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abstract We present a formal model for randomized distributed algorithms that includes the
scheduler �also called adversary or demon��
Through an example related to stabilization� we show that a formal proof that does not use a
formal de�nition of a scheduler is pointless� As a matter of fact� we show that the same algorithm�
according to di�erent schedulers� can be either correct or incorrect and in the cases where it is
correct� can have di�erent complexities�
The paper is an attempt to better understand what proving a randomized self�stabilizing algorithm
in a non�deterministic environmentmeans�

key words� randomized algorithms� distributed algorithm� self�stabilizing system� scheduler� ana�
lyze of randomized algorithms�

r�esum�e Nous pr�esentons un cadre formel pour analyser les algorithmes r�epartis et probabilistes�
La sp�eci�cit�e de ce mod�ele est la d�e�nition formelle et simple de la notion d	ordonnanceur �aussi
appel�e d�emon��
Via un exemple d	algorithme auto�stabilisant� nous montrons qu	une preuve dans un cadre o�u la
notion d	ordonnanceur n	est pas clairement d�e�nis est sans int�er
et� Un m
eme algorithme� selon
l	ordonnancement des processeurs� peut fonctionner correctement ou non� La complexit�e en temps
peut varier grandement �par exemple� de born�e �a non born�e� selon l	ordonnancement des pro�
cesseurs�
Un des objectif de cette �etude est d	apporter un �eclairage nouveau sur l	analyse des algorithmes
probabilistes dans un environnement non�d�eterministe�

mots cl�es� algorithmes probabilistes� algorithme r�epartis� syst�eme auto�stabilisant� ordonnanceur�
analyse d	algorithmes probabilistes�

� Introduction

Perhaps the main reason for the di�culty of understanding the behavior of distributed programs
is their inherent non�determinism� Distributed systems are loosely coupled in the sense that the
relative speeds of their local activity is usually not known in advance and in most cases totally
unpredictable� Execution times and message delays may vary substantially for several repetitions
of the same algorithm� But a distributed program has to be correct despite this uncertainty� In
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other words� the proof of a distributed programmust take into account the non�determinism created
by the environment� That is the reason why the notion of adversary� also called demon or scheduler�
has been introduced� The words adversary or demon refer to a hostile environment� that would
try to disturb program executions� the idea being that to prove the correction of a program in the

worst
 environmental situation� guarantees its validity in a less severe surrounding� Scheduler
refers to the fact that independent events must appear in some given order� In the sequel� we
will use equivalently demon or scheduler� Among the 
tasks
 devoted to the scheduler appear the
choice of the speeds of processes� the delays for message transmission and the scheduling of tasks�
For instance� if several processes are able to take a step� the scheduler is the entity that chooses
which ones will be activated� In the context of fault tolerance� the scheduler chooses which process
will fail and at what time� or which messages will be lost or delayed� Several impossibility results
like in ���� or ��� use in their proofs such schedulers� As we will show it in this paper� the correction
of a distributed program is meaningless if the external non�determinism is not considered� As a
matter of fact some published algorithms appeared later to be incorrect for having underestimated
the potential behavior of the environment� A consequence is that if the program is proved to be
correct in an abstract model� the scheduler has to be part of this model� A way to deal with an
unpredictable environment is to make it more predictable� That is the case when it is assumed
that the scheduler acts probabilistically ���� For instance when several processes can take a step
simultaneously� there is some �xed probability for each one to take e�ectively the step� Or each
time a message is sent� there is a small probability that it becomes lost� Some could argue that
such a scheduler model is su�cient for most practical situations and that in real life environment
follows statistical laws� but we think that� for several reasons� such a point of view is unsatisfactory�
The �rst reason is that a probabilistic scheduler cannot be invoked for proving that a deterministic
program satis�es a deterministic speci�cation� Introducing a probabilistic scheduler allows only to
check a probabilistic speci�cation derived from the original one� Take the consensus problem and
one of its speci�cations given in ����� Suppose that each message can be lost with some probability�
Bracha and Toueg developed a solution under this assumption but what they solved in ��� is a
probabilistic speci�cation of the asynchronous consensus� not the original speci�cation �which is
impossible to solve�� This remark is quite general and involves that all that can be proved with a
probabilistic scheduler are programs solving probabilistic speci�cations�
The second reason is purely theoretical� A probabilistic scheduler is a very poor adversary� that
can be deceived so easily� Some program are able to resist to very powerful adversaries and it is a
challenge to always get a result as strong as possible�
The third reason is that we think that� in real life� some schedulers are not probabilistic at all� in
the sense that the coming out of events does not obey simple independent probabilistic laws� The
point is obvious if malicious adversaries are considered� A software error will always cause the same
failure each time the bad portion of code is executed� and� if at some point of an execution� some
messages become very slow� the chance that following messages be also very slow will increase�
In fact that some bad events are correlated� rather than follow independent probability laws is
expressed in ���� � 
However we should keep in mind that this assumption �the bounded number of
failures� is somewhat problematic � in most practical situations� if the number of failures is already
large� then it is likely that more failures will occur�


For all these reasons� we present in this paper a model of distributed programs and non�deterministic
schedulers� The model is quite general and can take into account whatever scheduler you could
think of� In particular� probabilistic schedulers appear as special cases of the general notion� In the
model� the scheduler can also be responsible for the granularity of the atomic events� Then it covers
the classical schedulers� like the centralized or distributed schedulers or the read�write atomicity
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introduced in the self�stabilization framework ����� ���� ����� ����� and ����� Our �rst aim is to show
how this model can be used for proving the correctness or the incorrectness of distributed programs
according to a given speci�cation� In particular� as already mentioned before� we want to show
that a same program can be correct or incorrect for the same speci�cation� according to the choice
of the scheduler� Our second aim is to demonstrate how the presented framework allows a precise
computation of complexity measures in term of expectation� For the sake of clarity� we chose a very
simple example� with a probabilistic speci�cation� to make clear that a powerful non�deterministic
scheduler can inde�nitely postpone the realization of the speci�cation� while a feeble one cannot�
This example is closely related to a self�stabilization problem� namely the token circulation ����
and can be considered as a typical example of how to prove and compute the complexity of self�
stabilizing distributed algorithms� The example is a random walk of two tokens on an unidirectional
ring� In the initial con�guration� there are two tokens on the ring� held by two di�erent processes�
There is no assumption on the processes that initially hold the tokens� Only a process holding a
token can take a step� A step consists in tossing a coin �probability ��� for head and tail� and if
head to transmit the token� For taking a step� a process must be chosen by the scheduler� The
scheduler must choose processes among those holding a token� Finally� the speci�cation is that one
of the initial tokens catches up with the other one with probability one� To the question whether
the above system meets the speci�cation� most people would answer positively� The idea is that if
one of the token does not move because it always 
draw
 tail and if the other always �or at least a
number of time at most the size of the ring� 
draw
 head� the second token will catch up with the
�rst� Because this scenario can appear at any time with a �xed probability� we are done� As you
have noticed� no scheduler appears in this reasoning� and it is why it is incorrect� The sequel �we
hope� will make this point clearer�

Related works� In ���� Dolev� Israeli and Moran introduced the idea of a two players game
between the scheduler and what they call luck� i�e� the random values� without de�ning formally
the probabilistic space of computations The structure �informally presented� behind a sl�game is
a strategy �formally de�ned in this paper� where some branches have being cut� In ����� �����
and ����� Lynch� Pogosyants and Segala present a formal method for analyzing probabilistic I�O
automata which modelize distributed systems� A clear distinction between the protocol� which is
probabilistic� and the scheduler� which is non�deterministic� is made� The notion of cone� that is
at the basis of the probabilistic space� is also used� These works do not consider self�stabilization�
In these two approaches� the analyze of a probabilistic algorithm under a class of schedulers is not
de�ned� Mainly because the notion of scheduler is not presented�
On the other hand there are numerous proofs of self�stabilizing algorithms under some particular
schedulers�

� Model

Abstract model� A non deterministic distributed system is represented in the abstract model
of transition systems� A distributed system is a tuple DS � �C� T� I� where C is the set of all
system con�gurations� T is a transition function of C to the set of C subsets� and I is a subset of
the con�guration set called the initial con�gurations� In a randomized distributed system� there
is a probabilistic law on the output of a transition� A computation step is a pair of con�gurations
�ci� cj� where cj is an output of a transition starting to ci� A computation e of DS is a sequence of
consecutive computation steps e � �c�� c��� �c�� c�� � � �� where c� � I�

�



Let c be an initial con�guration of a distributed system� The c tree is the tree composed of all
maximal computations whose initial con�guration is c� The computation forest of a distributed
system �C� T� I� is the set of all c trees where c � I�

Interpretation� In fact� the distributed system is the collection of processes �Proc� computing
protocol P � A protocol has a collection of variables �internal and�or �eld� and has a code part� A
process communicates only with its neighbors �a subset of Proc�� Communication among neighbors
is carried out by �eld variables�
The state of a process is the collection of values of the process	s variables �internal or �eld�� A
con�guration of a distributed system is a vector of process states� A local con�guration is the
part of a con�guration that can be �seen
 by a process �i�e� its state and the �eld variables of its
neighbors�� The code is a �nite set of guarded actions �i�e� label�� guard � statement�� The guard
of an action on p is a boolean expression involving p local con�guration� The statement of a P
action updates the p state� If the action is randomized� several statements are possible� and each
of them has some probability� A process p is enabled at a con�guration c� if an action guard of p is
satis�ed in c� The set of enabled processes for c is denoted by Enabled�c��

Computation step versus transition� Let c be a con�guration� and CH be a subset of enabled
processes at c� We denote by � c � CH � the set of con�gurations that are reachable from c after
that the processes of CH have performed an action� A computation step has three elements� ��� an
initial con�guration� c� ��� a set of enabled processes� CH � and ��� a con�guration of � c � CH ��
Clearly� the transitions in the abstract model can be interpreted in terms of computation steps�
In the case of a deterministic protocol� a computation step is totally de�ned by the initial con�
�gurations and the set of enabled processes� But in the case of randomized protocol� the �nal
con�guration depends on the output of each process action� Therefore� in the case of randomized
protocols� the computation step has a fourth characteristic element� the probabilistic value associ�
ated to the computation step� This value depends on the probabilistic law of the random variable
of each process involved in the computation step�
A computation is maximal� if the computation is either in�nite� or �nite and no process is enabled
in the �nal con�guration� In this case� the con�guration is said to be terminal�

Strategy� Basically� a scheduler is intended to be an abstraction of the external non�determinism�
Because the e�ect of the environment is unknown in advance� the scheduler notion must be able
to formalize any external behavior� At the extremity� one should consider that the environment
is possibly depending of a malicious adversary� trying to prevent the algorithm for performing its
tasks� This powerful adversary should be assumed to have a global knowledge of the system� of its
past� but also of its possible futures� At the contrary� it seems a valid model to assume that this
adversary is unable to know in advance the result of a random experience� De�ning a scheduler in
some operational way � at that point of the computation the scheduler has such or such choice �
raises the problem to de�ne exactly in function of what the choice is made� If the choice depends
of the actual con�guration and of the history� the generality of the scheduler is restricted� How� for
instance� express that the scheduler must be fair� That is the reason why we de�ne a scheduler as
a property �subset� on in�nite runs� In our approach the key notion is the strategy�

De�nition ��� Let DS be a distributed system� Let T be a tree of DS� A strategy is a subtree of
T where at a node� there is only one outgoing transition�
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Figure � presents a strategy� Formally� a scheduler is completely de�ned by the set of strategies
which it may �produce
� For instance� a pseudo�fair scheduler is the set of strategies st such that
in st� the set of fair computations has probability � �we associate a probabilistic space to each
strategy��

In the case of a deterministic protocol� a strategy is a maximal computation� and a scheduler is a
subset of maximal computations� In the case of a randomized protocol� we will de�ne a probabilistic
space for every strategy of a scheduler�

� Probabilistic model

In a randomized distributed system� each process has a random variable� The fundamental problem
solved in this section is the de�nition of a probability measure on the system computations related
to the random variables �thus to de�ne a probabilistic space�� Once this probability de�ned� we
will be able to give a de�nition of the self�stabilization of a randomized protocol�

The basic notion that we will use to de�ne a probabilistic space on the computations of a given
strategy is the cone� Cones have been introduced in �����

Let st be a strategy� A cone Ch of st is the set of all st	s computations with the common pre�x
h� h is called the history of the cone� Let Ch be a cone of st� The subcone Ch� of the cone Ch is
the set of all computations of Ch having h

� as a pre�x� last�h� denotes the last con�guration of h�
The number of computation steps in the history h is denoted by jhj� Let st be a strategy� st is a
particular cone with an empty history� This cone is denoted by Cst�

Theorem ��� Let st be a strategy� We note Fst the set of all �nite unions of pairwise independent
cones of the strategy st� Fst is a �eld�

In a randomized protocol� each process has a random variable� The output of an action of a
process p depends on the value of p random variable� The random variables are independent�
thus the output of a p action is independent of the output of an action of another process� The
probability of a computation step is the product of probability of every output of actions that have
been performed during the computation step�

De�nition ��� The probabilistic value associated to a computation step� pr�c� CH� c�� is de�ned
by� pr�c� CH� c�� �

Q
p�CH pr�Xp � valp�� where Xp is the random variable of the process p� valp

is a value of Xp� and c� is the obtained con�guration after that all processes of CH have set their
Xp variable to valp and have performed an action�

It is easy to prove that
P

c���c�CH� pr�c� CH� c
�� � ��

Let st be a strategy� We associate to the cone Ch a value� function of its history� by extending the
probability pr de�ned on computation steps� The value of Ch is the product of the probabilities
of each computation step of h �the computation step probabilities are independent�� From these
values� we will build a probability measure on Fst�

De�nition ��� Let st be a strategy� The value attached to the cone Ch in st is�

Pst�Ch� �
Qj
k�� pr�ck� CHk� ck���� where h � ��c�� CH�� c���c�� CH�� c�� � � ��cj� CHj� cj�����
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Figure �� A strategy with the probabilities of the computation steps

Example ��� See the �gure �� h� � ��c�� CH�� c���c�� CH�� c���� Pst�Ch�� � p���� � p��� h� �
��c�� CH�� c���c�� CH�� c���c�� CH�� c����� Pst�Ch�� � p��p����� p����

Let st be a strategy� The following properties are veri�ed �
� Pst�C

st� � �

� Let Ch be a cone of st� Let Ch�� Ch�� � � � be a series of pairwise independent cones of st such
that Ch �

S
��i�n Chi� Then Pst�Ch� �

P
��i�n Pst�Chi��

� LetA �
S
��i�n C

a
i be a �nite union of pairwise independent cones of st� Let B �

S
��i�m Cb

i

be a �nite union of pairwise independent cones of st� If A � B then
P

��i�n Pst�C
a
i � �P

��i�m Pst�C
b
i ��

De�nition ��� Let st be a strategy� Let Pst be the function de�ned as follow�
� Pst�Ch� �

Qj
k�� pr�ck� CHk� ck���� where h � ��c�� CH�� c���c�� CH�� c�� � � ��cj� CHj� cj�����

� Pst�A� �
Pn

i�� Pst�Ci� where A �
Sn
i�� Ci and the cones Ci are pairwise independent�

Pst is a function� because the image of an element of Fst by Pst is unique� Let A be an element of
Fst� we have Pst�A� � Pst�A� � ��

Theorem ��� Let st be a strategy� The function Pst is a probabilistic measure de�ned on the
�eld Fst� Let ��Fst� be the ���eld generated by Fst� There is an unique extension� P �st� of the
probabilistic measure Pst to ��Fst��
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Proof� The extension is made according to the classical theory of probabilities� This function is a
probabilistic measure on the ��Fst� ���� �

Let st be a strategy� The triple �st� ��Fst�� P �st� de�nes a probabilistic space on st� In the following
sections we denote by Pst� P

�
st �the extension of Pst to ��Fst���

��� Self�Stabilization of a randomized protocol

In this section� we de�ne the self�stabilization for randomized protocols with respect to the proba�
bilistic model de�ned in the previous section� This section introduces also the probabilistic version
of the attractor� The main idea behind these de�nitions is simple � To analyze a self�stabilizing
algorithm under a scheduler� one has to analyze every strategy of the scheduler�

Notation ��� Let st be a strategy of a protocol under a scheduler D� Let PR be a predicate over
con�gurations� We note by EPRst the set of st computations reaching a con�guration that satis�es
the predicate PR�

Lemma ��� Let st be a strategy� Let PR be a predicate over con�gurations� There is a countable
union of pairwise independent cones �A �

S
i�N Ci� so that EPRst � A�

De�nition ��	 �Probabilistic convergence� Let L be a predicate de�ned on con�gurations� A
probabilistic distributed protocol P under a scheduler D converges to L i� � In any strategy st
of P under D the probability of the set of computations reaching a L is equal to �� Formally�
�st� Pst�ELst� � ��

De�nition ��
 �Probabilistic Attractor� Let L� and L� be two predicates de�ned on con�gu�
rations� L� is a probabilistic attractor for L� on a protocol P under a scheduler D �L� �prob L�� if
and only if the following condition holds� for all strategies st of P under D such that Pst�EL�� � ��
we have� Pst�EL�� � �� Formally� ��st� Pst�EL�� � ��� �Pst�EL�� � ���

De�nition ��� �Probabilistic Self�stabilization� A randomized protocol P is self�stabilizing
for a speci�cation SP �predicate on the computations�� if there exists a predicate on con�guration
L such that P converges to L and P veri�es the following property

� correctness �st of P under D� �e � st� if e � EL then e has a su	x that veri�es SP �

De�nition ��
 �Weak Probabilistic Self�stabilization� A randomized protocol P is weakly
self�stabilizing for a speci�cation SP �predicate on the computations�� if there exists a predicate on
con�guration L such that P converges to L and P veri�es the following property

� probabilistic correctness �st of P under D� Pst�fe � EL and e has a su	x that veri�es
SPg� � ��

Observation ��� We note L�� the following predicate on con�gurations L� � L�� If L� �prob L�
and if L� is closed then L� �prob L���

In the case� of memoryless scheduler ���� �i�e� the choice of the subset of enabled processes only
depends on the current con�guration�� each strategy is a Markov chain and can be analyzed using
classical Markov properties as it is shown in ����� Nevertheless� each strategy has to be analyzed�
For instance� in some memoryless strategies of the protocol ��� the probability to converge to a
legitimate con�guration is equal to � and in some others this probability is ��
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��� Proving the convergence of protocols

In this section� we present a theorem that helps to build convergence proofs of randomized protocols�
This theorem can be used in the case of a proof with attractors� but also in the case of a direct
proof�

Informally the next de�nition is introduced for dealing with such a statement� �in a cone where the
predicate PR� is satis�ed� the probability to reach a con�guration satisfying the predicate PR� in
less than n steps is greater than �
�

De�nition ��� �Local convergence� Let st be a strategy� Let Ch be a cone in the strategy st� The
cone Ch satis�es the property Local Convergence�PR�� PR�� �� n� if and only if�

� last�h� � PR�


� M is the set of pairwise independent subcones of Ch �Chh�� such that ��� jh�j � n� and ���
last�hh�� � PR�


� Pst�
S
C�M C� 	 ��Pst�Ch��

On a strategy st� if there exist �st � � and nst � � such that any cone of st satis�es Local Convergence
�PR�� PR�� �st� nst� then we say that st veri�es the Convergence �PR�� PR�� �st� nst� property
or Convergence �PR�� PR�� property�

��� Theorem ���

The following lemma is straightforward�

Lemma ��� Let st be a strategy� Let A be a countable union of cones of st� There is a countable
set of pairwise independent cones of st so that their union is A�

Theorem ��� Let st be a strategy of the protocol P under a scheduler D� Let PR� be a closed
predicate on con�gurations such that Pst�EPR�� � �� Let PR� be a closed predicate on con�gura�
tions� Let us note PR�� the predicate PR�� PR�� If 
 �st � � and 
 nst � � such that st veri�es
the Convergence�PR�� PR�� �st� nst� property then Pst�EPR��� � ��

Proof� theorem ��� Let ELk be the set of computations reaching a con�guration satisfying PR�
and� after that� in at most k�nst steps reaching a con�guration satisfying the predicate PR�� We
prove that Pst�ELk� 	 �� ��� ��k and ELk �EPR� is a countable union of pairwise independent
cones where Pst�ELk � EPR�� � �� Pst�ELk��
Let Ch be a cone of st� We de�ne M��h as M��h � fChh� �� jh

�j � nst� and last�hh	� � PR�g� We
de�ne M��h as M��h � fChh� �� jh

�j � nst� last�hh	� does not verify PR�� and either last�hh	� is a
terminal con�guration or jh�j � nstg� M��h �M��h� being a set of cones� according to lemma ����
there is a set of pairwise independent cones M�h �M�h� such that M�h �M��h �M�h �M��h��
The cones ofM�h contain all computations of Ch that reach PR� in less than nst steps� The cones
of M�h contain the other computations� By hypothesis Pst�

S
C�M�h C� 	 Pst�Ch���st�

� Basic step �n���� EPR� is a countable union of pairwise independent cones �lemma �����
EPR� �

S
C�M�

C where M� is a countable set of pairwise independent cones� From the
hypothesis� Pst�

S
C�M�

C� �
P

C�M�
Pst�C� � ��

We have EL� �
S
Ch�M�

�
S
C�M�h

C�� thus Pst�EL�� 	 �st�
P

Ch�M�
Pst�Ch��

So� Pst�EL�� 	 �st�Pst�EPR�� 	 �st � �� ��� �st��
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All computations of a cone of M�h belongs to EL�� all computations of Ch that belongs to
EL� are in a cone of M�h� Thus� EL� � EPR� �

S
Ch�M�

��C�M�hC�� Then EL� � EPR�

is a countable union of pairwise independent cones �lemma ����� As Pst�EPR�� � �� we have
Pst�EL� � EPR�� � �� Pst�EL��

� Induction step� We suppose the hypothesis are true for k���

By hypotheses� ELk�� � EPR� is a countable union of pairwise independent cones� We call
Mk the set of independent cones whose union is equal toELk���EPR�� Thus� ELk���EPR�
�
S
C�Mk

C� and Pst�ELk�� � EPR�� �
P

C�Mk
Pst�C��

We name Diffk the computation set such that ��� ELk � ELk�� �Diffk� and ��� diffk �
ELk�� � 
� Diffk �

S
C�Dk

C where Dk � fChh� �� Ch �Mk� and Chh� �M�hg�

We have Diffk �
S
Ch�Mk

�
S
C�M�h

C�� thus Pst�Diffk� 	 �st�
P

Ch�Mk
Pst�Ch��

So Pst�Diffk� 	 �st���� Pst�ELk����� Pst�ELk� 	 �� ��� �st�
k�

We have �ELk � EPR�� � �ELk�� � EPR��� thus� we prove like in the basic step that
ELk � EPR� �

S
Ch�Mk

��C�M�hC�� Then� EL� � EPR� is a countable union of pairwise

independent cones �lemma ����� As Pst�EPR�� � �� we have Pst�ELk � EPR�� � � �
Pst�ELk��

Pst�ELn� 	 �� ��� ��n� Therefore� P �EPR��� � limn�� P �ELn� � �� �

Corollary ��� Let PR� and PR� be two closed predicate on con�gurations� If each strategy st of
a protocol P under a scheduler D� veri�es Convergence�PR�� PR�� then �PR� �prob PR���

Corollary ��� Let PR� be a closed predicate on con�gurations� If each strategy st of a protocol
P under a scheduler D veri�es Convergence�true� PR�� then �st� Pst�EPR�� � ��

Using a technique similar to the one presented in ���� one can prove that in a strategy st where the
property Convergence�PR�� PR�� �st� nst� is satis�ed the expectation time is bounded by

nst
�st
�

� Example

Now we present a very simple protocol� that will allow us to exemplify all the previous notions �
the randomized token circulation protocol �CTC� on unidirectional anonymous rings designed by
Beauquier� Cordier and Dela�et in ���

For the sake of clarity we will not start the protocol from any con�guration� but only from the
con�gurations in which there are exactly two tokens in the ring� the distances between them being
strictly greater than �� The question that we are interested in� is to prove whether or not this
�restricted� protocol has the following property � one of the tokens catches up with the other
with probability � �that exactly means that the set of runs of the protocol in which one of the
tokens catches up with the other has a probability ��� The correct answer is that the question is
insu�ciently speci�ed and that satisfying or not the property depends on the scheduler� Thus� our
aim will be to determine exactly where is the borderline between the class of schedulers that prevent
the convergence and the class of those that do not� In the case of convergence� we want also have
some information about the expectation time �in fact number of steps� before convergence� First�
note that each of the above classes is non empty� Among the 
bad
 schedulers there is the following
unfair scheduler� that can be informally described in the following way �but precisely de�ned using

�



our model�� This bad scheduler chooses the process having a token until this token moves� then it
chooses the process having the other token until this token moves and so one� If initially the tokens
are at distance � or more� no one will ever catch up with the other� At the opposite it has been
proved in ��� that the protocol converges �in fact from any initial con�guration� with probability �
with the k�bounded scheduler �k is an integer� see below�� In the following sections� we will analyze
this protocol under a large class of strategies to determine when this protocol converges and when
it does not� when the expectation time is bounded and when it is not�

Protocol 	�� token circulation on anonymous and unidirectional rings� CTC

Field variables on p�
vp is a variable taking value in ��� mN ����

Random Variables on p�
rand boolp taking value in f�� �g� Each value has a probability ����

Action on p�
A�� vp � vlp �� � mod mN �� if �rand boolp � �� then vp �� �vlp � �� modmN �

A process holds a token i� it is enabled �i�e� vp � vlp �� � mod mN� There is always a token in
the ring� The number of tokens cannot increase whatever may happen� Let L be the following
predicate over con�gurations� �there is only one token in the system
� Once the convergence of the
algorithm is proven to L� one can easily prove that the protocol is a weak self�stabilizing protocol
for the speci�cation � one token fairly circulates in the ring�

In an unidirectional ring� The distance from processor p to processor q is measured starting from
p and moving to the right until q is reached� In particular� the distance from p to q is not the
distance from q to p�

� Rotating strategies

Because there are only two tokens �but a more general treatment would be feasible� a class of
strategies can be described as what we call rotating strategies� Roughly speaking� in a rotating
strategy the scheduler chooses to try to move one of the token tr� times� then the other tr� times�
then the �rst token tr	 times and so one� Because the scheduler is an adversary and tries to avoid
the token merging� as soon as one of the token moves it deals with the other� Then� a rotating
strategy is completely de�ned via an in�nite sequence of positive integers tr�� tr�� tr	��� where tri
is the maximal duration �i�e� the maximal number of computation steps� of the ith turn� At each
computation step of the �i��th �resp� �i��th� turn� only the process having the token T� �resp
T�� performs its action� thus a �i��th �resp� �i��th� turn is said to be a T� �resp� T�� turn� The
ith turn �a Tx turn� stops and the i��th turn begins �i� after that the Tx token has moved or �ii�
after tri consecutive actions of the process having the Tx token where the token does not move� A
strategy of a k�bounded scheduler ��� is a rotating strategy in which the duration of each turn is
inferior to k � ��

Let st be a rotating strategy� We denote by �i the probability in st that a token catches up
with the other token during the ith turn� A rotating strategy can be viewed as a game between
the algorithm �called the player� and the scheduler� The game may be described by a series of
independent random variables X�� X�� X	� ��� such that Pst�Xi � �� � �i� Xi represents the ith
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trial of a random game �convergence game�� The player �algorithm� wins when the two tokens
merge �called the � events�� The player�algorithm may perform as many trials he wants� We have
Pst�ELst� �

P�
i�� �i �

Qi��
j����� �j��

��� Rotating strategies that do not converge

Theorem 
�� In the initial con�guration c�� there are two tokens in the ring and the token dis�
tances are strictly greater than �� Let st be a rotating strategy from c� de�ned by the sequence of
positive integers tr�� tr�� tr	��� such that

P�
i��

�
�tri

� �� We have Pst�ELst� � ��

Proof� Let i be an integer strictly greater than �� ith turn is a Tx �x � � or x � �� turn� If the
token Ty �y �� x� has moved during the i��th turn then at the end of this turn the distance from
Tx to Ty is strictly greater than �� During the following turn� the Tx token cannot catch up with
Ty� Thus� Tx catches up with Ty during the ith turn only if during the previous turn Ty has not
moved� The probability in st that Ty does not move during the i��th turn is �	�tri��� Therefore
�i � �� we have �i � �	�tri��� As initially� the distance from T� to T� is strictly greater than ��
�� � �� Pst�ELst� �

P�
i��

�
�tri

� �� �

Notation 
�� We name C��� the value
P�

i���log��i � ���
��� �the sum

P�
i���log��i � ���

��� is
bounded��

Corollary 
�� In the initial con�guration c�� there are two tokens in the ring and the token dis�
tances are strictly greater than �� Let st be a rotating strategy from c� de�ned by the sequence of
positive integers tr�� tr�� tr	��� such that �i� tri � log��C����i � ������ where 
 is a positive real�
We have Pst�ELst� � ��

��� Rotating strategies that do converge

We will study a speci�c scenario convn�� that drives the ring to a legitimate con�guration� We
will prove that the probability of this scenario is ��

De�nition 
�� We say that the token distances stay 
quasi�invariable� between the turns j�� and
j�� if their distances after the j��th turn are the same as before the jth turn� A token may move
during the jth turn
 but in this case the other token must move during the next turn to ensure that
the token distances go back to the initial values�

The following scenario called conv�m is de�ned as � after the m��th turn the distance from Tx to
Ty has decreased� �assuming that the mth turn is a Ty turn��

We de�ne the scenario called convj��m recursively� There exists k such that �i� the scenario convj is
realized at the end of the turn m��k��
 �ii� the token distances stay 
quasi�invariable� between the
turns m��k�� and m��
 and �iii� after the m��th turn� the distance from Tx to Ty has decreased�

Informally� there exist j integers � � k� � k� � k	 � ��� � kj � m	� such that �i � ��� j� �i� the Tx
token is at distance d� i of Ty before the m� �ki turn� �ii� the distance from Tx to Ty is d� i� �
at the end of the m� �ki�� turn� and �iii� the distance from Tx to Ty stays quasi�invariable from
the m� �ki � � turn to the m � �ki�� � � turn� Thus� after the m��th turn� Tx is at distance d
of Ty if it was at distance d� j before the m� �kj turn�
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Observation 
�� Let st be a rotating strategy� We denote by �j the probability in st that the
distance from Tx to Ty has decreased between the turn j�� and j��� We have �j �

�
�trj

���� �
�trj��

�

� �
�trj

	 �j 	
�

�trj��
��

We denote by � � �j�j the probability in st that the token distances stay quasi�invariable between
the turns j�� and j���

The probability of conv�m in st �called Pst�conv�m�� is �m� The probability of convj��m in st �called

Pst�conv
j��
m �� is �m

Pm��
i�� ��Pst�conv

j
m��i�

Qi��
l����� �m��l�m��l���

We will give in the following theorem a lower bound to the probability of the scenario convn��m for
a large class of rotating strategies� In any strategy� the probability of convn��m is a lower bound of
�m�� �the probability of tokens merging during the m��th turn��

Theorem 
�� In the initial con�guration c�� there are two tokens in the ring� The token distances
are strictly greater than �� Let k� and k� be two positive integers� Let j� K and M be positive integers�
Let st be a rotating strategy from c� de�ned by the sequence of positive integers tr�� tr�� tr	��� such
that �K � tri��� tri� There exists Cj � � such that �m 	M � �M��j��� Pst�convjm� 	 �m�Cj

where j � ��� n� ���

Proof� If � � tri � tri�� then we denote by Ki the di�erence tri � tri�� �Ki � K�� We have �i �
�tri����Ki�tri����

�tri����
� �tri����Ki�tri��

�tri����
� 
��Ki�tri��

�tri��
� ���Ki � ���K�

If � 	 tri � tri�� then we denote by Ki the di�erence tri�� � tri� We have �i �
�tri��Ki�tri��

�Ki�tri��
� �i

� ���Ki�tri���
�Ki�tri��

� ��

We denote by � the value ���K� We have �i 	M��i � ���K � ��

�m 	M � �M � �j � �� Pst�conv
j
m�	�m 	

P�m�M ������
i�� Pst�conv

j��
m��i�

Qi��
l����� ��m�����

�i 	M � we have Pst�conv
�
i � 	 �i�

Let j be strictly greater than �� Assume that 
Cj�� such that �i 	M �� �� Pst�conv
j��
i � 	 Cj���i�

We have �Pst�conv
j��
i � 	 Cj�� � ��� ��� ��i���

Pst�convjm�� �	Cj�� 	 �m � �
P�m�M ������

i��

Qi��
l����� ��m��l��

Qi
l����� ��m��l���

Therefore� Pst�conv
j
m�� �	Cj�� 	 �m � ���

Q�m�M ������
l�� ��� ��m��l���

Pst�conv
j
m���	Cj�� 	 �m���������M ����� or Pst�conv

j��
m ���	Cj�� 	 �m���������M ��	���

Pst�convjm� 	 �m � Cj where Cj � min�Cj���M ���� Cj���M ��	�� �

The condition tri � tri�� 	 K is needed to compute a lower bound for the probability of quasi�
invariance of token distances between two turns�

Corollary 
�� In the initial con�guration c�� there are two tokens in the ring� The token distances
are strictly greater than �� Let k� and k� be two positive integers� Let K and M be positive integers�
Let st be a rotating strategy from c� de�ned by the sequence of positive integers tr�� tr�� tr	��� such
that �i� �i 	M� tri � log��k��i� k��� and �ii� �K � tri�� � tri� We have Pst�ELst� � ��

Proof� According to theorem ���� there exists C such that �i 	M ��n� � �M ��� Pst�conv
n��
i � 	

�i � C 	 C
��k��i�k�� �see observation ����� Pst�ELst� 	 � �

Q�
l�M ���� � Pst�conv

n��
l ��� We have

Pst�ELst� � �� �

��



Corollary 
�� In the initial con�guration c�� there are two tokens in the ring� The token distances
are strictly greater than �� Let k be a positive integer� Let st be a rotating strategy from c� de�ned
by the sequence of positive integers tr�� tr�� tr	��� such that �i� tri � k� We have Pst�ELst� � �� The
expectation time is inferior to ��k���n���

Proof� At any turn m 	 �n � �� the probability of the token merging is greater that �
��k���n��

in

st� The expectation time is inferior to ��n� �� � ��k�����n��� �in term of turns�� �

��� Expectation time of convergence

We compute now an upper bound of the expectation time for some speci�c strategies �i�e� the
expected number of computation steps required by the algorithm to converge� in these strategies��
For some other strategies� we will prove that the expectation time is unbounded�

Theorem 
�� In the initial con�guration c�� there are two tokens in the ring� The token distances
are strictly greater than �� Let k� be a positive integer� Let st be a rotating strategy from c� de�ned
by the sequence of positive integers tr�� tr�� tr	��� such that �k 	 �� �i � ���k � �� ��k��� �� we have
tri � k � r� The expectation time is bounded�

Proof� 
C such that �m 	 �n� �� Pst�convn��m � � C
�trm �see the theorem �����

Let E be the value
P�

i��n�

C�i���
�tri

Qi��
j��n�
���

C
�trj

�� E is an upper bound of the expectation time

because �m � �n� �� �m�� 	 � and �m 	 �n� �� �m�� 	 Pst�convn��m ��

Let E� be the value
P�

i��
C�i���
�tri

Qi��
j�����

C
�trj

��

We have E � E�	C�� C� where C� �
P�n�	

i��
C�i���
�tri

Qi��
j�����

C
�trj

� and C� �
Q�n�	
j�� ���

C
�trj

��

We have C�i���
�tri

� �i� ��� ��� ��� C
�tri

��� Therefore E� � � �
P�

i��

Qi��
j����� �C��

�trj���

E� �
P�

k��Ek where �k � �� Ek �
P����k��

i���k��
�
Qi��
j����� �C��

�trj�� and

E� �
P����

i�� �
Qi��
j����� �C��

�trj���

We denote by 
k the value
C
�k
� We have �i � ���k � �� ��k�� � ��� C���tri � 
k �

For all k � �� we denote by �k the value ��� 
k�	��
�k
�
Q��k����
j���k��

��� �C���trj���

We denote by �� the value ��� 
��
�
 �

Q����
j�� ��� �C��

�trj���

We denote by  i the value
Qi��
j�� �j �

Q��i��
j�� ��� �C���trj���

Ek �
Qk��
j�� �j �

���k
�k

� � k �
�
�k
�� � k�� �

�
�k
��

E� � � � �
��
�
P�

k���
�
�k
� �

�k��
��  k � � � �

��
�
P�

k��

k
�k��

� � � �
��
�
P�

k��

Qk��
j������j��

The series ��� ��� ��� is decreasing and there exists L such that �k 	 L� �k � e���
We conclude that � E� � � � �

��
�
PL��

k��

k
�k��

� � 
L
�L��

P�
k���

�
e�
k��

Therefore� E� � � � �
��
�
PL��

k��

k
�k��

� � 
L�e
�L����e���

�� Thus E is bounded� �

We will compute a lower bound on the expectation time �called E� for a speci�c class of rotating
strategies� The strategies of this class are such that �i � ��l � �� �l�� � ��� tri � l� k� where k� is
an integer �tr�� tr�� tr	��� being the sequence of positive integers that de�nes the strategy��

If Tx catches up with Ty during the m�� turns then Tx is at distance � of Ty before the mth
turn� Initially Tx has at distance d � � of Ty� Tx is at distance � of Ty before the mth turn only
if at some turn �m� �k� �� the distance from Tx to Ty decreases to the value � and stay �quasi�
invariant
 until the turn m� �� Therefore� the probability that Tx catches up with Ty during the
m��th turn is inferior to Pst�conv�m�� First� we will compute an upper bound on Pst�conv�m� for
the strategies of the studied class�
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Lemma 
�� In the initial con�guration c�� there are two tokens in the ring� The token distances
are strictly greater than �� Let k� be a positive integer� Let st be a rotating strategy from c� de�ned
by the sequence of positive integers tr�� tr�� tr	��� such that �i we have tri�� � tri � �� We have
Pst�conv

�
m� �

�
	��trm �

Proof� We have �i� tri�� � tri � Ki � �� We have �i 	 � if Ki � �� If Ki � � then we have �i 	
	��tri��
���tri��

	 	
� � In st� �i� �i 	 �	� � ��

Pst�conv
�
m�� � � �m � �

Pm��
i�� ��m��i

Qi��
l����� ��m������ We have ��i � �� ��� ��i��

Pst�conv
�
m�� � � �m � �

P�m�M ����
i��

Qi��
l����� ��m��l��

Qi
l����� ��m��l���

Therefore� Pst�conv�m�� � � �m � ���
Q�m�M ����
l�� ��� ��m��l�� � �m � ��trm � �

Theorem 
�	 In the initial con�guration c�� there are two tokens in the ring� The token distances
are strictly greater than �� Let st be a rotating strategy from c� de�ned by the sequence of positive
integers tr�� tr�� tr	��� such that �k 	 �� �i � ��k � �� �k�� � �� we have tri � k� The expectation
time is unbounded�

Proof� Let E be the value
P�

i��
�i��
	��tri

Qi��
j�����

�
	��trj

�� E is a lower bound of the expectation time

because �m�� � Pst�conv
�
m� �

�
	��trm �we have tri�� � tri � ���

We have i��
	��tri��

� �i� ��� ��� ��� �
	��tri��

��� Therefore E � � �
P�

i��

Qi��
j����� ��

�trj��	����

E �
P�

k��Ek where Ek �
P���k��

i��k��
�
Qi��
j����� �

�trj��	���

We denote by 
k the value
�

	��k
� We have �i � ��k � �� �k�� � ��� �

	���tri
� 
k �

We denote by �k the value ��� 
k��
k
�
Q�k����
j��k��

��� ���trj��	����

We denote by  i the value
Qi��
j�� �j �

Q�i��
j�� ��� ��

�trj��	����

Ek �
Qk��
j�� �j �

���k
�k

� � k �
�
�k
�� � k�� �

�
�k
��

E � � � �
��
�
P�

k���
�
�k
� �

�k��
��  k�

We conclude that � E � � � �
��
�
P�

k��

k
�k��

� Therefore� E 	
P�

k�

	
�

Qk��
j������j��

The series ��� ��� ��� is increasing� thus �j 	 �� �j � �
 �
�
� �

We have E 	
P�

i�

	
�

Q	
j������j� � ��� �

��� Summary of results

In the initial con�guration c�� there are two tokens in the ring� The token distances are strictly
greater than ��

Let k�� k�� k�� k� and M be positive integers� Let 
 be a positive real�

Let st be a rotating strategy from c� de�ned by the sequence of positive integers tr�� tr�� tr	����
The �rst table presents our results about the convergence in st according to tri values� We

have de�ned the borderline between the rotating strategies that do converge and the other ones
�i�e tri � log��k��i� k�����

De�nition of rotating strategy Convergence in st�

�i 	 �� tri � log��C����i� ��
���� no

�i 	M� tri � k� yes

�i 	M� tri � log��k��i� k��� and tri � tri�� 	 �k� yes

��



The second table presents our results about the expectation time in st according to tri values
�when the algorithm converges�� We have not found the exact borderline between an unbounded
and a bounded expectation time� The main di�culty is to compute precisely the value �i �i�e� the
probability of convergence during the ith turn�� Nevertheless we know that the borderline is located
between log��k��i� k��� and log���i� �������

De�nition of rotating strategy Expectation time

�i� tri � k� � ��n� �� � ��k�����n���

�i 	M� tri � log��k��i� k�������
and tri � tri�� 	 �k� bounded

�i 	M� log��k��i� k������ � tri � log��i� ��
and tri � tri�� 	 �k� !!!

�i 	M� log��i� �� � tri � log��k��i� k���
and tri � tri�� 	 �k� unbounded
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