
Self-Stabilizing implementation of atomic register by regular

register in network framework

Rapport de Recherche LRI no 1449

Lisa Higham Colette Johnen
Computer Science Departement Laboratoire de Recherche en Informatique

University of Calgary CNRS{Universit�e de Paris-Sud 11
Canada France

higham@cpsc.ugalgary.ca colette@lri.fr

Abstract In shared-registers communication model for distribued systems, neighbouring proces-
sors communicate by reading or writing shared registers. Variants of shared communication register
models occur in the literature. In this paper we study the variants where each processor owns a
single-writer/multi-reader register. Each register is writable by this owner and readable by each
neighbour of the owner. Two comunication models using this type of registers exists, they are de-
termined by selecting the register type (atomic or regular): atomic-statemodel, regular-state model.
We present a self-stabilizing compiler to transform an algorithm under the atomic-state model into
one under the regular-state model. The presented algorithm does not require the participation of
any processor once its out-register has a stabilized content. Moreover the compiler preserves the
silent property.
Keywords: distributed algorithms, communication models, regular registers, atomic registers,
self-stabilization

R�esum�e: Dans ce papier, nous int�eressons aux mod�eles de communication par des registres
partag�es dans le cadre des syst�eme distribu�e : Les processeurs voisins communique via un registre
partag�e. Des variantes de ce mod�ele de communication existent. Dans ce papier, nous �etudions les
variantes o�u chaque processor poss�ede un seul registre du type \mono-�ecrivain, multi-lecteurs", ce
registre est lisible par tous les voisins de son propri�etaire. Deux mod�eles existent, ils sont d�etermin�es
par le type du registre (atomique ou r�egulier) : atomic-state mod�ele et le regular-state mod�ele.
Nous pr�esentons un compilateur qui transforme un algorithme con�cus atomic-state mod�ele en un
algorithme qui s'ex�ecute sur le regular-state mod�ele. Une fois que le contenu d'un registre est
correct, le propri�etaire de ce registre peut n'e�ectuer aucune op�eration.. Notre compilateur pr�eserve
donc la propri�et�e de silence.
Mots cl�es: algorithmes r�epartis, mod�ele de comminication, registre r�egulier, registre atomique,
auto-stabilization.

1

1 Introduction

There is a proliferation of models for distributed computing, consisting of both shared memory
and message passign paradigms. Di�erent communities adopt di�erent variants as the "standard"
model for their research setting. Dolev [4] introduced an read/write atomicity model for self-
stabilizing algorithms to better capture the actual possible communication between processors. In
their model, for each link between two processors, there are two single-writer/single-reader atomic
registers, each one writable by one processor and readable by the other [4, 2]. This model can be
used to simulate a message passing setting. Let us call this model the atomic-link model. There
is, however, an important distinction between the two variants of read/write atomicity assumed
in the self-stabilization literature. In several papers, the read/write atomicity model assumes that
a single-writer/multi-reader atomic register resides at each processor and each processor owns the
registers that it holds [12]. Each such register is writable by the owner and readable by each
neighbour of the owner. Let us call this model the atomic-state model. In both the atomic-state
and atomic-link models, an atomic step by a processor consists of either reading or writing one of
the available registers.

In the other hand, the consistency condition under concurrent access is a very important charac-
teristic of a register. In this paper, we are interested by two of the three consistency conditions
presented by Lamport [10] in increasing order of strength: regular and atomic. Program designs
are lot easier with atomic registers than with regular registers but the hardware implementation of
an atomic register is costlier than the implemetation of a regular register. This leads us to consider
four models determined by selecting the register types (atomic or regular) and the register locations
(processors or links).

This paper addressees the di�erences between state communication models, and the design of
fault-tolerant compilers from atomic-state model to regular-state model.

One way of dealing with the large variety of models is to �rst design for a more abstract or simpler
model and then exploit conversion techniques to transform the �rst solution to one for a more
realistic model. As the size and complexity of networks increases, the likelihood of failure of a
component somewhere in the system increases. This motivates us to design compilers that have
built-in fault-tolerance. The fault-tolerant model considered in this paper is self-stabilization, which
is intended to capture recovery of a distributed system from transient errors of components.

Related research Wait free (but not self-stabilizing) transformation from one register model to
another one have been extensively studied [1, 5, 11, 13]. Hoepman, Papatrianfa�ou and Tsigas [9]
presented self-stabilizing versions of well-known implementations of shared register. For instance,
they present a wait-free self-stabilizing implementation of a multi-writer/multi-reader atomic reg-
ister using single-writer/dual-reader regular registers of unbounded size. These implementations
require globally shared memory. In the globally shared memory model - where any processor can
share register with any other processor, i.e. can communicate with any other processor -

Dolev and Herman [3] presented versions of Dijkstra's algorithm that are correct for regular register
or safe register, rather than just atomic registers.

2

In [7], we have established that there is no general wait-free compiler from atomic-state networks to
atomic-link networks. The proof proceeds by showing that any such compiler would require shared
registers between any two processors, which is not the case in general networks. The proof relies
heavily on the proof ([13], page 222) that in any wait-free construction of a single-writer/multi-
reader atomic register from single-writer/single-reader atomic registers, some reader must write.
In [7], we also present a self-stabilizing compiler from networks where neighbours communicate via
atomic-state registers to systems where neighbours communicate via atomic-link registers. The
presented compiler does not preserve the silence property.

Paper contributions In section 2, we formally present basic communication models based on
shared registers between neighbours. We give the formal de�nition of a compiler from distributed
systems where neighbours communicate via atomic registers to another distributed system where
neighbours communicate via regular registers. In section 3, we present a self-stabilizing compiler
from distributed systems on network graph where neighbours communicate via atomic-state reg-
isters in systems where neighbours comminicate via regular-state registers. In section 5, we give
concluding remarks and we prove that the compiled algorithm is silent if the initial algorithm was
silent.

2 De�nitions

2.1 Distributed Systems

Shared registers Let R be a single-writer/multi-reader register that can contain any value in
domain T . R supports only the operations read and write, each of which has a time interval
corresponding to the time between the operation invocation and its response. Because there is only
one writer, write operations to R happen sequentially, so they cannot overlap. read operations,
however, may overlap each other and may overlap a write. Lamport [10] de�ned several kinds of
such registers depending of the semantics when read and write operations overlap. Let I be a
set of read and write operations labelled with their time intervals. Register R is regular if each
read that does not overlap any write returns the value of the most recent preceding write, and
any read that overlaps a write returns either the most recent preceding write or the value of
an overlapping write. A sequence of read and write operation intervals on a regular register
is valid for regular registers if each read interval in the sequence satis�es this condition. Register
R is atomic if it is regular, and, if a read overlaps a write and returns the value being written,
then any subsequent read that overlaps the same write must not return the value of a preceding
write. A sequence of read and write operation intervals on an atomic register is valid for atomic
registers (or just valid) if each read interval in the sequence satis�es this condition.

Network models A distributed network can be modelled by a graph G = (V;E) where V is a
set of processors and an edge hpqi 2 E if and only if processors p and q can communicate directly.
Several variants have been de�ned depending on the precise meaning of \communicate directly".
In this paper we consider several variants where each processor uses a collection of local registers

3

accessible only to itself and communicates with its neighbours via shared registers. The type of
register and the way these registers are shared distinguishes the various models.

In the atomic-state network model, each processor p owns a single-writer multi-reader shared atomic
register Rp, which is writable by p and readable by each of the p's neighbours. In one step a
processor can either read an atomic register of one of its neighbours (storing its value into its own
local variables) or write its own shared atomic register. In an atomic-state network model, the
write and read operations are denoted:

� atomic-write(R, �) to denote the write of value � to the shared register R.

� � �atomic-read(R) to denote the read of the shared register R that returns the value �.

The regular-state network model is the same as the atomic-state model except that the shared
registers are regular rather than atomic. The write and read operations
are denoted regular-write(R, �) and � �regular-read(R) respectively.

Distributed algorithms, distributed systems A distributed algorithm is an assignment of a
program to each processor in the network, and this assignment gives rise to a distributed system.
The assigned program must use only the register types and operations available in the network
model.

Con�gurations and computations A con�guration of a distributed system is a collection
of values assigned to all the registers of the system. In a computation step, several processors
simultaneously execute the next step of their programs. A computation of a distributed system
is a maximal sequences of con�gurations that are reached by consecutive computation steps. In
the atomic-state model and in the regular-state model, one can assume that only one processor
performs a move during a computation steps because all compuation steps are serializable.

Distributed problems and solutions Without loss of generality we assume that a distributed
computation problem is speci�ed as a predicate over computations. con�gurations are required.
A (deterministic) distributed algorithm Alg solves problem P network class N if for any network
N 2 N all computations of algorithm Alg on N satis�es predicate P .

2.2 Self-Stabilization

Informally, an algorithm is self-stabilizing if after a burst of transient errors of some components
of a distributed system (which leaves the system in an arbitrary con�guration) the system recovers
and returns to the speci�ed behavior. Let P be a predicate de�ned on con�gurations. The set of
con�gurations verifying P is an attractor i�

convergence: starting from any con�guration, any computation reaches a con�guration
satisfying P.

4

closure: the reached con�guration from any con�guration satisfying P by any computation
step satis�es P.

A distributed system is self-stabilizing to L (L be a predicate de�ned on con�gurations) i�
convergence and closure: The set of con�gurations verifying L is an attractor.

correctness: Any computation from a con�guration satisfying L have a correct behavior.

The predicate L is called a legitimacy predicate and when the system has converged to a con�gu-
ration satisfying L we say it has stabilized.

2.3 System transformations and compilers

A transformation of one system on a speci�ed network model to a system on another network model
(called the target model) is achieved by transforming each operation available at the speci�cation
level to a program of operations available in the target model. For example, let G be a graph; we
denote by AS(G) the atomic-state network with topology G, and we denote by RS(G) the regular-
state network with topology G. To transform an algorithm for AS(G) to an algorithm for RS(G) we
replace each atomic-write and atomic-read by every processor p in AS(G) with a program for p
in RS(G) that uses only local operations and the operations regular-write and regular-read.
Thus a program transformation from AS(G) to RS(G) is just a mapping. �(atomic-write(R, �)),
and �(atomic-read(R)) are programs whose operations are on registers in RS(G) and such that
�(atomic-read(R)) returns a value. Moreover the programs are correct, meaning that during the
execution of one of these programs, a processor p does write operation (resp. read) on register(s)
writable by p (resp. readable by p).

We are concerned with program transformations from atomic-state model to regular-state model
that preserve correctness.

Let Atomic-alg be an program for the atomic state network AS(G). Let � be a program transfor-
mation from AS(G) to thr regular-state network RS(G). A computation C of �(Atomic-alg) on
RS(G) is Linearizable if the collection of write and read operations in C correct and valid for
atomic registers. A read (resp. write) operation by the processor p is correct if it contains only
regular-read and regular-write operations that p may perform according the topology G. It
is straightforward to check that the validity condition is the same as Linearizability as used by Lam-
port [10] and named and used by Herlihy and Wing [6]. That is, for a Linearizable computation,
there is a linearization point for each exection of �(o) in RS(G) between the invocation and re-
sponse of �(o) such that with these executions ordered according to their linearization point, each
�(atomic-read) returns the value of the most recent preceding �(atomic-write) to the same
register. The algorithm �(Atomic-alg) implements Atomic-alg on RS(G) if every computation of
�(Atomic-alg) is Linearizable. In this case �(Atomic-alg) is an implementation of Atomic-alg on
RS(G)

A compiler from atomic-state model on graph G to the regular-state network model on the same
graph for a class of algorithms A is a transformation that implements every Alg 2 A on the regular-
state model on graph G. A transformation is a self-stabilizing compiler if it is a compiler and it
maps self-stabilizing systems to self-stabilizing systems.

5

3 Self-stabilizing Compiler from atomic-state to regular-state

Let A be the set of algorithms for the atomic-state model that satisfy:
every processor executes at least one time �(atomic-write) procedure after any transient
failures.

We will show that Algorithm 1 is a self-stabilizing compiler from atomic-state networks to regular-
state networks for all algorithms in A.

A �(atomic-write) execution by a processor p has three phases. During the �rst phase, p selects
the �rst color not used by its neighbours (see the code of the function setColor in algorithm 1).
The second phase terminates at the end of unsafe section, the �rst action of this phase is setting
Rp.Wflag to value 0. It is during this phase that p writes the new state and the new color, in
its out-register associated with the Wflag value: 0. A p's neighbour that reads the new value
associated with the
ag 0 cannot used immediatly this new state: it has to wait. The ending time
of the second phase is the linearization point of the �(atomic-write) execution (program counter
is at [Wlp]. During the third phase, p sets the Wflag �eld of its out-register to 1. Now the p's
neighbours can used the new state.

During a �(atomic-read) execution, if a regular-read operation returns a state s associated
with the
ag 1, then the �(atomic-read) execution terminates (the returned value is s). Otherwise,
a �(atomic-read) execution is done in two steps. First step, the processor memorizes the value
of state �eld (s) and color �eld of the readed register. During the second step, the processor does
regular-read operations until color �eld of readed register has changed. The returned value is
s.

4 Algorithm analysis

De�nition 1 The regular-write and regular-read operations are not atomic; they take time
to complete. We denote by tI(o) the invocation time of o and by tR(o) the response time of o. If
o is a regular-write operation, we name res(o) the record returned. res(o) has three �elds :
state, color and Wflag.

In self-stabilizing framework, a computation may start in any abritary state. The processors start
executing their code at any point. Such computations happen when a transient error has alterated
the program counter value. If initially the program counter is inside the �(atomic-write) (resp.
�(atomic-read)) code, the processor does a partial �(atomic-write) (resp. �(atomic-read))
partial execution. For each processor, only its �rst �(atomic-write) or �(atomic-read) execution
may be partial.

De�nition 2 Let p be a processor.
st(i; p) denote the start time of the ith call of �(atomic-write) by processor p.

et(i; p) denote the end time of the ith call of �(atomic-write) by processor p.

6

Algorithm 1 Self-stabilizing compiler from atomic-state systems to regular-state systems

Constant :
B a positive integer greater than maximun degree in the network

Structure of a regular register :
R= (state, color, Wflag) where state �eld has state values of the initial algorithm, color takes

value in [1; B], and Wflag is a boolean

Local Variables on p :
local R - local copy of the content of Rp

8q 2 N :p, (N :p is the neighbours set of p), local Rq - local copy of the content of Rq

Code on the processor p :
function setColor()

local variable at the function : freeColors is a set of colors (i.e. integers)
FreeColors := set of positive integer less or equal to B
For every neighbour q of p do

local Rq �regular-read(Rq);
FreeColors := FreeColors - f local Rq.color g

done
return min fc such that c 2 FreeColorsg;

�(atomic-write)(Rp, new state)
local R.color := setColor(); local R.Wflag := 0;

[**** begin of the unsafe section ****]
local R.state := new state; regular-write(Rp, local R);

[**** end of the unsafe section ****]
[Wlp] local R.Wflag := 1; regular-write(Rp, local R);

�(atomic-read)(Rq)
local variables at the procedure : color, state, and step (a boolean variable)

step := 0;
while True do

local Rq �regular-read(Rq)
if (local Rq.Wflag == 1) then return local Rq.state; �
if (step == 1) and (color 6= local Rq.color) then return state; �
if (step == 0) then

step := 1; color := local Rq.color; state := local Rq.state; �
local R.color := color; regular-write(Rp, local R);

done

7

mt(i; p) denote the time during the ith call of �(atomic-write) by processor p where code
before the label [Wlp] has completed and the code of the following line has not begun to be
executed. If the ith call of �(atomic-write) by processor p does not exist then mt(i; p) has
the value +1.

The written state during the ith execution of �(atomic-write) by p is denoted st:i:p.

De�nition 3 Let p be a processor. Let Act be a complete �(atomic-read) execution by processor
p.

st(Act)denotes the start time of Act.

et(Act) denotes the end time of Act.

4.1 Terminaison

In this section, we prove that any execution (partial or complete) of �(atomic-write) and �(atomic-read)
terminates.

Observation 4.1 Let o an regular-read operation to get the state of p such that res(o):state =
st:i:p and res(O):Wflag = 0. This operation overlaps the time interval [st(i; p), et(i; p)).

Lemma 4.2 Let p be a processor. Any �(atomic-write) execution by p terminates.

Proof: We name � the degree of processor p. During the execution of �(atomic-write), p
performs: at most 5 + � internal operations, two regular-write operations, and � regular-

read operations. 2

Lemma 4.3 Let p be a processor. Any �(atomic-read) execution by p terminates.

Proof: Assume that a �(atomic-read) execution by q to read p state never ends. Thus, processor
q executes in�nitely often regular-read(Rp) operation.

First case - p executes a �nite number of times �(atomic-write). Rp will eventually keeps the
same value forever. Let us name t the ending time of the last execution of �(atomic-write) by p.
At and after t, we haveRp.Wflag = 1. Let us name of an regular-read(Rp) operation by q such
that tI(of) > t. of is the last regular-read(Rp) operation by q during the �(atomic-read)
execution because res(of):Wflag = 1.

Second case - p executes an in�nite number of times �(atomic-write). Let us name o1 an
regular-read(Rp) operation by q. After this operation, step will keep the value 1 forever;
Rq.color and color(q) keep the same value forever. It exists i such that tT (o1) < st(i; p) because p
executes an in�nite number of times �(atomic-write). According the code of �(atomic-write),
at and after mt(i; p) time, we have Rp.color 6= color(q). Let us name of an regular-read(Rp)
operation by q such that tI(of) >mt(i; p). of is the last regular-read(Rp) operation by q during
the �(atomic-read) execution because we have (res(of):color 6= color(q)) ^ (step = 1). 2

8

4.2 Convergence

In this section, we will prove the set of con�gurations veri�ying L is an attractor. First, we de�ne
the predicate L.

De�nition 4 Let p be a processor.
Pre Correct State(p) � [(local Rp:Wflag = 0) _ p's program counter is not in the unsafe section]

Correct state(p) � Pre Correct State(p) ^
[(local Rp:state = Rp:state) _

((local Rp:Wflag = 0) ^ p's program counter is not at the begining of line Wlp)].

L � 8p; Correct state(p) is veri�ed.

Lemma 4.4 Let p be a processor.
L1(p) =f con�gurations such that Pre Correct State(p) is veri�ed g is an attractor.

Proof: p does no verify the predicate Pre Correct State(p) only during its �rst two steps - in the
case where p's program counter was initially in the unsafe section of �(atomic-write) code. Once
the p's program counter is out of the unsafe section. Pre Correct State(p) is veri�ed.
Pre Correct State(p) is closed. Because, p sets the local Rp:Wflag value to 0 before entering in
the unsafe section. 2

Lemma 4.5 Let p be a processor.
L2(p) =f con�gurations such that Correct state(p) is veri�ed g is an attractor from any con�gura-
tion that satis�ed L1(p).

Proof: at time mt(1; p), we have (local Rp:state = Rp:state); thus L2(p) is veri�ed.
We will prove that once L1(p) is veri�ed, L2(p) is closed. Assume that local Rp:state value is equal
to the value of Rp.state. local Rp:state value will take a value distinct of Rp:state value only when
p's program counter is inside the unsafe section. But in this case, ((local Rp:Wflag = 0) ^ p's
program counter is not at the begining of line Wlp) is veri�ed. ((local Rp:Wflag = 0) ^ p's pro-
gram counter is not at the begining of line Wlp) stays veri�ed until p executes the last action of un-
safe section: regular-write(Rp, local R). After this action, we have (local Rp:state = Rp:state);
thus Correct state(p) is veri�ed. 2

4.3 Linearization Points

In this section, we de�ne for any �(atomic-write) and �(atomic-read) execution their lineariza-
tion point.

4.3.1 Linearization Points after mt(1; p)

Observation 4.6 Let i be an integer greater than 0.
Let ob an regular-read operation to get the state of p such that tR(ob) < mt(i; p). We have:
(res(ob):state 6= st:i:p) _ (res(ob):Wflag = 0).

9

Let oa an regular-read operation to get the state of p such that tI(oa) � mt(i+ 1; p). We have:
res(oa):state 6= st:i:p.

Lemma 4.7 Let Act be a complete �(atomic-read) execution by q to get the atomic state of p.
Assume that the returned value of Act is st:i:p with i � 1. The time interval of Act execution
overlaps with [mt(i; p), mt(i+ 1; p)).

Proof: The returned value (named res(Act)) is the �eld state of res(o) where o is one of the
regular-read operation performed by q during the execution Act.

First case : res(o):Wflag = 1. From the Observation 4.6, we conclude that if the returned value
of Act is st:i:p with i � 1, then the time interval of Act overlaps with [mt(i; p), mt(i+ 1; p)).

Second case : res(o):Wflag = 0. Notice that o is the �rst regular-read(Rp) operation in
Act. We have res(o) = (st:i:p; c; 0), thus the execution of Act starts before mt(i; p), according to
Observation 4.6. Later, during the execution of Act, q performs a regular-read operations o0

such that res(o0) = (s; c0; 0) with c 6= c0. We conclude that tI(o0) > st(i0; p) where i0 > i, according
to the �(atomic-write) code. Thus Act starts before mt(i; p) and ends after st(i0; p). Therefore
Act overlaps the time interval [mt(i; p), mt(i+ 1; p)). 2

Lemma 4.8 Let ct be a complete �(atomic-read) execution by q to get the atomic state of p.
Assume that the returned value of Act is s and it does not exist i > 0 such that s = st:i:p. The
time interval of Act execution overlaps with [0, mt(1; p)).

Proof: The returned value (named res(Act)) is the �eld state of res(o) where o is one of the
regular-read operation performed by q during the execution Act.

Let o an regular-read operation such that tI(o) � mt(1; p). It exists i > 0 such that
res(o):state = st:i:p. 2

De�nition 5 Linearization points after mt(1; p)
The linearization point of the ith call of �(atomic-write) by p is mt(i; p).

Let Act be a complete �(atomic-read) execution by q to get the atomic state of p. If the returned
value of Act is st:i:p where i � 1 then the linearization point of Act is �xed to any time during the
interval [mt(i; p), mt(i+ 1; p)) \ [st(Act), et(Act)].

4.3.2 Linearization Points before mt(1; p)

De�nition 6 We call lt(p) the the �rst time point where Correct state(p) is veri�ed.

Observation 4.9 We have lt(p) � mt(1; p).

Now, we study the behavior of the p before mt(1; p).

10

Observation 4.10 Before the time mt(1; p), the �eld Rp:state may have two consecutively distinct
values: its initial values, and then the value that was initially in local R:state(p), or the initial value
of new state(p).
The partial �(atomic-write) by p contains only one regular-write operation where the written
Wflag value is 0.

De�nition 7 We denote by st:-1:p the value of the �eld Rp:state at time 0.
We denote by st:0:p the state value written during the only partial execution of �(atomic-write).
We denoted by mt(0; p) the ending of the regular-write operation where st:0:p was written for
the �rst time in Rp.
If the partial execution of �(atomic-write) does not exist then we denote by st:0:p the value of
st:-1:p and mt(0; p)= 0.

Once L2(p) is reached, an execution of regular-write by p that changes the value of �eldRp:state

is done where local Rp:Wflag = 0. If this operation is done during the ith call of �(atomic-write)
by processor p, the ending time of the operation ismt(i; p). If this operation is done during a partial
execution of �(atomic-write) this time is mt(0; p).

Observation 4.11 Let oa an regular-read operation to get the state of p such that tI(oa) �
mt(1; p). We have: res(oa):state 6= st:-1:p and res(oa):state 6= st:0:p.
Assume that lt(p) < mt(0; p). Let ob an regular-read operation to get the state of p such that
LTp < tR(ob) < mt(0; p). We have: (res(ob):state = st:-1:p) _ (res(ob):Wflag = 0).

The proof of lemma 4.12 is similar to the proofs of lemma 4.7 and 4.8.

Lemma 4.12 Let Act be a complete �(atomic-read) execution by q to get the atomic state of p
such that st(Act) � lt(p).
Assume that the returned value of Act is st:0:p. The time interval of Act execution overlaps with
[SUP(lt(p),mt(0; p)), mt(1; p)).
Assume that the returned value of Act is st:-1:p. We have SUP(lt(p),mt(0; p)) = mt(0; p) and the
time interval of Act execution overlaps with [lt(p), mt(0; p)).

De�nition 8 Linearization points before mt(1; p)
The linearization point of the partial execution of �(atomic-write) by p is mt(0; p).

Let Act be a complete �(atomic-read) execution by q to get the atomic state of p. If st(Act) <
lt(p) then the linearization point of Act is �xed to any time during the interval [0, lt(p)].

Let Act be a complete �(atomic-read) execution by q to get the atomic state of p such that st(Act)
� lt(p). If the returned value of Act is st:0:p then the linearization point of Act is �xed to any
time during the interval [SUP(lt(p),mt(0; p)), mt(1; p)) \ [st(Act), et(Act)].
If the returned value of Act is s = st-1:p, then the linearization point of Act is �xed to any time
during the interval [lt(p), mt(0; p)) \ [st(Act), et(Act)].

11

4.4 Correctness

In this section, we prove that the linearization points occuring after L verifying are valid.

Theorem 4.13 Let p be a processor. All complete �(atomic-read) of p state and �(atomic-write)
by p such that their linearization points are after lt(p) are valid for atomic registers.

Proof: All �(atomic-read) of p state and �(atomic-write) by p such that their linearization
points are after lt(p) verify the following properties:

� The linearization point of Act (a atomic-read, or atomic-write operation) is between
the invocation and response of �(Act) - see lemma 4.7, 4.8 and 4.12.

� Once the �(atomic-read) and �(atomic-write) executions are ordered according to
their linearization point, each �(atomic-read) of p's state returns the value of the most
recent preceding �(atomic-write) by p - according to their linearization points de�nition.
see de�nition 5, and 8.

2

5 Conclusion

We have presented a compiler from atomic-state model to regular-state model. We have proven
that any partial or complete execution of �(atomic-read) and of �(atomic-write) terminates.
Our compiler is self-stabilizing: once a legitimate con�guration is reached, the executions of
�(atomic-read) and of �(atomic-write) program have a valid linearization point whatever the
performed computation.

Memory Space Complexity The size of each register needs by the compiled algorithm is
log(M) + 1 + B bits where M is the number of processor states of the algorithm Alg in A. The
compiled algorithm in regular-state model needs only bounded registers ifAlg requires only bounded
state registers.

Wait-freedom Informally, an operation is wait-free if no processor invoking the operation can be
forced to wait inde�nitely for another processor. Such robustness implies that a stopping failure (or
very slow execution) of any subset of processors cannot prevent another processor from correctly
completing its operation. Formally an operation on a shared object is wait-free if every invocation
of the operation completes in a �nite number of steps of the invoking processor regardless of
the number of steps taken by any other processor. �(atomic-write) is a wait free operation.
�(atomic-read) is not a wait free operation.
Using a wait free compiler from atomic-state models to regular-state model, one can design a wait
free compiler from atomic-state models to atomic-link model (see [8]). In [7], we have proven that
there is not wait-free compiler from atomic-state model to atomic-link model. Thus, it does not
exist a wait free compiler from atomic-state model to regular-state model.

12

Silence Notice that the compiler preserves the silence property. An algorithm is silence if once
a stable con�guration is reached processors will never change their state. Processors only check if
their neighbor states has changed or not. The silence property is desirable property in terms of
simplicity and communication overhead. Assume that the intial algorithm Alg is silent. After the
stabilization phase, (i) processors will only execute �(atomic-read) code; (ii) on any register R,
we have R.Wflag = 1. Thus, a �(atomic-read) execution does not require a regular-write

operation, once Alg is stabilized. Therefore, �(alg) is silent if Alg is silent. Thus the presented
compiler preserves the silence property.

References

[1] Uri Abraham. On interprocess communication and the implementation of multi-writer atomic
registers. Theoretical Computer Science, 149(2):257{298, 1995.

[2] S Dolev. Self-Stabilization. MIT Press, 2000.

[3] S Dolev and T Herman. Dijkstra's self-stabilizing algorithm in unsupportive environments. In
WSS01 Proceedings of the Fifth International Workshop on Self-Stabilizing Systems, Springer
LNCS:2194, pages 67{81, 2001.

[4] S Dolev, A Israeli, and S Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. Distributed Computing, 7(1):3{16, 1993.

[5] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multivalued atomic variables
from regular variables. J. ACM, 42(1):186{203, 1995.

[6] MP Herlihy and JM Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463{492, 1990.

[7] L. Higham and C. Johnen. "relationships between communication models in networks using
atomic registers". In IPDPS'2006 Proceedings of the 20th IEEE International Parallel &
Distributed Processing Symposium, 2006.

[8] L. Higham and C Johnen. Relationships between communication register models in networks.
Technical Report 1419, L.R.I, 2006.

[9] JH Hoepman, M Papatrianta�lou, and P Tsigas. Self-stabilization of wait-free shared memory
objects. Journal of Parallel and Distributed Computing, 62(5):818{842, 2002.

[10] L Lamport. On interprocess communication. Distributed Computing, 1(2):77{101, 1986.

[11] Ming Li, John Tromp, and Paul M. B. Vitányi. How to share concurrent wait-free
variables. J. ACM, 43(4):723{746, 1996.

[12] M Nesterenko and A Arora. Stabilization-preserving atomicity re�nement. Journal of Parallel
and Distributed Computing, 62(5):766{791, 2002.

13

[13] JL Welch and H Attiya. Distributed computing: fundamentals, simulations and advanced
topics. McGraw-Hill, Inc., 1998.

14

