
Self-Stabilizing Bounded Size Clustering Algorithm

Rapport de Recherche LRI no 1464

Colette Johnen, Le Huy Nguyen
Univ. Paris-Sud, CNRS

LRI, Univ. Paris-Sud, F-91405, Orsay Cedex, France
E-mail: colette@lri.fr, lehuy@lri.fr

Abstract

Clustering means partitioning nodes into groups called clusters, providing the network with a
hierarchical organization. Overall, clustering increases the scalability of network management.
For instance, clustering-based routing reduces the amount of routing information propagated
in the network; members of a cluster can share resources; and clustering can be used to reduce
the amount of information to store the network state.

A self-stabilizing algorithm, regardless of the initial system state, automatically converges to
a set of states that satisfy the problem speci�cation without external intervention. Due to
this property, self-stabilizing algorithms are adapted to highly dynamic networks as ad hoc
or sensors networks. From a con�guration resulting of topological changes, the system will
automatically converge to a con�guration consistent with the new topology.

In this paper, we present the �rst Self-stabilizing Clustering Algorithm where the obtained
clusters have a bounded size.

Keywords: Self-stabilization, Distributed algorithm, Clustering, Ad hoc network, sensors
network, bounded size cluster.

R�esum�e

Le probl�eme d'agr�egation consiste �a partitionner les noeuds d'un r�eseau en grappes, donc
de donner au r�eseau une organisation hi�erarchique. L'agr�egation facilite la gestion de r�eseau
de tr�es grande taille. Par exemple, les tables de routages sont plus petites dans le cas d'un
protocole de routage bas�e sur les grappes/clusters, ainsi que la quantit�e de l'information
�echang�ee en vu du routage.

Un algorithme auto-stabilisant, ind�ependant de l'�etat initial du syst�eme, converge vers des
�etats o�u le syst�eme fonctionn correctement dans un temps �ni. Grâce �a cette propri�et�e, les
algorithmes auto-stabilisants sont bien adapt�e aux r�eseaux dont la topologie
uctue tel que
les r�eseaux ad-hoc et les r�eseaux de sensors. Apr�es un changement de topologie, le syst�eme
converge automatiquement vers un fonctionnement adapt�e �a la nouvelle topologie.

Dans cet article, nous pr�esentons un algorithme auto-stabilisant d'agr�egation o�u les grappes
ont une taille born�ee.

Mots-cl�es: Auto-stabilization, Algorithme distribu�e, Agr�egation, R�eseau ad-hoc, r�eseau de
sensors, grappes de taille born�ee.

1

1 Introduction

An ad hoc network is a self-organized network, especially those with wireless or temporary
plug-in connections. Such a network may operate in a standalone fashion, or may be connected
to the larger Internet [7]. In these networks, mobile routers may move arbitrary often; thus,
the network's topology may change rapidly and unpredictably. Ad hoc networks cannot rely
on centralized and organized network management. Signi�cant examples include establishing
survivable, e�cient, dynamic communication for emergency/rescue operations, disaster relief
e�orts, and military networks. Meetings where participants create a temporary wireless ad
hoc network is another typical example. Quick deployment is needed in these situations.

Clustering means partitioning network nodes into groups called clusters, providing the net-
work with a hierarchical organization. A cluster is a connected subgraph of the global networks
composed of a clusterhead and ordinary nodes. Each node belongs to only one cluster. In
addition, a cluster is required to obey to certain constraints that are used for network manage-
ment, routing methods, resource allocation, etc. By dividing the network into non-overlapped
clusters, intra-cluster routing is administered by the clusterhead and inter-cluster routing can
be achieved in a reactive manner between clusterheads. Clustering-based routing reduces the
amount of routing information propagated in the network. Clustering facilitates the reuse
of resources, which improves the system capacity. Members of a cluster can share resources
such as software, memory space, printer, etc. Moreover, clustering can be used to reduce
the amount of information that is used to store the network state. Distant nodes outside of
a cluster usually do not need to know the detailed state this cluster. Indeed, an overview
of the cluster's state is generally su�cient for those distant nodes to make control decisions.
Thus, the clusterhead is typically in charge of collecting the state of nodes in its cluster and
constructing an overview of its cluster state.

For the above mentioned reasons, it is not surprising that several distributed clustering al-
gorithms have been proposed during the last ten years [1, 2, 3, 5, 6, 8, 13]. The clustering
algorithms in [1, 6] construct a spanning tree. Then the clusters are constructed on top of the
spanning tree. The clusterheads set do not necessarily form a dominating set (i.e., a node can
be at distance greater than 1 from its clusterhead). Two network architectures for MANET
(Mobile Ad hoc Wireless Network) are proposed in [8, 13] where nodes are organized into
clusters. The clusterheads form an independent set (i.e., clusterheads are not neighbors) and
a dominating set. The clusterheads are selected according to the value of their IDs. In [5], a
weight-based distributed clustering algorithm taking into account several parameters (node's
degree, transmission and battery power, node mobility) is presented. In a neighborhood, the
selected nodes are those that are the most suitable for the clusterhead role (i.e., a node opti-
mizing all the parameters). In [3], a Distributed and Mobility-Adaptive Clustering algorithm,
called DMAC, is presented. The clusterheads are selected according to a node's parameter
(called weight). The higher is the weight of a node, the more suitable this node is for the role
of clusterhead. An extended version of this algorithm, called Generalized DMAC (GDMAC),
is proposed in [2].

A system is self-stabilizing when regardless of its initial con�guration, it is guaranteed to reach
a legitimate con�guration in a �nite number of steps. A system which is not self-stabilizing
may stay in an illegitimate con�guration forever. The correctness of self-stabilizing algorithms
does not depend on initialization of variables, and a self-stabilizing algorithm converges to
some prede�ned stable con�guration starting from an arbitrary initial one. Self-stabilizing
algorithms are thus, inherently tolerant to transient faults in the system. Many self-stabilizing
algorithms can also adapt dynamically to changes in the network topology or system param-
eters (e.g., communication speed, number of nodes). A new con�guration resulting from a
topological changes is viewed as an inconsistent con�guration from which the system will con-

2

verge to a con�guration consistent with the new topology. Several self-stabilizing algorithms
for cluster formation and clusterhead selection have been proposed [4, 9, 10, 12, 14, 15]. [12]
presents a robust self-stabilizing version of DMAC under the synchronous schedule. A self-
stabilizing version of DMAC and GDMAC is presented in [10]. A robust and self-stabilizing
version of GDMAC is presented in [9]. In [4], a self-stabilizing link-cluster algorithm under
an asynchronous message-passing system model is presented. The de�nition of cluster is not
exactly the same as ours: an ordinary node can be at distance two of its clusterhead. The
presented clustering algorithm requires three types of messages, our algorithm adapted to
message passing model requires one type of messages. A self-stabilizing algorithm for cluster
formation is presented in [15]. A density criteria (de�ned in [14]) is used to select clusterhead:
a node v chooses in its neighborhood the node having the highest density. A v's neighbor-
hood contains all nodes at distance less or equal to 2 from v. Therefore, to choose clusterhead,
communication at distance 2 is required. Our algorithms build clusters on local information;
thus, it requires only communication between nodes at distance 1 of each others.

Contribution: The approaches for �nding the clusterheads do not produce an optimal
solution with respect to power usage and load balancing. In this paper, we propose a self-
stabilizing clustering algorithm which takes into consideration the number of nodes a clus-
terhead can handle, and transmission power, mobility, and battery power of the nodes. Our
algorithm guarantees that network nodes are partitioned into clusters: each cluster has at
most SizeBound nodes. Thus, our algorithm achieves load balancing by guarantee a thresh-
old (SizeBound) on the number of nodes that a clusterhead handle. Therefore, none of the
clusterheads are overloaded at any time. The clusterheads are chosen according their weight
value: the higher weight a node gets, the better clusterhead it is. Amount of bandwidth,
memory space or battery power of a processor could be used to determine weight values (the
computation of weight values is out the scope of this paper).

Our algorithm is designed for the state model. Nevertheless, it can be easily transformed
into an algorithm for the message-passing model. For this purpose, each node v periodically
broadcasts to its neighbors a message containing its state. Based on this message, v's neighbors
decide to update or not their variables. After a change in the value of v's state, node v
broadcasts to its neighbors its new state.

The paper is organized as follows. In section 2, the formal de�nition of self-stabilization is
presented. The well-balanced clustering properties is presented in the section 3. Our algorithm
is described in section 4. The self-stabilization proof is presented in section 5. Finally, the
time complexity of our algorithm is analyzed in section 6.

2 Model

We model a distributed system by an undirected graph G = (V;E) in which V is the set
of nodes and E is the set of edges. There is an edge (u; v) 2 E if and only if u and v can
directly communicate (u and v are said neighbors). The set of neighbors of a node v 2 V
will be denoted by Nv. At node v in the network is assigned an unique identi�er (ID). For
simplicity, here we identify each node with its ID and we denote both with v. We assume the
locally shared memory model of communication. Thus, each node v has a �nite set of local
variables such that the variables at a node v can be read by v and any neighbors of v, but
can be only modi�ed by v.

The code of each node v consists of a �nite set of rule. A rule is a guarded statement of
the form Rulei : Guardi ! Actioni, where Guardi is a boolean predicate involving the local
variables of v and the local variables of its neighbors, and Actioni is a program that modify

3

the local variables of v. Actioni is executed by node v only if the Guardi is satis�ed, in which
case we say the node v is enabled.

The state of a node is de�ned by the values of its local variables. A con�guration of a
distributed system G is an instance of the node states. In a terminal con�guration, no node
is enabled.

A computation e of a system G is a sequence of con�gurations c1; c2; ::: such that for i = 1; 2; :::;
the con�guration ci+1 is reached from ci by a single step of one or several enabled nodes. The
nodes execute their programs - code asynchronously. Therefore, the subset of enabled nodes
that do simultaneously their action during a computation step, is arbitrary chosen. A com-
putation is fair if any node in G that is continuously enabled along a computation, will
eventually perform an action. In this paper, we study only fair computation. A computation
is maximal if it reaches terminal con�guration or it is in�nite. Let C be the set of possible
con�gurations and E be the set of all possible computations of a system G. The set of com-
putations of G starting with the particular initial con�guration c 2 C will be denoted Ec. The
set of computations of E whose initial con�gurations are all elements of B 2 C is denoted as EB.

In this paper, we use the notion attractor [11] to de�ne self-stabilization.

De�nition 1 (Attractor). Let B3 and B2 be subsets of C. Then B3 is an attractor from B2
if and only if:
Convergence - 8e 2 EB2 ; (e = c1; c2; :::);

9i � 1 : ci 2 B3.

Closure - 8e 2 EB3 ; (e = c1; c2; :::);8i � 1; ci 2 B3.

Observation 1 Let B1, B2 and B3 be subsets of C.
If B3 is an attractor from B2 and if B2 is an attractor from B1 then B3 is an attractor from
B1.

The set of con�gurations matching the speci�cation of problems is called the set of legitimate
con�gurations, denoted as L. CnL denotes the set of illegitimate con�gurations.

De�nition 2 (Self-stabilization). A distributed system S is called self-stabilizing if and
only if there exists a non-empty set L � C such that the following conditions hold:
1. L is an attractor from C.

2. 8e 2 EL; e veri�es the speci�cation problem.

3 Well-balanced Clustering for network

We consider weighted networks, i.e., a weight wv is assigned to each node v 2 V of the
network. In ad hoc sensor networks, amount of bandwidth, memory space or battery power
of a processor could be used to determine weight values. The choice of the clusterheads will
be based on the weight associated to each node: the higher the weight of a node, the better
this node is suitable to be a clusterhead. The nodes having an unique identi�er (ID), one
may replace the weight variable by the uplet (weight; ID), to ensure that nodes have distinct
weight values. Therefore, without losing generality, we assume that each node has a di�erent
weight.

Clustering means partitioning its nodes into clusters, each one with a clusterhead and (possi-
bly) some ordinary nodes. In order to have well balanced clusters, the following well-balanced
clustering properties have to be satis�ed:

4

1. Every ordinary node always a�liates with one clusterhead of its neighborhood which
has higher weight than its weight (a�liation condition).

2. There is at most SizeBound nodes in a cluster (size condition).

3. If a clusterhead v has a neighboring clusterhead u such that wu > wv then the size of
u's cluster is SizeBound. (clusterhead neighboring condition).

The �rst requirement ensures that each ordinary node has direct access to its clusterhead (the
head of the cluster to which it belongs), allowing fast intra and inter cluster communications.
The �rst requirement also guarantees that each ordinary node a�liates with a suitable cluster
(i.e., a cluster whose the head has a larger weight than its weight). The cluster management
workload is proportional to the cluster size. Thus, the second requirement guarantees a
clusterhead will be not overburden by the management workload of its cluster : each cluster
has at most SizeBound members. The third requirement limits the number of clusters. A
node stays clusterhead only if cannot join an existing cluster : in its neighborhood, all suitable
clusters are full (i.e., they have SizeBound members).

4 Self-stabilizing Bounded Clustering algorithm

Algorithm 1 : Variables and Macro of on v

Constants
wv : N; - is the weight of node v

SizeBound : N; - is the upper bound on a cluster size

Variables of node v
Chv: boolean; - indicate if v is or is not a clusterhead

Headv : IDs; - is the clusterhead of v

CDv : fIDsg - is the list of nodes that can choose v as a their clusterhead. In the case v
is an ordinary node, this list is empty.

Sv : N - is the size of v's cluster. If v is an ordinary node then Sv = 0.

Macros
v's neighbors could be clusterheads of v :

N+
v := fz 2 Nv : v 2 CDz ^ Chz = T ^

wz > wHeadv ^ wz > wvg;

The size of v's cluster :
Sizev := jfz 2 Nv : Headz = vgj;

Computation of CD2v :
begin

CD0v := fz 2 Nv : wHeadz < wv ^ wz < wvg;
if jCD0vj � SizeBound� Sizev then CD1v := CD0v;
else CD1v contains the SizeBound� Sizev smallest members of CD0v;
if CDv � CD1v [fw 2 Nv : Headw = vg then CD2v := CD1v;
else CD2v := ;;

end

The variables and macros are presented in Algorithm 1. Rules of the algorithm are pre-

5

sented in Algorithm 2.

The variable CDv help us to guarantee the size condition (i.e., at most SizeBound nodes
are in the v's cluster): only the nodes of CDv may integrate v's Cluster. V 's Cluster is
denoted Clusterv. For each clusterhead v, we use the macro CD2v to set CDv value. CD0v
is the set of v's neighbor that want to enter in the v's cluster (i.e., their clusterhead is
smaller than v). Only a subset of CD0v belongs to CD2v because we need to avoid that
jCDv [Clustervj > SizeBound. Otherwise, all nodes of CDv faster than v would integrate
the v's cluster before v action. After these moves, the v's cluster would no satisfy the size
condition.

Notation 1
Clusterv := fz 2 Nv : Headz = vg
Ps(v) � jCDv [Clustervj � SizeBound.

Algorithm 2 : Self-Stabilizing Clustering algorithm on v

Predicates
G0(v) � [(SHeadv > SizeBound) _ (Headv =2 Nv)

_ (ChHeadv = F) _ (wHeadv < wv)]

G11(v) � (Chv = F) ^ (N+
v = ;) ^ G0(v)

G12(v) � (Chv = T) ^ (N+
v = ;) ^ (Headv 6= v)

G1(v) = G11(v) _ G12(v)

G2(v) � (N+
v 6= ;)

G3(v) � (Chv = T) ^ [(Sv 6= Sizev) _ (CDv 6= CD2v)]

G4(v) � (Chv = F) ^ [(Sv 6= 0) _ (CDv 6= ;)]

Rules
R1(v) : G1(v)! Chv := T ; Sv := Sizev;CDv := CD2v; Headv := v;

R2(v) : G2(v)! Chv := F ; Sv := 0; CDv := ;;
Headv := maxwzfz 2 N+

v g;

R3(v) : :G1(v) ^ :G2(v) ^ G3(v)! Sv := Sizev; CDv := CD2v

R4(v) : :G1(v) ^ :G2(v) ^ G4(v)! Sv := 0; CDv := ;

Let us illustrate the computation of CD2 by an example. In the initial con�guration of the
Figure 1, the safety predicate is satis�ed (i.e., every node v satis�ed the predicate Ps(v)). In
this con�guration, the node having the biggest weight is node 15. All its neighbors want to
enter its cluster CD015 = N15 � Cluster15 = f3; 4; 7; 8g. Node 15 can allow only two nodes
to enter in its cluster. Otherwise its cluster could have more than 3 members. Therefore
CD115 = f3; 4g. During the computation step where node 15 updates CD, all nodes of the
current CD15 may and will integrate Cluster15. If we set CD15 to CD115, we would have
jCD15 [Cluster15j = jf2; 3; 4; 7; 8gj > 3. To ensure that 15's cluster will surely satisfy the
safety predicate after the computation step, CD15 is set to ;.

The macro N+
v help us to guarantee the clusterhead neighboring condition. N+

v contains the
list of v' neighbors that are better clusterheads for v than its current one. Node v will choose
the node of N+

v having the highest weight as its clusterhead (rule R2). The N+
v set contains

6

: Clusterhead node : Ordinary node
SizeBound=3

R3(15), R2(7), R2(8)

Head=3

Head=4 Head=15

Head=15

Head=15Head=15

2

78

Head=3

Head=4 Head=15

Head=7

Head=15

Initial configuration

2

Head=8

CD={8,7}

CD={}

Figure 1: : Example of CD computation

Head=15

2

3

4
Head=15Head=15

Head=15
10

S=4

Head=10

: Clusterhead node : Ordinary node
SizeBound=3

Initial configuration

Head=15

2

3

4
Head=15Head=15

Head=15 Head=15
10

S=3

configuration A

Head=15

2

3

4
Head=15Head=15

Head=15 Head=15
10

S=4

R3(15)

R1(10)

configuration B

R3(15)

Head=15

2

3

4
Head=15Head=15

Head=15
10

Head=10

S=3

Terminal configuration

Figure 2: : Example of convergence

7

neighbors of v verifying the following properties (1) they are clusterhead, (2) their weight is
bigger than the weight of the current clusterhead of v, (3) their weight is bigger than the
weight of v, and (4) they accept that v enters in their cluster (i.e., v belongs to their CD set).

We split the possibles cases where a node v has to change its local variables according to the
following mutually exclusive cases:
Case 1. v has to become a clusterhead (rule R1). In v's neighborhood, there is not suitable
clusterhead (i.e., N+

v is empty) and it belongs to a cluster having more than SizeBound
nodes or v does not satisfy the A�liation condition. In this case, G11(v) is satis�ed.

Case 2. v has to changed of cluster (rule R2). The set of N+
v is not empty: v has in

its neighborhood a more suitable clusterhead than its current one. In this case, G2(v) is
satis�ed.

Case 3. v has to change some local variable values without changing of cluster (it will stay
clusterhead or ordinary). If v is a clusterhead then G3(v) or G12(v) is satis�ed. If v is an
ordinary node then G4(v) is satis�ed.

Algorithm 2 is illustrated in Figure 2, in this example SizeBound = 3. Initially, there is
one cluster having 4 members (the size condition is not veri�ed). The node 10 will quit this
cluster, and will form a new cluster (action R1), once the only clusterhead (node 15) has
updated its S variable (action R3).

5 Proof of self-stabilization

In subsection 5.1, we prove that A2 is an attractor from C. Thus, from any safe con�guration,
the safety predicate holds continuously until the protocol converges to a legitimate con�gu-
ration. Such an example is given in �gure 3. Initially all clusters have less than 3 members,
this property is veri�ed along any computation reaching a legitimate con�guration.

De�nition 3 Let A2 be the set of safe con�gurations de�ned by fC j 8v : Ps(v) is satis�ed g.

A legitimate con�guration is a terminal con�guration where every node v satis�es Ps(v) and
CDv = ;.

In subsection 5.2, we prove that along any fair computation, a legitimate con�guration is
reached from any con�guration.

In subsection 5.3, we establish that a legitimate con�guration veri�es the well-balanced clus-
tering properties.

5.1 Safety

Notation 2 Let c be a con�guration. We denote CDv(c) the value of the CD variable of the
node v in c. We denote Clusterv(c) the value of the Cluster variable of the node v in c.

Observation 2 Assume that we have a computation step c1
cs
! c2. According to the macro

N+ and to the rule R2, Clusterv(c2) � (Clusterv(c1) [CDv(c1)).
Assume that v updates CDv during the computation step cs. According to the macro CD2v,

� CDv(c2) = ; or
jCDv(c2) [Clusterv(c1)j � SizeBound (i.e. CD1v(c1) = CDv(c2))

� CD1v(c1) \ Clusterv(c1) = ;.

8

Notation 3
Ps(v) � jCDv [Clustervj � SizeBound.
Pt(v) � CDv = ;.

Lemma 1 A2 is closed.

Proof: Assume that: (1) we have a con�guration c1 in which Ps(v) holds and (2) we have a
computation step c1

cs
! c2 reaching a con�guration not satisfying Ps(v). We will prove that

is a contradiction.
There exists at least a node z such that :

z =2 CDv(c1) [Clusterv(c1) and
z 2 CDv(c2) [Clusterv(c2).

During cs, v have modi�ed CDv to include z: z 2 CDv(c2) (see Observation 2); thus
CDv(c2) 6= ;. We have jCDv(c2) [Clusterv(c1)j � SizeBound.
Case 1: Clusterv(c2) � Clusterv(c1). Ps(v) is satis�ed in c2. That is a contradiction.
Case 2: Clusterv(c2) = fu1; :: umg [Clusterv(c1). According to the observation 2, we
have fu1; :: umg � CDv(c1).
According to the CD2v de�nition, CDv(c1) � (CDv(c2) [Clusterv(c1)).
We have jCDv(c2) [Clusterv(c1)j � SizeBound.
Thus jCDv(c2) [fu1; :: umg [Clusterv(c1)j � SizeBound.
We conclude that Ps(v) is satis�ed in c2. That is a contradiction. �

First, we establish that A1 is an attractor from C, then we prove that A2 is an attractor from
A1, in order to conclude that A2 is an attractor from C.

Lemma 2 A1 = fC j 8v : Ps(v) _ Pt(v) is satis�ed g is closed.

Proof:
Assume that we have a computation step cs, c1

cs
! c2 such that in c1, Ps(v) _ Pt(v) is

satis�ed; and Ps(v) _ Pt(v) is satis�ed in c2. As Ps(v) is closed, in c1, Ps(v) is not veri�ed.
We conclude that Pt(v) is veri�ed in c1 and Ps(v) _ Pt(v) is not satis�ed in c2 : v updates
the value CDv during cs.
Case 1: v is a clusterhead.
According to the observation 2, we have jCDv(c2) [Clusterv(c1)j � SizeBound or CDv(c2) =
;. In the �rst case, Ps(v) is satis�ed in c2 (there is a contradiction). In the latest case, we
have CDv(c2) = ;, thus, Pt(v) is still veri�ed in c2 (There is a contradiction).
Case 2: v is a ordinary node. After any update of CDv, we have CDv = ;, thus Pt(v) is
satis�ed. There is a contradiction. �

Lemma 3 Let a con�guration c in which Ps(v) _ Pt(v) is not satis�ed. v is enabled at c.

Proof:
Assume that v is an ordinary node. Till Pt(v) is not veri�ed R4(v) is enabled. Assume that
v is a clusterhead. In c, we have jCD1v [Clustervj = max(jClustervj; SizeBound) and
CDv 6= ; .
If CDv \ (CD1v [Clusterv) 6= CDv then CD2v = ;. Thus, G3(v) is satis�ed.
If CDv \ (CD1v [Clusterv) = CDv then
CD2v = CD1v. As Ps(v) is not satis�ed, jCDv [Clustervj > SizeBound. Thus,
jCD1v [Clustervj > SizeBound. We conclude that jCD1v [Clustervj = jClustervj,
thus jCD1vj = 0 (because CD1v \ Clusterv = ;). Therefore, G3(v) is satis�ed because
CDv 6= (CD2v = ;).
If G3(v) is satis�ed then R1(v), R2(v) or R3(v) is enabled. �

9

Lemma 4 Let A1 be the set of con�gurations de�ned by fC j 8v : Ps(v)_Pt(v) is satis�ed g.
Any computation of E reached a con�guration of A1.

Proof: Assume that a computation seq not reaching a con�guration of A1 exists. As the
predicate Ps(v)_Pt(v) is closed. There is a node v that never satisfying the predicate Ps(v)_
Pt(v) along the computation seq. Along the computation seq, v is always enabled (lemma 3),
thus v will in�nitely often perform a rule. Let cs be a computation step of the seq where v
perform an action : c1

cs
! c2. According to the assumption, the predicate Ps(v)_ Pt(v) is not

satis�ed in c2.
Any rule performed by v updates CDv. According to the observation 2, we have CDv(c2) = ;
or
jCDv(c2) [Clusterv(c1)j � SizeBound.
In the �rst case, c2 satis�es Pt(v). The second case is impossible, because
CDv(c1) � (CD1v(c1) [Clusterv(c1))

CD1v(c1) = CDv(c2)

jCDv(c1) [Clusterv(c1)j > SizeBound.

Ps(v) _ Pt(v) is satis�ed in c2; there is a contradiction. �

Lemma 5 Any computation of EA1 reached a con�guration of A2.

Proof: In a con�guration of A1, but not of A2, there is node v such that Pt(v) ^ :Ps(v) is
satis�ed. Till Ps(v) is not satis�ed, Pt(v) is satis�ed because A1 is closed. Thus, no node can
integrate Clusterv.
Case 1: Assume that v is an ordinary node. Clusterv 6= ;. We focus on a node u of Clusterv.
Because Chv = F , G11(u) or G2(u) is satis�ed forever. By fairness, u eventually performs the
rule R1(u) or the rule R2(u). After the u's action, u =2 Clusterv.
Thus, jClustervj = 0 � SizeBound eventually holds.
Case 2: Assume that v is a clusterhead.
We have Sizev > SizeBound. If Sv � SizeBound then G3(v) is satis�ed. v eventually
performs the rule R3. After the v's action, Sv = Sizev > SizeBound holds till jClustervj =
Sizev > SizeBound. We consider a node u of Clusterv. G11(u) or G2(u) is satis�ed till
Sizev > SizeBound, because SHeadu > SizeBound. By fairness, u eventually performs the
rule R1(u) or the rule R2(u). After this action, Sizev decreases, because u =2 Clusterv.
Eventually, we reach a con�guration where jClustervj = Sizev � SizeBound. �

Corollary 1
As = A2 \ fc 2 C j 8v : jClustervj � SizeBoundg is an attractor from C.

Following directly from Lemma 1 and 5, A2 is an attractor from A1. Following directly from
Lemma 2 and 4, A1 is an attractor from C. Thus A2 is an attractor from C. A2 = As, because
inA2, any node v veri�ed the following predicate jClustervj � jClusterv [CDvj � SizeBound.
�

5.2 Convergence

Lemma 6 Pg � (G12(v) = F) ^ (G4(v) = F).
A3 = As [fc 2 C j 8v : Pg(v) is satis�edg is an attractor from C.

Proof: If v veri�es the predicate G12(v) then v is enabled and will stay enabled up to the
time where v performs R1(v). As all computations are fair, v eventually performs R1(v).

10

After this action G12(v) is never satis�ed.
If v veri�es the predicate G4(v) then v is enabled and will stay enabled up to the time where v
performs R4(v). As all computations are fair, v eventually performs R4(v). After this action
G4(v) is never satis�ed. �

Lemma 7 A4 = A3 [fc 2 C j 8v : Headv 2 Nv [fvgg is an attractor from C.

Proof: In A3, if N+
v = ; then G1(v) is satis�ed. As all computations are fair, v eventually

performs R1(v): we have Headv = v.
In A3, if N+

v 6= ; then G2(v) is satis�ed. As all computations are fair, v eventually performs
R2(v); we get Headv 2 Nv.
Once Headv 2 Nv [fvg is satis�ed, it is never falsi�ed (see the rule actions). �

The convergence is done in step. At the end of the ith step the con�guration set L"i is
reached : all nodes of Seti has chosen forever their clusterhead. We de�ne Seti and L"i (for
any value of i) as follows.

Notation 4
L"0 = A4 and Set0 = ;.

Vi is the set of nodes that do not belong to Seti :
Vi = V � Seti.

vhi is the node with the highest weight in Vi.

Li+1 = L"i \ fc 2 C j Chvhi = Tg

SizeBoundi is the value min(SizeBound; jNvhi \ Vij).

L0i+1 = Li+1 \ fc 2 C j jClustervhi j = SizeBoundig.

Seti+1 = Seti [fvhig [Clustervhi.

L"i+1 = L0i+1 \ fc 2 C j 8v 2 Seti+1 : CDv = ;g.

The convergence steps are illustrated in �gure 3 where the weight of nodes are ordered as the
following: Xi�1 > Yi > Xi > Yi+1. Initially A4 is reached. After the �rst computation step,
L1 is reached (the node having the largest weight, X0, is a clusterhead). After the second
computation step L01 is reached (ClusterX0 = fY1g = NX0). After the third computation
step, L2 is reached, X1, the node having the largest weight of V � fX0; Y1g, is a clusterhead.
After the fourth computation step, L02 is reached (ClusterX1 = fY2g = NX1 � fX0; Y1g).

Observation 3 Let v be a node of Vi.
We have, by de�nition of Vi, Headv =2 Seti.
If Seti 6= V then (Seti � Seti+1) and (Seti 6= Seti+1).

At each step, Seti increases up to contain all nodes. Once Seti = V , we will prove that a
legitimate con�guration is reached.

Lemma 8 For any value of i, Li+1 is an attractor from C, assuming that L"i is an attractor
from C.

Proof: vhi is the node with the biggest weight in Vi. Let z be in Nvhi . If z 2 Seti, we have
CDz = ; (see de�nition of L"0 or L"i+1). So N+

vhi is empty: vhi never executes R2(vhi).
According to the observation 3, we have Headvhi 2 Vi, thus by de�nition of vhi, wHeadvhi �
wvhi .
If vhi is not a clusterhead then G1(vhi) is satis�ed because wHeadvhi < wvhi . As all compu-
tations are fair, vhi eventually performs R1(vhi). After that Chvhi = T and Headvhi = vhi,
forever. �

11

Lemma 9 Let c1 be a con�guration of Li+1. Let cs be a computation step from c1: c1
cs
! c2.

Clustervhi(c1) � Clustervhi(c2).

Proof:
Let u be a node of Clustervhi (i.e., Headu = vhi). In Li+1, any neighbor z of u such that wz >
wvhi is in Seti: CDz = ;. Thus z =2 N+

u ; we conclude thatN
+
u is empty forever. Thus, G2(u) is

never enabled. In Li+1, G1(u) is also not enabled because [(SHeadu � SizeBound) ^ (Headu 2
Nu) ^ (ChHeadu = T) ^ (wHeadu > wu)]. We conclude that the node u stays in the Cluster
of vhi forever. �

Lemma 10 Let c1 be a con�guration of Li+1. Let cs be a computation step from c1: c1
cs
! c2.

We have CD1vhi(c2) 6= CD1vhi(c1) if only if Clustervhi(c1) 6= Clustervhi(c2).

Proof:
In any con�guration c1 of Li+1, we always have CD0vhi(c1) = Nvhi \ Vi � Clustervhi(c1);
and CD1vhi(c1) contains the SizeBound� jClustervhi(c1)j smallest members of CD0vhi(c1).
We have CD1vhi(c2) 6= CD1vhi(c1) only if one of the following cases happens:
� a node of Clustervhi(c1) changes of clusterhead during cs. It is impossible see lemma 9.

� a node u integrates Clustervhi during cs. We have Clustervhi(c1) 6= Clustervhi(c2).
�

Lemma 11 For any value of i, L0i+1 is an attractor from C assuming that Li+1 is an attractor
from C.

Proof: Once Li+1 is reached, we have Chvhi = T and Headvhi = vhi. Only the nodes of Vi
may be in the Cluster of vhi, therefore, we have jClustervhi j � SizeBoundi.
Assume that size of Clustervhi is forever smaller than SizeBoundi. As no node can quit
Clustervhi (lemma 9), Clustervhi will eventually stay identical forever. According lemma 10,
CD1vhi will eventually stay identical forever.
CD1vhi contains SizeBoundi � jClustervhi j nodes.

Till CDvhi 6= CD1vhi , R3(vhi) is enabled. By fairness, R3(vhi) action will be eventu-
ally performed. After R3(vhi) action, we have CDvhi = ; or CDvhi = CD1vhi (now,
CDvhi � (CD1vhi[Clustervhi)). If CDvhi 6= CD1vhi R3(vhi) is still enabled forever. By fair-
ness, R3(vhi) action will be again performed. After R3(vhi) action, we have CDvhi = CD1vhi .
We conclude that any computation reaches a con�guration where CDvhi = CD1vhi 6= ;. Now,
R3(vhi) is never enabled (i.e., CDvhi is always equal to CDvhi).

Le u be a node of CDvhi . By de�nition of vhi and Vi, we have wHeadu < wvhi and wu < wvhi ,
thus vhi 2 N+

u . Any neighbor z of u such that wz > wvhi is in Seti by de�nition of vhi.
Thus CDz = ;. Therefore vhi is the node of N+

u having the biggest weight. R2(u) is enabled
forever. By fairness, R2(u) action will be eventually performed: u will choose vhi as its
clusterhead. There is a contradiction, Clustervhi does not stay identical forever. �

Lemma 12 For any value of i, L"i+1 is an attractor from C, assuming that L0i+1 is an
attractor from C.

Proof: Let v be a node of Seti+1 that does not belong to Seti. If v is an ordinary node,
CDv = ; because A3 is a subset of L"i+1. If v is a clusterhead then v = vhi. By de�nition
of L0i+1, 8u 2 Nv : wHeadu � wv or jClustervj = SizeBound. Thus CD2v = ;, in L0i+1. If
CDv 6= ;, then R3(v) is enabled forever. Once the rule is executed, CDv = ; holds. �

12

Theorem 1 Let A5 a con�gurations set de�ned by A5 = A4 \ fc 2 C j 8v : CDv = ;g. The
system eventually reaches a terminal con�guration of A5.

Proof: According to the Observation 3, Seti � Seti+1. Thus, there exists j such that
Setj = V .
L"j is an attractor because L"0, Li, L0i, and L"i are the attractors for any value of i � j. In
L"j , the rule R1, the rule R2, and the rule R4 are not enabled on any node. Only the rule
R3 may be enabled forever, on a node v. By fairness, v will execute R3(v), then v is never
enabled. We conclude that a terminal con�guration of L00i will be reached. Any con�guration
of L00i belong to A5. �

5.3 Correctness

Theorem 2 Once a terminal con�guration of A5 is reached, the well-balanced clustering prop-
erties are satis�ed.

Proof: In a terminal con�guration of A5, for every node z, we have Gi(z) = F : i = 1::4 and
CDz = ; (see theorem 1).
Case 1. z is an ordinary node.
G11(z) = F implies (Headz 2 Nv) ^ (ChHeadz = T) and (wHeadz > wz). Thus, z satis�es
a�liation condition.
Case 2. z is a clusterhead node. Following Corollary 1, in a terminal con�guration Sz �
SizeBound, thus, the size condition is satis�ed.
Assume that there exists a node v such that v 2 Nz : (Chv = T) ^ (wv > wz) ^ (Sizev <
SizeBound). In this case, according to the macro CD0v, we have z 2 CD0v, because
wHeadz = wz < wv. As Sizev < SizeBound, according to the macro CD1v, we have
CD1v 6= ;. We also have CDv = ; then G3(v) = T (this is a contrary). We conclude
that every clusterhead v in z neighborhood veri�es (wv � wz) or (Sv = SizeBound). Thus
the clusterhead neighboring condition is satis�ed. �

6 Convergence times

In this section, we compute the time needed to reach a safe con�guration and the time needed
to reach a legitimate con�guration. We consider synchronous computation, in which every
process performs its code simultaneously. Thus, all enabled process perform a rule during
each computation step.

Studying proofs that As is an attractor, help us to establish the number of synchronous
computation steps needed to reach a safe con�guration. A node v, that does not satisfy
Ps(v) _ Pt(v), is enabled (see lemma 3) after any action of v, Ps(v) _ Pt(v) is satis�ed (see the
proof of lemma 4). Thus, A1 is reached after one synchronous computation step. Two more
synchronous computation step are needed to reach A2. After a synchronous computation
step, if Sizev > SizeBound then Sv > SizeBound. Thus, all ordinary nodes u such that
SizeHeadu > SizeBound, are enabled. During the third synchronous computation steps these
nodes u will quit their cluster (proof of lemma 5). Therefore, a safe con�guration is reached,
after at most 3 synchronous computation steps (proof of corollary 1).

The stabilization time is the maximum number of computation steps needed to reach a sta-
bilized con�guration from an arbitrary initial one. Figure 3 presents a scenario to measure
stabilization time, in the worst case: the initial con�guration is the worst one. In this con�g-
uration (Figure 3.a), there are (N � 1)=2 clusters where N is the network size. Each cluster
Ci (i > 1) includes a clusterhead Yi and a ordinary node Xi+1. The weight of nodes are

13

X 1

X 1

X 1

CD={Y }1

CD={Y }2

X 1 Y 2 X 2X 0 Y 3Y 1

Y 3

: Clusterhead node : Ordinary node

Y 2 X 2X 0 Y 3Y 1

(a) Initial configuration

Y 2 X 2X 0 Y 3Y 1

Sizebound=3

Y 2 X 2X 0 Y 3Y 1

CD={}

X 2Y 1 X 1X 0 Y 2

Terminal configuration

(c) Configuration after the 2nd computation step

(d) Configuration after the 3rd computation step

(b) Configuration after the 1st computation step

Figure 3: Stabilization time.

14

ordered as the following: Xi�1 > Yi > Xi > Yi+1. Initially, only the node X0 is enabled. X0
is not a clusterhead, and its has the largest weight of the system; thus G11(X0) is satis�ed.
In the �rst round X0 performs the rule R1. Now, Y1 is enabled, because N+

Y1 = fX0g; the
other nodes are still not enabled. Thus, during the second round, the node Y1 performs the
rule R2 to integrate X0's cluster. Then, X1 is enabled; the G11(X1) predicate is satis�ed
because ClHeadX1 = F . In the third round, X1 performs the rule R1, and so one. All nodes
will update their status; during a computation step, only one node changes its status.

The stabilization time is O(N).

References

[1] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in multi-hop
wireless networks. In The 20th Conference of the IEEE Communications Society (INFO-
COM'01), pages 1028{1037, 2001.

[2] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support in multi-
hop wireless networks. In Proceedings of the IEEE 50th International Vehicular Technol-
ogy Conference (VTC'99), pages 889{893, 1999.

[3] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the 1999 Inter-
national Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN'99),
pages 310{315, 1999.

[4] D. Bein, A. K. Datta, C. R. Jagganagari, and V. Villain. A self-stabilizing link-cluster
algorithm in mobile ad hoc networks. In Proceedings of the 8th International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN'05), pages 436{441, 2005.

[5] M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering algorithm for mo-
bile ad hoc networks. Journal of Cluster Computing, Special issue on Mobile Ad hoc
Networking, 5(2):193{204, 2002.

[6] Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks. In Proceedings of
the second ACM international workshop on Principles of mobile computing (POMC'02),
pages 31{37, 2002.

[7] M. Frodigh, P. Johansson, and P. Larsson. Wireless ad hoc networking: The art of
networking without a network. In Ericsson Review, No. 4, 2000.

[8] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network. Wireless
Networks, 1(3):255{265, 1995.

[9] C. Johnen and L. H. Nguyen. Robust self-stabilizing clustering algorithm. In Proceedings
of the 10th International Conference On Principles Of Distributed Systems, Springer
LNCS 4305 (OPODIS'06), pages 408{422, 2006.

[10] C. Johnen and L. H. Nguyen. Self-stabilizing weight-based clustering algorithm for ad hoc
sensor networks. In Proceedings of the Second International Workshop on Algorithmic
Aspects of Wireless Sensor Networks, Springer LNCS 4240 (ALGOSENSORS'06), pages
83{94, 2006.

[11] C. Johnen and S. Tixeuil. Route preserving stabilization. In Proceedings of the 6th In-
ternational Symposium on Self-stabilizing System, Springer LNCS 2704 (SSS'03), pages
184{198, 2003.

15

[12] H. Kakugawa and T. Masuzawa. A self-stabilizing minimal dominating set algorithm with
safe convergence. In Proceedings of the 8th IPDPS Workshop on Advances in Parallel
and Distributed Computational Models (APDCM'06), 2006.

[13] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. IEEE Journal
on Selected Areas in Communications, 15(7):1265{1275, 1997.

[14] N. Mitton, A. Busson, and E. Fleury. Self-organization in large scale ad hoc networks.
In Proceedings of the third Annual Mediterranean Ad Hoc Networking Workshop (MED-
HOC-NET'04), June 2004.

[15] N. Mitton, E. Fleury, I. Gu�erin-Lassous, and S. Tixeuil. Self-stabilization in self-organized
multihop wireless networks. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems Workshops (WWAN'05), pages 909{915, 2005.

16

