an element of

Fsr; we have Py (A) + Py (A) = 1.

Theorem 3.2 Let st be a strateqy. The function Py is a probabilistic measure deﬁned on the
field Fsi. Let o(Fg) be the o-field generated by Fs. There is an unique extension, P, of the
probabilistic measure Py to o(Fs).

Proof: The extension is made according to the classical theory of probabilities. This function is a
probabilistic measure on the o(Fg) [4].]

Let st be a strategy. The triple (st,o(Fy), P%) defines a probabilistic space on st. In the following
sections we denote by Py P -the extension of Py to o(Fg)-.

3.1 Self-Stabilization of a randomized protocol

In this section, we define the self-stabilization for randomized protocols with respect to the proba-
bilistic model defined in the previous section. This section introduces also the probabilistic version
of the attractor. The main idea behind these definitions is simple : To analyze a self-stabilizing
algorithm under a scheduler, one has to analyze every strategy of the scheduler.

Notation 3.1 Let st be a strategy of a protocol under a scheduler D. Let PR be a predicate over
configurations. We note by EPR g the set of st computations reaching a configuration that satisfies
the predicate PR.

Lemma 3.1 Let st be a strategy. Let PR be a predicate over configurations. There is a countable
union of pairwise independent cones (A = J;cnyCs) so that EPR = A.

Definition 3.4 (Probabilistic convergence) Let L be a predicate defined on configurations. A
probabilistic distributed protocol P under a scheduler D converges to L iff : In any strategy st
of P under D the probability of the set of computations reaching a L is equal to 1. Formally,
Vst, Py (ELs) = 1.

Definition 3.5 (Probabilistic Attractor) Let L1 and L2 be two predicates defined on configu-
rations. L2 is a probabilistic attractor for L1 on a protocol P under a scheduler D (L1, L2) if
and only if the following condition holds: for all strategies st of P under D such that Py (£L1) =1,
we have: Py (ELy) =1, Formally, (Vst, P (EL1) = 1) = (Ps(EL2) = 1).

Definition 3.6 (Probabilistic Self-stabilization) A randomized protocol P is self-stabilizing
for a specification SP (predicate on the computations), if there exists a predicate on configuration
L such that P converges to L and P verifies the following property

e correctness Vst of P under D, Ve € st, if e € EL then e has a suffix that verifies SP.

Definition 3.7 (Weak Probabilistic Self-stabilization) A randomized protocol P is weakly
self-stabilizing for a specification SP (predicate on the computations), if there exists a predicate on
configuration L such that P converges to L and P verifies the following property
e probabilistic correctness Vst of P under D, Py ({e € EL and e has a suffiz that verifies
SP})=1.

Observation 3.1 We note L12 the following predicate on configurations L1 A L2. If L1 >y, L2
and if L1 is closed then L1 >y, L12.

In the case, of memoryless scheduler [10] (i.e. the choice of the subset of enabled processes only
depends on the current configuration), each strategy is a Markov chain and can be analyzed using
clagsical Markov properties as it is shown in [10]. Nevertheless, each strategy has to be analyzed.
For instance, in some memoryless strategies of the protocol 4.1 the probability to converge to a
legitimate configuration is equal to 1 and in some others this probability is 0.

3.2 Proving the convergence of protocols

In this section, we present a theorem that helps to build convergence proofs of randomized protocols.
This theorem can be used in the case of a proof with attractors, but also in the case of a direct
proof.

Informally the next definition is introduced for dealing with such a statement: “in a cone where the
predicate PRI is satisfied, the probability to reach a configuration satisfying the predicate PR2 in
less than n steps is greater than §”.

Definition 3.8 (Local convergence) Let st be a strategy. Let C), be a cone in the strategy st. The
cone CYy, satisfies the property Local _Convergence(PR1, PR2,0,n) if and only if:
o last(h) - PR1;

o M is the set of pairwise independent subcones of Cy, (Cypr) such that (1) |h'| < n, and (2)
last(hh’) = PR2;

* Py(Uoenr €) 2 0.P5t(Ch).

On a strategy st, if there exist 5 > 0 and ng > 1 such that any cone of st satisfies Local_Convergence
(PR1, PR2, 65, ns) then we say that st verifies the Convergence (PR1, PR2,04,ns) property
or Convergence (PR1, PR2) property.

3.3 Theorem 3.3

The following lemma is straightforward.

Lemma 3.2 Let st be a strategy. Let A be a countable union of cones of st. There is a countable
set of pairwise independent cones of st so that their union is A.

Theorem 3.3 Let st be a strateqy of the protocol P under a scheduler D. Let PR1 be a closed
predicate on configurations such that Py (EPR1) = 1. Let PR2 be a closed predicate on configura-
tions. Let us note PR12 the predicate PR1 A PR2. If 3 65 > 0 and 4 ng > 1 such that st verifies
the Convergence(PR1, PR2, 65, ng) property then Py (EPR12) = 1.

Proof: theorem 3.3 Let I'Lj be the set of computations reaching a configuration satisfying PR1
and, after that, in at most k.ng steps reaching a configuration satisfying the predicate PR2. We
prove that Py (ELg) > 1— (1 - 5)’“ and EL;NEPRI is a countable union of pairwise independent
cones where Py (EL,NEPRL) =1~ Py(ELy).

Let (), be a cone of st. We define M2} as M2, = {Chp :: |W/| < ng, and last(hh’) - PR2}. We
define M1}, as M1} = {Chp 2 |B| < ng, last(hh’) does not verify PR2, and either last(hh’) is a
terminal configuration or |A'| = ng}. M2, (M1)) being a set of cones, according to lemma 3.2,
there is a set of pairwise independent cones M2;, (M1;) such that M2, = M2) (M1, = M1}).
The cones of M2y contain all computations of C, that reach PR2 in less than ng steps. The cones
of M1y contain the other computations. By hypothesis Py (Ucenra, C) > Pst(Ch)-Ost-

e Basic step (n=1). EPRI1 is a countable union of pairwise independent cones (lemma 3.1).
EPR1 = Ucen, € where My is a countable set of pairwise independent cones. From the

hypothesis, Pst(Ucenr, C) = Ycen, Pst(C) = 1.
We have F'L1 = Ug, en, (UOeMzh C); thus Py (FELy) > 4. > oCreM; Py (C).
SO7 Pst(ELl) Z (SStPSt(EPR1) Z 557,‘ =1- (1 — 557,‘)-

All computations of a cone of M1y belongs to F Ly, all computations of C, that belongs to
ELy are in a cone of M1;,. Thus, FL; NEPRL = U, en, (Ucem1,C). Then Ly NEPRIL
is a countable union of pairwise independent cones (lemma 3.2). As Py (EPR1) = 0, we have

Py(EL; N EPRI) =1 — Py(ELy)

e Induction step. We suppose the hypothesis are true for k-1.

By hypotheses, FL;._1 N EPRI is a countable union of pairwise independent cones. We call
M, the set of independent cones whose union is equal to £ L;,_1NEPRIL. Thus, FL,_1NEPRL
= UCEMk 07 and Pst(ELk—l N ((:PRl) = ZCEMk Pst(c)

We name Dif f, the computation set such that (1) FLy = ELi_1 U Dif f, and (2) dif fi, N
ELi1=. Diffx = Ucep, C where Dy = {Chpri: Cp € My, and Chpr € M2y}

We have Dif fir, = UcheMk(UOeMzh C); thus Py (Dif fi) > dst. Y CheM, Pst(Ch)-
So Py (Diffi) > 85.(1 — Py (ELg_1)). Pa(ELL) >1— (1 - 84)%.

We have (ELy N EPR1) C (ELg_1 N EPRI), thus, we prove like in the basic step that
ELL0EPRL = Ue, em, (Ucem1,C). Then, EFL; N EPRI is a countable union of pairwise
independent cones (lemma 3.2). As Py (EPR1) = 0, we have Py (ELyNEPRL) = 1 —
Pu(ELy).

Py(EL,)>1—(1—-46)". Therefore, P(EPRI12) = lim, o, P(EL,) = 1. a

Corollary 3.1 Let PR1 and PR2 be two closed predicate on configurations. If each strategy st of
a protocol P under a scheduler D, verifies Convergence(PR1, PR2) then (PR1 vy PR2).

Corollary 3.2 Let PR2 be a closed predicate on configurations. If each strategy st of a protocol
P under a scheduler D verifies Convergence(true, PR2) then Vst, Py (EPR2) = 1.

Using a technique similar to the one presented in [9], one can prove that in a strategy st where the
property Convergence(PR1, PR2, 05, n4) is satisfied the expectation time is bounded by ?—z

4 Example

Now we present a very simple protocol, that will allow us to exemplify all the previous notions :
the randomized token circulation protocol (CTC) on unidirectional anonymous rings designed by
Beauquier, Cordier and Delaét in [2]

For the sake of clarity we will not start the protocol from any configuration, but only from the
configurations in which there are exactly two tokens in the ring, the distances between them being
strictly greater than 1. The question that we are interested in, is to prove whether or not this
(restricted) protocol has the following property : one of the tokens catches up with the other
with probability 1 (that exactly means that the set of runs of the protocol in which one of the
tokens catches up with the other has a probability 1). The correct answer is that the question is
insufficiently specified and that satisfying or not the property depends on the scheduler. Thus, our
aim will be to determine exactly where is the borderline between the class of schedulers that prevent
the convergence and the class of those that do not. In the case of convergence, we want also have
some information about the expectation time (in fact number of steps) before convergence. First,
note that each of the above classes is non empty. Among the ”bad” schedulers there is the following
unfair scheduler, that can be informally described in the following way (but precisely defined using

our model). This bad scheduler chooses the process having a token until this token moves; then it
chooses the process having the other token until this token moves and so one. If initially the tokens
are at distance 2 or more, no one will ever catch up with the other. At the opposite it has been
proved in [3] that the protocol converges (in fact from any initial configuration) with probability 1
with the k-bounded scheduler (k is an integer, see below). In the following sections, we will analyze
this protocol under a large class of strategies to determine when this protocol converges and when
it does not, when the expectation time is bounded and when it is not.

Protocol 4.1 token circulation on anonymous and unidirectional rings: CTC

Field variables on p:
vp is a variable taking value in [0, mpy -1].

Random Variables on p:
rand_bool, taking value in {1, 0}. Each value has a probability 1/2.

Action on p:
A vy, — vy # 1 mod my — if (rand_bool, = 0) then v, := (v, + 1) mod mp;

A process holds a token iff it is enabled (i.e. v, — v;, # 1 mod my) There is always a token in
the ring. The number of tokens cannot increase whatever may happen. Let L be the following
predicate over configurations: “there is only one token in the system”. Once the convergence of the
algorithm is proven to L, one can easily prove that the protocol is a weak self-stabilizing protocol
for the specification : one token fairly circulates in the ring.

In an unidirectional ring, The distance from processor p to processor ¢ is measured starting from
p and moving to the right until ¢ is reached. In particular, the distance from p to ¢ is not the
distance from ¢ to p.

5 Rotating strategies

Because there are only two tokens (but a more general treatment would be feasible) a class of
strategies can be described as what we call rotating strategies. Roughly speaking, in a rotating
strategy the scheduler chooses to try to move one of the token try times, then the other try times,
then the first token ¢r3 times and so one. Because the scheduler is an adversary and tries to avoid
the token merging, as soon as one of the token moves it deals with the other. Then, a rotating
strategy is completely defined via an infinite sequence of positive integers try, trq, trs... where tr;
is the maximal duration (i.e. the maximal number of computation steps) of the ith turn. At each
computation step of the 2i+1th (resp. 2i+2th) turn, only the process having the token 7T'1 (resp
T2) performs its action; thus a 2i4+1th (resp. 2i+2th) turn is said to be a T'1 (resp. 72) turn. The
ith turn (a 7'z turn) stops and the i+1th turn begins (i) after that the 7'z token has moved or (ii)
after tr; consecutive actions of the process having the Tz token where the token does not move. A
strategy of a k-bounded scheduler [3] is a rotating strategy in which the duration of each turn is
inferior to k& + 1.

Let st be a rotating strategy. We denote by ¢; the probability in st that a token catches up
with the other token during the ith turn. A rotating strategy can be viewed as a game between
the algorithm (called the player) and the scheduler. The game may be described by a series of
independent random variables Xi, Xo, X3, ... such that Py (X; = w) = ¢. X, represents the ith

10

trial of a random game (convergence game). The player (algorithm) wins when the two tokens
merge (called the w events). The player/algorithm may perform as many trials he wants. We have

Pst(gﬁst) = Z?il € X H;;ll(l o 6])

5.1 Rotating strategies that do not converge

Theorem 5.1 In the initial configuration c0, there are two tokens in the ring and the token dis-
tances are strictly greater than 1. Lel st be a rotating strategy from c0 defined by the sequence of
positive integers try, tro, trs... such that 3 724 2%1 < €. We have Py (ELgy) < e.

Proof: Let i be an integer strictly greater than 1. ith turn is a Tz (z = 1 or z = 2) turn. If the
token Ty (y # z) has moved during the i-1th turn then at the end of this turn the distance from
Tz to Ty is strictly greater than 1. During the following turn, the Tz token cannot catch up with
Ty. Thus, Tz catches up with Ty during the ¢th turn only if during the previous turn Ty has not
moved. The probability in st that Ty does not move during the i-1th turn is 1/2 1. Therefore
Vi > 1, we have ¢; < 1/2'-1. As initially, the distance from T'1 to T2 is strictly greater than 1,
e = 0. Pst(gﬁst) < Z?il 2t1_r, <e O
Notation 5.1 We name Ciy, the value 352, (logy (i + 1)) (the sum 352, (logy (i + 1)1 s
bounded).

Corollary 5.1 In the initial configuration c0, there are two tokens in the ring and the token dis-
tances are strictly greater than 1. Lel st be a rotating strategy from c0 defined by the sequence of
positive integers try, try, trs... such that Vi, tr; > loga(Cy1o(i + 1)1T%) where o is a positive real.
We have Py (EL) < 1.

5.2 Rotating strategies that do converge

We will study a specific scenario conv™~! that drives the ring to a legitimate configuration. We
will prove that the probability of this scenario is 1.

Definition 5.1 We say that the token distances stay “quasi-invariable” between the turns j-1 and
j+1 if their distances after the j+1th turn are the same as before the jth turn. A token may move
during the jth turn; but in this case the other token must move during the next turn to ensure that
the token distances go back to the initial values.

The following scenario called convl, is defined as : after the m+1th turn the distance from Tx to
Ty has decreased. (assuming that the mth turn is a Ty turn).

We define the scenario called convit' recursively. There exists k such that (i) the scenario conv’ is
realized at the end of the turn m-2k+1; (ii) the token distances stay “quasi-invariable” between the
turns m-2k+1 and m-1; and (iii) after the m+1th turn, the distance from Tx to Ty has decreased.

Informally, there exist j integers 0 = ky < kg < k3 < ... < k; < m/2 such that Vi € [1, j] (i) the Tz
token is at distance d 4 ¢ of T'y before the m — 2k; turn; (ii) the distance from Tz to Ty isd+1i— 1
at the end of the m — 2k; + 1 turn; and (iii) the distance from 7'z to Ty stays quasi-invariable from
the m — 2k; 4+ 1 turn to the m — 2k;41 — 1 turn. Thus, after the m+1th turn, Tz is at distance d
of Ty if it was at distance d + j before the m — 2k; turn.

11

Observation 5.1 Let st be a rotating strategy. We denote by [3; the probability in st that the
dzstance from T'x to Ty has decreased between the turn j-1 and j+1. We have 3; = trj x (1- ﬁ)
2trj _ﬁ]_ tr -I-l)

We denote by 1 — p;3; the probability in st that the token distances stay quasi-invariable between
the turns j-1 and j+1.

The probability of conv), in st (called Py(conv))) is B,,. The probability of convit' in st (called
Pufeontii1)) is B S22 ¢ (Paleontt,) THZH (1~ patfcan)).

We will give in the following theorem a lower bound to the probability of the scenario conv?~! for
a large class of rotating strategies. In any strategy, the probability of conv?~! is a lower bound of
€m+1 (the probability of tokens merging during the m+1th turn).

Theorem 5.2 In the initial configuration c0, there are two tokens in the ring. The token distances
are strictly greater than 1. Let k1 and k2 be two positive integers. Let j, K and M be positive integers.
Let st be a rotating strategy from c0 defined by the sequence of positive integers try,tra, trs... such
that —K < triyq —tr;. There exists C; > 0 such that Vm > M' = M +2j -2, Pyi(convl) > B, ¥ C;
where j € [1,n —1].

Proof: If 0 < tr; — tr;y1 then we denote by K; the difference tr; — try; (K; < K). We have p; <
2t 4ofigtidt g - 2it1 4Rt o 4.9Kigit1 < 4.2Ki < 49K,

241 _q = 241 _q = 2tTi41
. . try K;9tr;
If 0 > tr; — tr;y1 then we denote by K; the difference tr;yq — tr;. We have u; < % L
2(2%igtri —1)
S 2]\"1‘2trl‘_1 S 2

We denote by p the value 4.25%. We have Vi > M, p; <425 = p.
VYm > M' = M +2j — 2, Py(convl)/ B > E e M+2)/2 t(conv] 12) Z 1(— Wfm—21)-

Vi > M, we have Py(conv}) > 3.

Let j be strictly greater than 1. Assume that 3C;_; such that Vi > M’ —2 Pst(conv) > Ci1 ;.
We have ,uPst(comJZ] >0 x (- (1- ,uﬁz))

Py(convi,) x u/Ciy > o x (ST M PP TIZH = 1Bat) = Tz (1 = i1Bmeai))-

Therefore, Py (convi)) x p1/Ci—y > B x (1 — ;ml Mt /2(#Bm—21))-
Puslconvd,) < 1/ Ci1 > B (1— (1= puBarrsa)) of Pu(conof) x pfCor > i (1~ (1- uBaprss)).
Pg(convi,) > B, x C; where C; = min(Ci_18ar42, Cij—18m743)- a

The condition ¢r; — tr;y1 > K is needed to compute a lower bound for the probability of quasi-
invariance of token distances between two turns.

Corollary 5.2 In the initial configuration c0, there are two tokens in the ring. The token distances
are strictly greater than 1. Let k1 and k2 be two positive integers. Let K and M be positive integers.
Let st be a rotating strategy from c0 defined by the sequence of positive integers try,tra, trs... such

that (i) Yi > M, tr; <log,(k2(i + k1)) and (ii) —K < tripq —tr;. We have Py (ELy) = 1.

Proof: Accordlng to theorem 5.2, there exists C' such that Vi > M +2n—4 = M", Py(conv!'™ b >
B x C' > m (see observatlon 5.1). Py(ELs) > 1 —TI2pm (1 — Pst(convf). We have
Py (ELy) = 1. O

12

Corollary 5.3 In the initial configuration c0, there are two tokens in the ring. The token distances
are strictly greater than 1. Let k be a positive integer. Let st be a rotating strategy from c0 defined
by the sequence of positive integers try,try, trs... such that Vi, tr; < k. We have Py (ELy) = 1. The
expectation time is inferior to (2F+1)n=1,

Proof: At any turn m > 2n — 2, the probability of the token merging is greater that W in
st. The expectation time is inferior to (2n — 2) 4+ 26+Dx(=1) (in term of turns). |

5.3 Expectation time of convergence

We compute now an upper bound of the expectation time for some specific strategies (i.e. the
expected number of computation steps required by the algorithm to converge, in these strategies).
For some other strategies, we will prove that the expectation time is unbounded.

Theorem 5.3 In the initial configuration c0, there are two tokens in the ring. The token distances
are strictly greater than 1. Let k1 be a positive integer. Let st be a rotating strategy from c0 defined
by the sequence of positive integers tri,trq, trs... such that Yk > 1,Vi € [22F — 1,222 — 2] we have
tr; = k + r. The expectation time is bounded.

Proof: 3C such that Vm > 2n — 4, Py(conv? 1) < 25,” (see the theorem 5.2).
Let E be the value Y222, _, U1 H;_I% (1=

2trl

ZL) F is an upper bound of the expectation time

because VYm < 2n — 4, €,41 > 0 and Ym > 2n — 4, €,,41 > Py (convi1).
Let E' be the value 592, %%lnjzl(- 2%).
We have ' = E'/C2 — C1 where C1 = y_27? %%ln’;ll(l — t—r]) and C2 = Hzn 31— 2%).
We have O;}"@.l) =@+ x(1-(1- 2”)); Therefore £/ =1+ 3772, H L1 — (C.27)),
=372 Fr where Vk > 1, E}, = Z?:;iij X szl(l — (C.27"1)) and
B = S I (- (C27)
We denote by 6, the value & - We have Vi € [22F — 1,222 — 2] C.27"i = .
For all k > 1, we denote by Aj, the value (1 — 6;)32"" = H22k;i_21(1 — (C.271m3)).
We denote by A; the value (1 —6;)"* = H? 21— (C.271)).
We denote by A; the value HZ L= H?:l 21— (C.2719)).
By =TI5C) Ay x 15 —(Ak>< 7)) — (Ak+1><)
E'=1+4 +Zk:2<€k —) X A =14 R o = T4+ DL [T (20).
The series Aq, Ag, ... is decreasmg and there ex1sts L such that Vk> L, A\, <e L
L-1 A
We conclude that : E’gl—l—%—izk:% 6’;{1 (6’L -2 o(3)F).
Therefore, ' <1+ % + 25;21 6’1:1 + (6’L_1LX>(<:—2))' Thus F is bounded.]

We will compute a lower bound on the expectation time (called E) for a specific class of rotating
strategies. The strategies of this class are such that Vi € [2 — 1,2%1 — 2], tr; = [4+ k1 where k1 is
an integer (trq,trq,trs... being the sequence of positive integers that defines the strategy).

If Tz catches up with Ty during the m+1 turns then Tz is at distance 1 of Ty before the mth
turn. Initially Tz has at distance d > 1 of Ty. Tx is at distance 1 of Ty before the mth turn only
if at some turn (m — 2k + 1) the distance from Tz to T'y decreases to the value 1 and stay “quasi-
invariant” until the turn m — 1. Therefore, the probability that Tz catches up with Ty during the
m+1th turn is inferior to Py (conv2,). First, we will compute an upper bound on Py (conv?) for
the strategies of the studied class.

13

Lemma 5.1 In the initial configuration c0, there are two tokens in the ring. The token distances
are strictly greater than 1. Let k1 be a positive integer. Let st be a rotating strategy from c0 defined
by the sequence of positive integers try,trq,trs... such that Yo we have tr;p; < tr; + 1. We have
Py (conv?) < 32%,”

Proof: We have Vi, tr;41 —tr; = K; < 1. We have u; > 2 if K; < 0. If K; = 1 then we have p; >

try _ .
gzgt”_? > 5 3. In st, Vi, u; > 3/2 = p.

Pyi(convl) x p < B, % (Zm/2 P B - 2] (L= pBr—a1)). We have pB; = 1 — (1 — pS;).
Par(eonv?) x p < B x (27012 <1 = plm=2) = Tlizs (1= pB-))
Therefore, Py (conv?) x p < 83,, X (1 — Hl 1 /2(1 — pBm—21)) < By < 271, O

Theorem 5.4 In the initial configuration c0, there are two tokens in the ring. The token distances
are strictly greater than 1. Let st be a rotating strategy from c0 defined by the sequence of positive
integers try,tro, trs... such that Yk > 1,Yi € [2F — 1,251 — 2] we have tr; = k. The expectation
time is unbounded.

Proof: Let E be the value 72, ;g’fl H;;ll(l - 32%) E is a lower bound of the expectation time

because €, 11 < Py (conv?) < ==%— (we have tr;;; < tr; + 1).

320
r)); Therefore E =14 32, H L1 — (271t /3)).

We have 222';1_1 =@+ x(1-(1-

3. 2tr

FE =572, Fr where Fj = Ef:;ij X szl(l — 27t ¥l /3y,

3x22k‘ We have Vi € [2F — 1,2k — 2], 3)(2%”1 = 6.
We denote by Ay the value (1 — 6;)2" = Hji;__zl(l — (27t FL/3)).
We denote by A; the value HZ L= H?;_lz(l — (27t /3)).

By =TIo] Ay x 1522 = (A ><6,) (Akt1 X 7).
E=1+ 1‘|’Zk:2(9k Or_ 1)XAk

We conclude that : £/ =14 5- —|— > res 0 . Therefore, I > 3772, 5 Hk H2.5).
The series A1, Ao, ... 18 i 11161’@&5111}3;7 thus V5 Z 4,0 > A > 5.
We have E > 3772, 3 H?:1(2-/\j) = +00. 0

5.4 Summary of results

In the initial configuration c0, there are two tokens in the ring. The token distances are strictly
greater than 1.

Let k1, k2, k3, k4 and M be positive integers. Let a be a positive real.

Let st be a rotating strategy from c0 defined by the sequence of positive integers try, tro, trs....
The first table presents our results about the convergence in st according to tr; values. We
have defined the borderline between the rotating strategies that do converge and the other ones

(i.e tr; = loga(k1(i + k2))).

Definition of rotating strategy Convergence in st?
Vi > 1,tr; > logy (Crpa(i + 1)) no
Vi> M, tr; <kl yes
Vi > M, tr; <log,(k1(i+ k2)) and tr; — trip1 > —k3 yes

14

The second table presents our results about the expectation time in st according to tr; values
(when the algorithm converges). We have not found the exact borderline between an unbounded
and a bounded expectation time. The main difficulty is to compute precisely the value ¢; (i.e. the
probability of convergence during the ith turn). Nevertheless we know that the borderline is located

between logz(k1(i 4+ k2)) and logz((7 + 1))1/2-

Definition of rotating strategy Expectation time
Vi, tr; < kl < (2n — 4) 4 2+ x (=1

Vi > M, tr; <logy(k1(i+ k2))'/?;

and tr; —triy; > —k3 bounded
Vi > M, log,(k1(i + k2))1/? < tr; < logy(i + 1)
and tr; —triy; > —k3 777
Vi > M, logy(i 4+ 1) < tr; <log,(k1(i+ k2))

and tr; —triy; > —k3 unbounded

References

[1] E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures. In WDAG93
Distributed Algorithms 7th International Workshop Proceedings, Springer-Verlag LNCS:725,
pages 174188, 1993.

[2] J. Beauquier, S. Cordier, and S. Delaét. Optimum probabilistic self-stabilization on uniform
rings. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 15.1-15.15,
1995.

[3] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing and space optimal
leader election under arbitrary scheduler on rings. Technical Report 1225, L.R.I, December
1999.

[4] P. Billingsley. Probability and Measure. John Wiley & Sons, 1986.

[6] G. Bracha and S. Toueg. Asynchronous concensus and broadcast protocols. Journal of the
ACM, 32:324-340, April 1985.

[6] JE Burns, MG Gouda, and RE Miller. On relaxing interleaving assumptions. In Proceedings
of the MC'C Workshop on Self-Stabilizing Systems, MCC' Technical Report No. STP-379-89,
1989.

[7] EW Dijkstra. Ewd391, self-stabilization in spite of distributed control. In Selected Writings on
Computing: A Personal Perspective, pages 41-46. Springer-Verlag, 1982. EWD391’s original
date is 1973.

[8] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read /write atomicity. Distributed Computing, 7:3-16, 1993.

[9] S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck games. IFEFE
Transactions on Software Engineering, 21:429-439, 1995.

[10] M. Duflot, L. Fribourg, and C. Picaronny. Finite-state distributed algorithms as markov
chains. In DISCO0 Distributed Computing 15th International Symposium, Springer-Verlag
LNCS:2180, pages 240-255, 2001.

15

[11]

[12]

[13]

[17]

[18]

M. H. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of consensus with one faulty
process. Journal of the ACM, 32(2):374-382, April 1985.

T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35:63—67, 1990.

S.T. Huang, L..C. Wuu, and M.S. Tsai. Distributed execution model for self-stabilizing sys-
tems. In ICDCS94 Proceedings of the 14th International Conference on Distributed Computing
Systems, pages 432-439, 1994.

N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

A. Pogosyants and R. Segala. Formal verification of timed properties of randomized distributed
algorithms. In PODC95 Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, pages 174-183, 1995.

A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized concensus algorithm
of aspnes and herlihy: a case study. In WDAGI7 Distributed Algorithms 11th International
Workshop Proceedings, Springer-Verlag LNCS:1320, pages 22-36, 1997.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, Departament of Electrical Engineering and Computer Science, 1995.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In CONCUR’94
Fifth International Conference Concurrency Theory, Springer-Verlag LNCS:836, pages 481—
496, 1994.

16

