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Abstract

We study generalizations of Demuth’s Theorem, which states that the image of a
Martin-Löf random real under a tt-reduction is either computable or Turing equiv-
alent to a Martin-Löf random real. We show that Demuth’s Theorem holds for
Schnorr randomness and computable randomness (answering a question of Franklin),
but that it cannot be strengthened by replacing the Turing equivalence in the state-
ment of the theorem with wtt-equivalence. We also provide some additional results
about the Turing and tt-degrees of reals that are random with respect to some
computable measure.
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List of Changes Made:

In response to the comments of Reviewer #1:

(1) The title has been changed.
(2) The redundancy before the statement of theorems and definitions has

been removed.
(3) The prose has been streamlined (compared to the previous version).

In response to the comments of Reviewer #2:

(1) Explicit definitions of Turing functionals, wtt-functionals, and tt-functionals
have been included (see Definition 2.4 and the remarks preceding the def-
inition).

(2) The use of a Turing functional Ψ to compute a sufficiently fast-growing
function f : ω → ω in the proof of Proposition 5.9 (pg. 17) has been
replaced with a partial computable functional relative to an oracle (since



we define Turing functionals to be {0, 1}-valued, but the function f is
ω-valued).

(3) The unclarity about the use of the one-to-one correspondence between
sequences and reals has been addressed (in the comments at the end of
Section 1, pg. 3, and in the beginning of the proof of Theorem 3.4 in the
appendix, pg. 26).

(4) An explanation of how the universal Martin-Löf test factors in to the
proof of Theorem 3.5 is given after the proof of this theorem (at the top
of pg. 11).

(5) The proper attribution to Levin and Zvonkin of first studying sequences
random with respect to some computable measure is provided after Def-
inition 6.1 (pg. 19).

Additional changes:

(1) Section 2.4 is added, which clarifies the relationship between almost-total
functional and random reals.

(2) The discussion at the end of Section 6.1 was modified slightly (we incor-
rectly referred to 1-generics rather than weakly 1-generics in the previous
version).

1 Introduction

The main topic of this paper is a theorem of Oswald Demuth’s concerning
effective randomness. Demuth’s Theorem is often stated as follows. Given a
Martin-Löf random real x, every non-computable real y that x tt-computes is
in turn Turing equivalent to a Martin-Löf random real z. Demuth’s original
result (in the paper [Dem88]) is written using slightly outdated terminol-
ogy (Martin-Löf random reals are for example called “non-approximable”),
and has sometimes been mistranslated in modern parlance. For example, a
stronger version has repeatedly appeared in circulated drafts, talks, and even
in some published papers, which asserts that one can even require that y is
wtt-equivalent to z. This is for example the version given in [Fra08], where the
author further asks:

(a) whether z can further be required to be tt-equivalent to y; and

(b) whether Demuth’s Theorem also holds for Schnorr randomness.

In attempting to answer question (a), we realized that even the “wtt-version”
of Demuth’s Theorem was in fact false, as we will show below. We will also
answer question (b) positively.
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The rest of the paper is organized as follows. In the first half of the paper,
we study the generalization of Demuth’s Theorem to different notions of ef-
fective randomness. First, in Section 2 we provide the necessary background
on computable probability measures and their connections to strong reduc-
tions, leading to a proof of Demuth’s Theorem in Section 3. Then, we show in
Section 4 that the analogue of Demuth’s Theorem holds for other notions of
randomness, namely computable randomness and Schnorr randomness, even
though the proof requires some additional effort. In Section 5, we study the
“wtt-analogue” of Demuth’s Theorem and show that it fails for all notions
of randomness considered in the paper. The last section, Section 6, is a gen-
eral study of Turing degrees of reals that are random with respect to some
computable probability measure. For completeness, the proofs of previously
known results as well as technical lemmas needed in our discussion are given
in a separate appendix.

We assume that the reader is familiar with the basics of computability theory:
computable functions, partial computable functions, computably enumerable
sets, Turing functionals, Turing degrees, the Turing jump, and so on (see, for
instance, [Soa87]), as well as the basics of effective randomness (otherwise,
we refer the reader to [DH10] or [Nie09]). Let us fix some notation and
terminology. We denote by 2ω the set of infinite binary sequences, also known
as Cantor space. We denote the set of finite strings by 2<ω and the empty
string by ∅. Q2 is the set of dyadic rationals, i.e., multiples of a negative
power of 2. Given x ∈ 2ω and an integer n, x�n is the string that consists
of the first n bits of x, and x(n) is the (n + 1)st of x (so that x(0) is the
first bit of x). If σ is a string, and x is either a string or an infinite sequence,
then σ � x means that σ is a prefix of x. Given a string σ, the cylinder JσK
is the set of elements of 2ω having σ as a prefix. Moreover, given S ⊆ 2<ω,
JSK is defined to be the set

⋃
σ∈SJσK. An element x ∈ 2ω will commonly be

identified with the real
∑
n 2−x(n)−1, which belongs to [0, 1], and elements of

2ω will sometimes be referred to as reals. Note that this correspondence is not
one-to-one, but it becomes one-to-one if we remove dyadic rationals. We can
define an ordering ≤ on 2ω in terms of the standard ordering ≤ on [0,1], so
that given x, y ∈ 2ω, x ≤ y if and only if

∑
n 2−x(n)−1 ≤ ∑n 2−y(n)−1 (where ≤

should not be confused with �).

2 Background

Although Demuth’s Theorem at first glance does not appear to involve prob-
ability measures on 2ω (and, in fact, Demuth did not explicitly make use of
computable probability measures in the original proof of his theorem), the ap-
proach we take here will concern the probability measures induced by strong
Turing reductions. The main two types of reductions we will consider are those

3



induced by total Turing functionals (which are also known as tt-functionals)
and Turing functionals that are almost total, in a sense we will specify shortly.
To this end, in this section we will review the relevant material on (com-
putable) measures and Turing functionals, as well as the various notions of
effective randomness considered in this paper.

2.1 Computable measures

In this paper, we consider measures on the Cantor space 2ω or on the interval
[0, 1]. All the measures we consider are Borel probability measures. Therefore,
for the sake of concision we will use “measure” in place of “Borel probability
measure”.

A measure on 2ω assigns to each Borel set a real in [0, 1]. It is however suffi-
cient to consider the restriction of probability measures to cylinders. Indeed,
Carathéodory’s theorem from classical measure theory ensures that a func-
tion µ defined on cylinders which satisfies both µ(J∅K) = 1 and µ(JσK) =
µ(Jσ0K) + µ(Jσ1K) (for all σ), can be uniquely extended to a probability mea-
sure. We can therefore represent measures as functions from strings to reals,
where for all σ ∈ 2<ω, µ(σ) is the measure of the cylinder JσK. This concise
representation also allows us to talk about computable probability measures.

Definition 2.1 A probability measure µ on 2ω is computable if σ 7→ µ(σ)
is computable as a real-valued function, i.e. if there is a computable function
µ̂ : 2<ω × ω → Q2 such that

|µ(σ)− µ̂(σ, i)| ≤ 2−i

for every σ ∈ 2<ω and i ∈ ω.We further say that µ is exactly computable
if for all σ, µ(σ) ∈ Q2 and σ 7→ µ(σ) is computable as a function from 2<ω

to Q2.

In what follows λ will refer exclusively to the Lebesgue measure on 2ω, where
λ(σ) = 2−|σ| for each σ ∈ 2<ω. For our purposes, it will be useful to identify
several different types of measures.

Definition 2.2 A computable measure µ is positive if µ(σ) > 0 for every
σ ∈ 2<ω. Equivalently, µ is positive if µ(U) > 0 for every non-empty open set
U . Moreover, µ is atomic if there is some real x ∈ 2ω such that µ({x}) > 0.
In this case, we call x an atom of µ or a µ-atom. In µ has no atoms, we
call it atomless. Given an atomic measure µ, the collection of µ-atoms will be
denoted Atomsµ.

The following result of Kautz is very useful for the present study.
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Proposition 2.3 ([Kau91]) A real r is computable if and only if r ∈ Atomsµ
for some computable measure µ.

2.2 Strong reductions and induced measures

Strong reductions play a central role in the discussion that follows, and more
generally in the study of effective randomness. For x, y ∈ 2ω, we say that x is
Turing reducible to y, denoted x ≤T y, if there is a Turing functional Φ such
that Φ(x) = y. Recall that Φ :⊆ 2ω → 2ω is a Turing functional (or reduction)
if there exists a c.e. set Γ of pairs of strings such that for all (σ1, τ1) and (σ2, τ2)
in Γ, if σ2 � σ1, then τ2 � τ1. Given two reals x, y, we write Φ(x) = y if for all
prefixes τ of y there is a prefix σ of x such that (σ, τ) ∈ Γ and we say that x
Turing computes y via Φ. Note that given a real x there is at most one real y
that x Turing computes via Φ. If there is indeed such a y, we say that Φ is
defined on x (or x ∈ dom(Φ)). If Φ(x) = y, the use of Φ on x is the function
f such that for each n, f(n) is the least value such that (x�f(n), y�n) ∈ Γ.

Definition 2.4 Let µ be a probability measure on 2ω. A Turing functional
Φ :⊆ 2ω → 2ω is

(1) µ-almost total if µ(dom(Φ)) = 1;
(2) a truth-table functional if Φ is total;
(3) a weak truth-table functional if there is some computable function ϕ that

bounds the use of Φ on all reals on which Φ is defined; and
(4) non-decreasing if for all x ≤ y, if both Φ(x) and Φ(y) are defined, then

Φ(x) ≤ Φ(y).

It is immediate that every truth-table functional is almost total. Moreover,
every truth-table functional is also a weak truth-table functional. Almost total
functionals are important for the study of effective randomness, as we can use
them to define computable measures.

Definition 2.5 Given a µ-almost total functional Φ : 2ω → 2ω, the measure
induced by Φ, denoted µΦ, is defined to be

µΦ(X ) = µ(Φ−1(X ))

for every measurable X ⊆ 2ω.

An easy but very useful result is that µΦ can be computed if µ and Φ are
given.

Lemma 2.6 Let µ be a probability measure on 2ω and a functional Φ : 2ω →
2ω, the following hold.
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(1) If µ is computable and Φ is µ-almost total, then µΦ is computable.
(2) If µ is exactly computable and Φ is a tt-functional, then µΦ is exactly

computable.

PROOF. See Appendix.

The induced measure µΦ as defined above shares certain features of the original
measure µ as long as the functional Φ satisfies some additional condition:

Lemma 2.7 Let µ be a measure on 2ω and a µ-almost total functional Φ :
2ω → 2ω. The following hold:

(1) If µ is atomless and Φ is one-to-one, then µΦ is atomless.
(2) If µ is positive and Φ is onto, then µΦ is positive.

PROOF. Suppose µ is atomless and Φ is one-to-one. Then for all x, µΦ({x}) =
µ(Φ−1({x})). Since Φ is one-to-one, Φ−1({x}) is either empty or is a singleton;
µ being atomless, it follows in either case that µ(Φ−1({x})) = 0.

Suppose now that µ is positive and Φ is onto. Let U be a non-empty open set.
Since Φ is onto (and continuous on its domain), Φ−1(U) is a non-empty open
set (modulo a set of measure 0 on which Φ is not defined), and therefore has
positive µ-measure.

2.3 Notions of randomness

Although there are many notions of effective randomness for elements of 2ω,
we restrict our attention to three of the most important notions: Martin-Löf
randomness, Schnorr randomness, and computable randomness. Each of these
notions can be defined in one of several ways, but we will restrict our attention
in this paper to the measure-theoretic formulations of Martin-Löf randomness
and Schnorr randomness and the formulation of computable randomness in
terms of certain computable betting strategies known as martingales. For more
details, see [DH10] or [Nie09].

Definition 2.8 Given a computable measure µ, a µ-Martin-Löf test is a uni-
formly computable sequence {Ui}i∈ω of effectively open classes in 2ω such that
µ(Ui) ≤ 2−i for every i ∈ ω. Further, a real x is µ-Martin-Löf random if
for every µ-Martin-Löf test {Ui}i∈ω, we have x /∈ ⋂i∈ω Ui. The collection of
µ-Martin-Löf random reals will be written as MLRµ.
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As is well-known, for every computable measure µ, there is a universal µ-
Martin-Löf test.

Proposition 2.9 For every computable measure µ, there is a Martin-Löf test
{Ûi}i∈ω such that x ∈ MLRµ if and only if x /∈ ⋂i∈ω Ûi.
The following result, though rather simple, is very useful, for it allows us to
replace a non-positive measure µ with a positive measure ν without losing any
of the µ-Martin-Löf random reals.

Lemma 2.10 If µ is a computable measure, and if x ∈ MLRµ, then x ∈
MLRµ+λ

2
.

PROOF. Suppose x /∈ MLRµ+λ
2

. Then if {Ui}i∈ω is a µ+λ
2

-Martin-Löf test

such that x ∈ ⋂i∈ω Ui, it follows that

µ(Ui) + λ(Ui)
2

≤ 2−i

and hence
µ(Ui) ≤ µ(Ui) + λ(Ui) ≤ 2−i+1.

Thus {Ui+1}i∈ω is a µ-Martin-Löf test containing x, and hence x /∈ MLRµ.

Definition 2.11 Given a computable measure µ, a µ-Schnorr test is a Martin-
Löf test {Ui}i∈ω with the additional requirement that µ(Ui) is a computable real
number, uniformly in i. Furthermore, a real x is µ-Schnorr random if for ev-
ery µ-Schnorr test {Ui}i∈ω, we have x /∈ ⋂i∈ω Ui. The collection of µ-Schnorr
random reals will be written as SRµ.

Definition 2.12 A computable µ-martingale is a computable function d :
2<ω → R≥0 ∪ {+∞} such that for every σ ∈ 2<ω,

µ(σ)d(σ) = µ(σ0)d(σ0) + µ(σ1)d(σ1)

(with the convention 0 · (+∞) = 0). A computable µ-martingale d succeeds on
x ∈ 2ω if

lim sup
n→∞

d(x�n) = +∞.

Definition 2.13 A real x ∈ 2ω is µ-computably random if there is no com-
putable µ-martingale d that succeeds on x. The collection of µ-computably
random reals will be written as CRµ.

When we speak about a Martin-Löf random real (resp. computably random,
Schnorr random) without specifying the measure, we mean “random with re-
spect to the Lebesgue measure”. Accordingly, we denote by MLR (resp. CR,
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SR) the set of Martin-Löf random (resp. computably random, Schnorr ran-
dom) reals with respect to Lebesgue measure.

It is well known that MLRµ ⊆ CRµ ⊆ SRµ for every computable measure µ
(the inclusions being strict for Lebesgue measure), a result that we will make
use of in Section 4. Moreover, we will need two important results relating
randomness notions and computational content. Recall that a real x is high if
x′ ≥T ∅′′ or equivalently if there is an x-computable function g : N→ N which
dominates all computable functions (i.e., for every computable f : N→ N, for
all but finitely many n, f(n) ≤ g(n)).

Theorem 2.14 ([NST05]) For any computable measure µ, if x ∈ SRµ \
MLRµ, then x is high.

We should note that this theorem was proven by Nies, Stephan, and Terwijn
only in the case where µ is Lebesgue measure, but the entire argument trivially
goes through when µ is taken to be an arbitrary computable measure.

Theorem 2.15 ([NST05]) For every high Turing degree a, there is some
x ∈ CR such that x ∈ a (moreover, x can be taken outside MLR).

2.4 Almost-total functionals are defined on random reals

By definition, the domain of a Turing reduction Φ is a Π0
2 set of reals (in-

deed, it can be written as
⋂
nDn where Dn is the – effectively open – set of

reals on which Φ produces at least n bits of output). Therefore, given a (com-
putable) measure µ, a µ-almost total Turing reduction is defined everywhere
except on a Σ0

2 set of µ-measure 0 which in particular is a countable union
of Π0

1-classes of µ-measure 0. The reals which do not belong to any Π0
1 class

of µ-measure 0 are called Kurtz random or weakly random. It is well-known
(see [DH10]) that Kurtz randomness is weaker than Schnorr randomness (and
a fortiori computable randomness and Martin-Löf randomness). Thus we have
the following important observation: a µ-almost total functional Φ is defined
on all µ-Schnorr random (resp. µ-computably random, µ-Martin-Löf random)
reals.

Moreover, if Φ is µ-almost total, it is easy to construct a single µ-Schnorr test
{Ui}i∈ω such that x /∈ dom(Φ) ⇒ x ∈ ⋂

i∈ω Ui (this follows from the proof
that Schnorr randomness implies Kurtz randomness). This has the following
consequence.

Proposition 2.16 Let µ be a computable measure and Φ a µ-almost total
Turing functional. Let x be µ-Schnorr random real. Then y = Φ(x) is defined,
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and y is tt-reductible to x.

PROOF. By the above discussion y = Φ(x) is well-defined. To see that it is
tt-reducible to x, consider a µ-Schnorr test {Ui}i∈ω such that x /∈ dom(Φ)⇒
x ∈ ⋂i∈ω Ui. Since x is Schnorr random, it belongs to the complement Ck of
Uk for some k, and by assumption Φ is defined on all elements of Ck. It is a
well-known fact that for every functional Φ which is defined on all elements
of a Π0

1 class C, there exists a total functional Ψ which coincides with Φ on C
(it suffices, on an input x to run Φ on x while enumerating the complement
U of Φ in parallel, and if at some stage x is covered by U , start outputting an
infinite sequence of zeroes).

3 Demuth’s Theorem

Informally, Demuth’s Theorem tells us that when we apply an effectively con-
tinuous procedure to a Martin-Löf random real x, if the resulting real y has
any computational content whatsoever (i.e. is not computable), then from y
we can effectively recover a Martin-Löf random real z. Formally, the statement
is as follows.

Theorem 3.1 (Demuth [Dem88]) Let x be a Martin-Löf random real. Sup-
pose x computes a real y via a λ-almost total reduction (or equivalently, com-
putes y via tt-reduction) and y is not computable. Then y is Turing equivalent
to some Martin-Löf random real z.

The best way to prove Demuth’s Theorem is to break it down into two results,
which have been shown by Levin, Kautz and Kurtz independently of Demuth’s
work. The first result is the well-known Conservation of Randomness Theorem.
Not only do total and almost total functionals induce computable measures
(as discussed in the previous section), but according to the Conservation of
Randomness Theorem, they also do so in such a way as to map reals ran-
dom with respect to the original measure to reals random with respect to the
induced measure; namely, we have the following result.

Theorem 3.2 (Conservation of Martin-Löf randomness) Let µ be a com-
putable measure and Φ a µ-almost total functional. Then x ∈ MLRµ implies
Φ(x) ∈ MLRµΦ

.

PROOF. See Appendix.
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The second result used to derive Demuth’s Theorem is sometimes referred to
as “Levin’s Theorem” or “the Levin-Kautz Theorem” (although Levin proved
the theorem with Zvonkin, and independently of Kautz).

Theorem 3.3 (Levin/Zvonkin [LZ70], Kautz [Kau91]) If y is a real that
is non-computable and µ-Martin-Löf random for some computable measure µ,
then there is a Martin-Löf random real z such that y ≡T z.

Note that the two theorems given above immediately imply Demuth’s The-
orem: Given a tt-functional Φ and x ∈ MLR, since Φ is almost total, by
the Conservation of Randomness, it follows that Φ(x) ∈ MLRλΦ

, and λΦ is
computable by Lemma 2.6. Further, if Φ(x) is not computable, then by the
Levin-Kautz Theorem there is some z ∈ MLR such that Φ(x) ≡T z, thus
establishing the result.

In order to prove the Levin-Kautz Theorem, we need to prove an auxiliary
result that we will refer to as the Kautz conversion procedure. This result
provides a converse to Lemmas 2.6 and 2.7, as it shows that any computable
measure µ can be induced by the Lebesgue measure together with an almost
total functional.

Theorem 3.4 (The Kautz conversion procedure) Let µ be a computable
probability measure. Then there exists a non-decreasing, almost total func-
tional Φ such that λΦ = µ. Moreover,

• if µ is atomless, then Φ is one-to-one on its domain; and
• if µ is positive, then the range of Φ has µ-measure 1.

Finally, if µ is both atomless and positive, then Φ has an almost total inverse
Φ−1 such that µΦ−1 = λ.

PROOF. See Appendix.

The next theorem, first proven by Shen (unpubl.), can be seen as a partial
converse to the Conservation of Randomness Theorem, stating that every
sequence that is random with respect to a computable measure induced by a
functional Φ has a random real in its preimage under Φ.

Theorem 3.5 Let µ be a computable measure, Φ a µ-almost total functional,
and y ∈ 2ω. If y ∈ MLRµΦ

, then there is some x ∈ MLRµ such that Φ(x) = y.
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PROOF. Suppose y ∈ 2ω is such that for all x ∈ 2ω, x ∈ MLRµ implies
Φ(x) 6= y. Then if {Ui}i∈ω is the universal µ-Martin-Löf test, consider

Vi = {z ∈ 2ω : (∀x)[x /∈ Ui ⇒ Φ(x) 6= z]}.

We claim that {Vi}i∈ω is a µΦ-Martin-Löf test. First, observe that z ∈ Vi if
and only if z /∈ Φ(2ω \ Ui). Since Φ is an almost total Turing functional, the
image under Φ of a Π0

1 class is also a Π0
1 class. In particular, Φ(2ω \ Ui) is a

Π0
1 class, and so Vi is a Σ0

1 class. Further, {Vi}i∈ω is clearly uniformly Σ0
1.

To see that µΦ(Vi) ≤ 2−i, since 2ω \ Ui ⊆ Φ−1(Φ(2ω \ Ui)), we have

µΦ(Vi) = 1− µΦ(Φ(2ω \ Ui)) = 1− µ(Φ−1(Φ(2ω \ Ui)))
≤ 1− µ(2ω \ Ui)
≤ 1− (1− 2−i) = 2−i.

Lastly, since for all x ∈ 2ω such that Φ(x) = y, x /∈ MLRµ, it follows that x /∈ Ui
implies Φ(x) 6= y for every i, and so y ∈ Vi for every i. Thus y /∈ MLRµΦ

.

We should note that if we were to define the above µΦ-Martin-Löf test {Vi}i∈ω
in terms of a Martin-Löf test {Ui}i∈ω that is not universal, then it wouldn’t
necessarily follow that y ∈ Vi for every i, since there may be some non-random
z /∈ ⋂i∈ω Ui such that Φ(z) = y. For this reason, the above proof does not work
if we consider, instead of Martin-Löf randomness, a notion of randomness for
which there is no universal test, such as Schnorr randomness.

We can now prove the Levin-Kautz Theorem.

PROOF of Theorem 3.3 Given a non-computable y and a computable
measure µ such that y ∈ MLRµ, by Theorem 3.4, there is some non-decreasing
λ-almost total functional Φ such that µ = λΦ. Since y ∈ MLRλΦ

, by Theo-
rem 3.5, there is some z ∈ MLR such that Φ(z) = y. Moreover, suppose there
were another real u in the preimage of y under Φ. Since Φ is non-decreasing,
this would mean that the whole interval [z, u] (or [u, z]) is entirely mapped
by Φ to the singleton {y}, and therefore y would be an atom of λΦ, hence
would be computable, a contradiction. Therefore, y has a unique preimage z
under Φ; in other words Φ−1({y}) is a Π0

1(y)-class containing a single ele-
ment z, hence z is y-computable. We have proven z ≡T y and z ∈ MLR, as
wanted.
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4 Demuth’s Theorem for other notions of randomness

In this section, we consider Demuth’s Theorem for other notions of effective
randomness, namely Schnorr randomness and computable randomness. We
will show that is holds for both notions. The first step towards this result
is the following analogue of Theorem 3.2 (Conservation of Randomness) for
Schnorr randomness.

Theorem 4.1 (Conservation of Schnorr randomness) Let µ be a com-
putable measure and Φ an almost total functional. Then x ∈ SRµ implies
Φ(x) ∈ SRµΦ

.

PROOF. In the proof of the conservation of Martin-Löf randomness (Theo-
rem 3.2) in the Appendix, we show that if Φ(x) is contained in a µΦ-Martin-Löf
test {Ui}i∈ω, then there is a µ-Martin-Löf test {Vi}i∈ω containing x. But in fact,
we prove more: we show that µ(Vi) = µΦ(Ui). Thus, if {Ui}i∈ω is a µΦ-Schnorr
test containing Φ(x), it follows that {V}i∈ω is a µ-Schnorr test containing x.

Perhaps surprisingly, there is no Conservation of Randomness Theorem for
computable randomness (a result independently proven by Rute [Rut]).

Theorem 4.2 There exists a tt-reduction Φ that does not preserve computable
randomness, that is, for some computably random x, Φ(x) is not computably
random for the measure induced by Φ. One can even construct an example
where Φ induces the Lebesgue measure.

PROOF. This result follows from the work of Muchnik who proved that
Kolmogorov-Loveland randomness is stronger than computable randomness.
A Kolmogorov-Loveland random real is a real that defeats all computable
non-monotonic strategies, where a non-monotonic strategy is a betting strat-
egy which at each turn chooses which bit of the sequence (that has not
been revealed so far) it will bet on, and then bets on the value of the bit.
It was proven in [MSU98] that Kolmogorov-Loveland randomness is strictly
stronger than computable randomness, and in [MMN+06] that in the defi-
nition of Kolmogorov-Loveland randomness, one can assume that only total
non-monotonic strategies are allowed. Consider therefore a sequence x ∈ 2ω

which is computably random but not Kolmogorov-Loveland random. Let S
be a total non-monotonic strategy that defeats x. Now, define Φ to be the tt-
functional which to a sequence z associates the sequence y of the bits of z seen
by S during the game (in order of appearance). Certainly Φ is a tt-reduction
and induces the Lebesgue measure. By definition of Kolmogorov-Loveland
randomness, Φ(x) is not computably random, which proves the result. We
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can also invoke the stronger result by Kastermans and Lempp [KL10] who
proved that computable randomness is not closed under computable injective
re-orderings of bits (i.e. there exists a computably random real x and a com-
putable injective function f such that x(f(0))x(f(1)) . . . is not computably
random).

The proof of the Levin-Kautz Theorem that we provided in the previous sec-
tion does not work for Schnorr randomness, since the proof relies upon the
existence of a universal Martin-Löf test (via Theorem 3.5), and it is well-
known that there is no universal Schnorr test (see the explanation given af-
ter the proof of Theorem 3.5). For computable randomness, the situation is
even worse, as we have seen that there is no analogue of the Conservation
of Randomness Theorem for this notion. As a consequence, we cannot prove
Demuth’s Theorem for these two randomness notions by a direct adapta-
tion of the proof for Martin-Löf randomness. However, there is an interesting
way to overcome the difficulty, which works both for computable randomness
and Schnorr randomness. This alternative approach uses the results of Nies,
Stephan, and Terwijn mentioned in Section 2 (see Theorem 2.14): a Schnorr
random (resp. computably random) real is either Martin-Löf random, or it
is high. Armed with this dichotomy, we get Demuth’s Theorem for Schnorr
randomness and computable randomness almost immediately from Demuth’s
Theorem for Martin-Löf randomness. In fact, we get a slightly stronger state-
ment that subsumes both, in the sense that it suffices to assume x ∈ SR to
get z ∈ CR in the conclusion.

Theorem 4.3 (Demuth’s Theorem for CR and SR) Let x ∈ SR and let
Φ be a truth-table functional. If Φ(x) = y is not computable, then there is
some z ∈ CR such that y ≡T z.

PROOF. Whether x ∈ CR or x ∈ SR (the latter being the weaker assump-
tion), the Conservation of Schnorr randomness (Theorem 4.1) implies that y
is Schnorr random with respect to some computable measure µ. We now dis-
tinguish two cases.

Case 1. If y is not high, then by Theorem 2.14 it must be µ-Martin-Löf ran-
dom. Thus, we can apply the Levin-Kautz Theorem (Theorem 3.3) to get a
real z ≡T y that is Martin-Löf random (hence computably random).

Case 2. If y is high, then we can directly apply Theorem 2.15 to get the
existence of some z ∈ CR such that z ≡T y.

13



5 The failure of Demuth’s Theorem for wtt-reducibility

In the original proof of Demuth’s Theorem, Demuth shows that in the con-
clusion of the theorem, one can even require y ≡T z and y ≤tt z. Hence we
actually have a stronger version of Theorem 3.1.

Theorem 5.1 Let x be a Martin-Löf random real. Suppose x tt-computes
a non-computable real y. Then y is Turing equivalent to some Martin-Löf
random real z, and furthermore y ≤tt z.

It is therefore natural to ask whether the reverse reduction, y ≥T z, can also
be required to be stronger (tt or wtt). We will prove that this is not the case
in general, not only for Demuth’s original theorem, but also for the versions
of Demuth’s Theorem for computable randomness and Schnorr randomness
proven in the previous section.

Our analysis will make use of the so-called complex reals, which were defined
by Kjos-Hanssen et al. [KHMS11]. To prove the failure of the wtt-version of
Demuth’s Theorem, we will show that (1) if a real y wtt-computes a Martin-
Löf random real z, it must be complex and (2) there is an x ∈ MLR and a
real y ≤tt x such that y is non-computable but not complex.

Complex reals were defined by Kjos-Hanssen et al. using plain (or prefix-free)
Kolmogorov complexity. We shall define them using another version of Kol-
mogorov complexity, called monotone complexity, which for our purposes is
slightly easier to handle. The fact that our definition is equivalent to theirs is
proven in Proposition A.1 of the Appendix.

Definition 5.2 A monotone machine is a computable function M : 2<ω →
2<ω ∪ 2ω such that M(σ1) � M(σ2) for all σ1 � σ2 and the set of pairs of
strings (σ, τ) with τ �M(σ) is c.e. Fixing a universal monotone machine M ,
we define the Km-complexity of τ ∈ 2<ω to be

Km(τ) = min{|σ| : τ �M(σ)}.

A real x is said to be complex if there is a computable, non-decreasing, un-
bounded function g such that Km(x�n) ≥ g(n) for every n.

In the sequel we will refer to a non-decreasing, unbounded function from ω
to ω as an order function. For any order function g, g−1 is the order function
defined by

g−1(n) = min{k : g(k) ≥ n}

14



The Levin-Schnorr Theorem states that a real z is Martin-Löf random (with
respect to the Lebesgue measure) if and only if Km(z�n) = n − O(1); in
particular, Martin-Löf random reals are complex. Furthermore, any real y
that wtt-computes a Martin-Löf random real is itself complex. This follows
from the straightforward fact that complex reals are closed upwards in the
wtt-degrees.

Lemma 5.3 Let a, b be two reals such that a ≥wtt b. If b is complex then so
is a.

PROOF. Indeed let ϕ be a computable bound for the use of the wtt-reduction.
Suppose b is complex with order function g. Then

g(ϕ−1(n)) ≤ Km(b�ϕ−1(n)) ≤ Km(a�n)

therefore a is complex via g ◦ ϕ−1 which is a computable order function.

The second step of the proof requires more effort.

Theorem 5.4 There exists a ∈ MLR and a non-computable real b ≤tt a which
is not complex.

PROOF. To prove this theorem, we take a to be Chaitin’s Ω number, where
Ω :=

∑
U(σ)↓ 2−|σ|, U being a universal prefix-free machine. It is well-known

that Ω ∈ MLR and is a left-c.e. real, which means that there is a computable
sequence of rationals (Ωs)s that converges to Ω from below. Note that this
sequence must converge very slowly, i.e. there is no computable function f
such that Ω�n = Ωf(n)�n infinitely often, for otherwise we would be able to
compress the corresponding initial segments of Ω. We use the slowness of
this approximation to build our sparse real b. We achieve this through the
following tt-reduction. Let Φ : 2ω → 2ω be the functional (which we will call
the “slowdown functional”) defined for all reals by

Φ(x) = 1t101t201t30 . . .

where the ti are defined as follows: t0 = 0 and

ti = min{s : Ωs ≥ 0.x�i}

with the convention that if the set on the right-hand side is empty, then
ti = +∞. Thus if some ti is infinite, then Φ(x) = 1t10 . . . 1tk011111 . . . where
tk+1 is the first ti to be infinite.
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Φ is clearly a tt-reduction. Moreover, if a < Ω, then there is some s such that
Ωs > a�i for every i ∈ ω, and hence

Φ(a) = σ(1k0)ω

for some σ ∈ 2<ω and k ∈ ω. If a > Ω, then there is some i such that Ωs < a�i
for every s ∈ ω, and hence

Φ(a) = σ1ω

for some σ ∈ 2<ω.

The interesting case is when a = Ω, for in this case, setting

Φ(Ω) = 1s101s201s30 . . . ,

we know that the function f given by f(i) = si grows faster than any com-
putable function, since Ω�n = Ωf(n)�n for every n ∈ ω. If we set Φ(Ω) = Ω∗,
then we have

Km(Ω∗�f(n)) ≤+ n

and hence
Km(Ω∗�n) ≤+ f−1(n),

But since f grows faster than any computable order function, f−1 is dominated
by all computable order functions. Thus, there is no computable order function
g such that

Km(Ω∗�n) ≥ g(n).

We can now prove that the wtt-version of Demuth’s theorem fails for Martin-
Löf randomness.

Corollary 5.5 There exists a ∈ MLR and a non-computable real b ≤tt a such
that there is no y ∈ MLR with y ≤wtt b.

PROOF. By Theorem 5.4, Ω∗ is tt-reducible to a Martin-Löf random real but
is not complex. Hence by Lemma 5.3, Ω∗ cannot wtt-compute any complex
real, and thus Ω∗ cannot wtt-compute any x ∈ MLR.

There are only countably many reals that are random with respect to the
measure induced by the slowdown functional Φ in the proof of Theorem 5.4
(and all of them are atoms except for Ω∗), but this does not have to be the
case, as is shown by the following result.

Proposition 5.6 There is a computable measure µ such that there are con-
tinuum many x ∈ MLRµ and continuum many such x that do not wtt-compute
any y ∈ MLR.
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PROOF. We define a new functional Ψ that on input a⊕ b behaves similarly
to the slowdown functional Φ defined in the proof of Theorem 5.4. Suppose
that Φ(a) = 1t101t201t30 . . . 1ti0 . . . . Then we have

Ψ(a⊕ b) = bt10 b
t2
1 b

t3
2 . . . b

ti
i . . .

where bi = b(i) for every i. Note that Ψ is total, since Φ is total. Further, if
B is 2-random (i.e. b ∈ MLR∅

′
), then b ∈ MLRΩ and hence Ω ⊕ b ∈ MLR by

van Lambalgen’s Theorem (according to which A ⊕ B ∈ MLR ⇔ A ∈ MLRB

and B ∈ MLR for any A,B ∈ 2ω; see [DH10], Chapter 6.9). It follows from the
Conservation of Martin-Löf randomness that Ψ(Ω⊕ b) is random with respect
to the induced measure λΨ. Moreover, as with Ω∗, Ψ(Ω ⊕ b) is not complex,
and thus cannot wtt-compute any y ∈ MLR.

As we have seen, there are many counterexamples to wtt-generalization of
Demuth’s Theorem for Martin-Löf randomness. We now show that the wtt-
generalizations of Demuth’s Theorem for computable randomness and Schnorr
randomness also fail to hold. It seems that the real Ω∗ constructed in the proof
of Theorem 5.4 is so far from complex that it should not even wtt-compute
a Schnorr random real. Unfortunately, we do not know whether this is the
case. We therefore need to slightly adapt the technique used in the proof of
Theorem 5.4, still keeping the main ideas.

Theorem 5.7 For almost all reals a, there exists a non-computable real b ≤tt
a which does not wtt-compute any Schnorr random real.

This shows in particular that there exists a Martin-Löf random (hence com-
putably random Schnorr random) real a, and a non-computable b ≤tt a which
does not wtt-compute any Schnorr random real. Therefore the wtt-version of
Demuth’s Theorem fails for all three notions of randomness.

To prove Theorem 5.7, we need a few auxiliary facts.

Lemma 5.8 Let f be an increasing function that is not dominated by any
computable function. Let g be a computable order function. Then for infinitely
many n,

f(n) < g(f(n+ 1)).

PROOF. Indeed, if the opposite holds, i.e., f(n+1) ≤ m(f(n)) for all n ≥ k,
where m is the inverse function of g, then it is easy to show by induction that

f(n) ≤ m(n−k)(f(k))

for all n ≥ k. The right-hand side of the above expression being a nondecreas-
ing and computable function of n, we have a contradiction.
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Proposition 5.9 Let a be a Martin-Löf random real of hyperimmune degree.
Then there is a real b ≤tt a such that b is not complex.

PROOF. Since a is of hyperimmune degree, it computes a function f which
is infinitely often above any given computable function g. Let ψ be a partial
computable function such that, when equipped with the real a as an oracle,
computes the function f . For all n, define

g(n) = min{t : ψa[t](n) ↓}

By the standard conventions on oracle computations, it follows that g(n) ≥
f(n) for all n (as we require that the number of steps for a halting computa-
tion always exceeds the output of the computation). It follows that g is not
dominated by any computable function. Now let Θ be the reduction defined
by

Θ(x) = 1t001t101t2 . . .

with
tn = min{t : ψx[t](n) ↓}

(with the convention that Θ(x) = 1t001t101 . . . 1ti−101111111 . . . if ti is infinite
and is the smallest such tn). The definition ensures that Θ is total and that

b = Θ(a) = 1g(0)01g(1)01g(2) . . .

We need to show that b is not complex. Let h be a computable order function.
Notice that

Km(1g(0)01g(1) . . . 01g(n)01g(n+1)) ≤ K(1g(0)01g(1) . . . 01g(n)0) +O(1)

≤ n · log g(n) +O(1)

≤ g(n) log g(n) +O(1),

where the first inequality follows from two facts: (i) Km(στ) ≤ K(σ) +
Km(τ) + O(1) and (ii) Km(1k) = O(1) for all k. By Lemma 5.8 applied
to the composition of h and (n 7→ n log n)−1, we have for infinitely many n,
g(n) log g(n) + k < h(g(n+ 1)) for any fixed k ∈ ω (as g(n) log g(n) + k is not
dominated by any computable function). Thus for infinitely many n,

Km(b�g(n+ 1)) ≤ Km(1g(0)01g(1) . . . 01g(n)01g(n+1)) < h(g(n+ 1)).

Since this is the case for any order function h, it follows that b is not complex.

We are now ready to prove Theorem 5.7.

PROOF of Theorem 5.7 Let a be a random real of hyperimmune but non-
high degree. Note that almost all reals have this property. More precisely, any
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3-random 1 is a real has this property: any 2-random real has hyperimmune
degree, as proven by Kurtz [Kur81] and no 3-random real is high [Nie09,
Exercise 8.5.21]. Then by Proposition 5.9, a tt-computes a real b which is not
complex. Now suppose b wtt-computes a real c. Then since b is not complex, by
Lemma 5.3, c is not complex. In particular, c is not Martin-Löf random (recall
that a Martin-Löf random real z is s.t. Km(z�n) = n−O(1)). Moreover, c is
not high, as a ≥T b ≥T c and a is not high. Therefore by Theorem 2.14, if c is
not Martin-Löf random and not high, then c cannot be Schnorr random.

6 On the degrees of random reals

6.1 Random Turing degrees

One consequence of the machinery developed in the previous section is that we
can use it to provide an exact characterization of all the Martin-Löf random
Turing degrees that contain a real that is random with respect to a computable
measure but not random with respect to any computable atomless measure
(recall that a Turing degree is Martin-Löf random if it contains a Martin-Löf
random real). Let us establish a few more definitions that will be useful in this
section.

Definition 6.1 Let MLRcomp be the set of reals x such that x ∈ MLRµ for
some computable measure µ.

The class MLRcomp was first considered in [LZ70], where elements of MLRcomp

were referred to as “proper sequences”, and was later studied further in [SF77]
and [MSU98].

Definition 6.2 Let NCRcomp be the set of reals x such that x /∈ MLRµ for
every computable atomless measure µ.

The motivation behind the definition of NCRcomp comes from the work of
Reimann and Slaman (see, for instance, [RS07] and [RS08]), who studied the
collection of sequences that are not random with respect to any atomless
measure (computable or otherwise), referring to this class as NCR1. Although
Reimann and Slaman have established a number of facts about NCR1, for
instance, that it is countable and contains no non-∆1

1 reals, a number of ques-
tions about the structure of NCR1 remain open. NCRcomp, in contrast, proves
to be much easier to characterize.

1 For n ≥ 1, a real x is n-random if and only if x ∈ MLR∅
(n−1)

, that is, x is
Martin-Löf random relative to ∅(n−1).
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We will begin by showing that there is at least one x ∈ MLRcomp ∩ NCRcomp.

Proposition 6.3 There is a non-computable x ∈ 2ω that is random with re-
spect to some computable atomic measure but not random with respect to any
computable atomless measure.

To prove this proposition, we need one further result. In Section 2 we saw that
if a computable measure µ is atomless and positive, then if Φ is an almost total
functional such that λΦ = µ, then Φ−1 is an almost total functional such that
µΦ−1 = λ. However, if Φ is total, it doesn’t necessary follow that Φ−1 is total,
but we can still obtain a measure ν induced by some other tt-functional such
that ν is equivalent to λ, in the sense that MLRν = MLR.

Proposition 6.4 If µ is an atomless, computable measure, then there is a
non-decreasing tt-functional Θ such that the induced measure µΘ has the prop-
erty that

MLRµΘ
= MLR.

PROOF. See Appendix.

PROOF of Proposition 6.3. The real constructed in the proof of Theo-
rem 5.4 above, Ω∗, is random with respect to the induced measure λΦ (which is
clearly atomic), and hence Ω∗ ∈ MLRcomp. Suppose, for sake of contradiction,
that Ω is random with respect to a computable, atomless measure µ. Then
by Proposition 6.4, there is a tt-functional Θ such that MLRµΘ

= MLR. More-
over, by the Conservation of Randomness Theorem, it follows that Θ(Ω∗) ∈
MLRµΘ

= MLR, but as we proved in Theorem 5.4, Ω∗ can’t even wtt-compute
any y ∈ MLR, yielding the desired contradiction. Thus Ω∗ ∈ NCRcomp.

We can use the idea of this proof to provide a full classification of the Martin-
Löf random Turing degrees containing elements in MLRcomp ∩ NCRcomp. In
providing the classification, we will use the following.

Proposition 6.5 ([RS08], Proposition 5.7) For a ∈ MLR and b ∈ 2ω, if
a ≡tt b, then b /∈ NCRcomp.

Theorem 6.6 Let a be a Martin-Löf random Turing degree. Then there is
some a ∈ a such that a ∈ MLRcomp∩NCRcomp if and only if a is hyperimmune.

PROOF. For the easier direction, suppose a is hyperimmune-free. Then given
a ∈ a ∩ MLR, by a well-known result, if b ≡T a, then b ≡tt a. Thus for any
b ≡T a, by the Conservation of Randomness Theorem we have b ∈ MLRcomp,
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but by Proposition 6.5, b ≡tt a implies that b /∈ NCRcomp, i.e. b is random with
respect to some atomless measure. Thus no b ∈ a is in MLRcomp ∩ NCRcomp.

Now suppose that a is hyperimmune, and let a ∈ a ∩MLR. We proceed as in
the proof of Proposition 5.9, with a slight modification. Let f ∈ a be a function
that is not dominated by any computable function. Then there is some partial
computable function ψ equipped with oracle a such that ψa(n) = f(n) for
every n. Then, similar to the proof of Proposition 5.9, we define a functional
Γ such that

Γ(c) = 1t0 0c(0)+1 1t1 0c(1)+1 1t2 0c(2)+1 . . . ,

where ti is the least t such that Ψc(i)[t]↓, unless no such t exists, in which
case ti = +∞. Note that we code the real c into Γ(c) so that if the (i + 1)st
block of 0s in Γ(c) has length 1, then c(i) = 0, and if the (i + 1)st block of
0s in Γ(c) has length 2, then c(i) = 1. Thus we have Γ(a) ≡T a. Further, by
the Conservation of Randomness Theorem, we have Γ(a) ∈ MLRcomp. Now let
g : ω → ω be the function such that

Γ(a) = 1g(0) 0a(0)+1 1g(1) 0a(1)+1 1g(2) 0a(2)+1 . . .

Given the convention that for the least t such that Ψc(i)[t]↓ = k, we have
k ≤ t, it follows that f(n) ≤ g(n), and hence g(n) is not dominated by any
computable function.

Now, we verify Γ(a) is not complex as before, with the only difference being
that we now have to consider the potentially doubled 0s, yielding

Km(1g(0) 0a(0)+1 1g(1) 0a(1)+1 . . . 1g(n) 0a(n)+11g(n+1)) ≤ 2n·log g(n) ≤ g(n) log g(n).

All the other steps proceed as before, and thus Γ(a) is not complex. Now,
assuming that Γ(a) is random with respect to some atomless measure, we
can argue as in the proof of Proposition 6.3 that Γ(a) must tt-compute a
Martin-Löf random real, contradicting the fact that Γ(a) is not complex. Thus
Γ(a) ∈ NCRcomp.

Recall that a real x is weakly 1-generic if it is contained in every dense effec-
tively open subset of 2ω. Since every hyperimmune degree contains a weakly
1-generic real (as shown in [Kur81]) and no weakly 1-generic real is Martin-
Löf random with respect to any computable measure (as is shown in [MSU98],
Theorem 9.10), we have an even stronger dichotomy: Every hyperimmune-free
random degree contains only reals that are random with respect to some com-
putable atomless measure, while every hyperimmune random degree contains
reals that are random only with respect to some computable atomic measure
as well as reals that aren’t random with respect to any computable measure.
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6.2 Random computably enumerable sets

In this last subsection, we will show that the Conservation of Randomness
Theorem and related results also have consequences for the study of ran-
dom computably enumerable sets. In particular, we show the existence of a
computably enumerable set that is random with respect to some computable
measure. This is somewhat surprising, given that computably enumerable sets
quite far from Martin-Löf random. For instance, every c.e. set x has low ini-
tial segment complexity: for every n, K(x�n) ≤ 2 log(n) + O(1). Despite this
behavior, there are c.e. sets that are Martin-Löf random with respect to some
computable measure, as we now demonstrate (this result was obtained inde-
pendently by Reimann and Slaman).

Theorem 6.7 There exists a non-computable c.e. set x and a computable
probability measure µ such that A is random with respect to µ.

PROOF. Let (qn)n∈ω be an effective enumeration of Q2. Let T : 2ω → 2ω be
the map defined by

T (x) = {n | qn < x}

where we see the input as an infinite binary sequence and the output as a set
of integers. Clearly T is a computable one-to-one map, hence the measure µ
it induces on 2ω is computable and atomless, and for every random x, T (x)
is µ-random. If x is left-c.e. by definition of T , T (x) is a c.e. set. Therefore,
T (Ω) is both c.e. and µ-random.

We can also show that there is a non-computable c.e. member of
MLRcomp ∩ NCRcomp.

Theorem 6.8 There is a non-computable c.e. set c such that c ∈ MLRµ for
some computable atomic measure µ but c /∈ MLRν for any computable atomless
measure ν.

PROOF. To prove this result, we merely need to show that Ω∗, the real con-
structed in the proof of Theorem 5.4, is left-c.e. and then apply the map T
defined above to produce a c.e. set C that is tt-reducible to Ω (via the com-
position of T with the slowdown operator Φ defined in the proof of Theorem
5.4). It will then follow that C cannot be random with respect to any atom-
less computable measure, for as we argued in the proof of Proposition 6.3, this
would mean that C, and hence Ω∗, can tt-compute a 1-random.
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To see that Ω∗ is left-c.e., notice that Φ is a non-decreasing functional and Φ
is continuous at Ω. Therefore, for a rational q, we have

q < Ω∗ ⇔ ∃x [x < Ω ∧ Φ(x) > q]

The right-hand side of the equivalence is a Σ0
1 predicate, hence the left cut of

Ω∗ is c.e., from which it follows that Ω∗ is left-c.e.

Let us make a few remarks. First if a non-computable c.e. set is Martin-Löf
random with respect to a computable probability measure, then it must be
Turing complete. Indeed, by Demuth’s Theorem, such a real must be Turing
equivalent to a real that is Martin-Löf random for Lebesgue measure and
Kučera [Kuč85] proved that a c.e. real that can compute a Martin-Löf random
real must necessarily be Turing complete.

The family of c.e. sets that are random for some computable probability mea-
sure is therefore not downwards closed in the Turing degrees. However, this
family is closed downwards in the tt-degrees by Demuth’s Theorem: given a
tt-functional Φ and a c.e. set that is random with respect to a computable
measure µ, if Φ(c) is c.e. then it is either computable or Turing complete,
and in both cases, it will be random with respect to the measure induced by
(µ,Φ). It is thus natural to consider whether the family of c.e. random sets
forms a tt-ideal. As we now show, they do not.

Proposition 6.9 The c.e. random reals do not form a tt-ideal.

PROOF. Let a be a left-c.e., Turing incomplete, real and x1 a left-c.e. random
real. Set x2 = x1 + a and notice that x2 is left-c.e. and random as the sum of
a random left-c.e. real and a left-c.e. real [DH10, Chapter 8]. Now convert x1

and x2 into c.e. reals via T : y1 = T (x1) and y2 = T (x2). Then both y1 and y2

are c.e. and random with respect to the measure µ induced by T .

Since T is a total computable map, its range is a Π0
1 class, call it C. Since T

is one-to-one, the function T−1 is Turing-computable on its domain C (indeed
for all z ∈ C, the set {x : T (x) = z} is a Π0

1(z) class containing only one
element, hence that element can be computably found when z is given). It is
well-known that a partial functional defined on a Π0

1 class can be extended to
a total functional. Then let S be a tt-functional which is an extension of T−1

to the entire space 2ω.

Now, suppose that the join y1⊕y2 is random with respect to some computable
measure ν. Consider the functional Ψ defined by Ψ(z1⊕ z2) = |S(z1)−S(z2)|.
This is a tt-functional, and Ψ(y1⊕y2) = a. By the Conservation of Martin-Löf
randomness, this means that a ∈ MLRνΨ

. This is a contradiction since by the
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discussion above, an incomplete (left-)c.e. real cannot be Martin-Löf random
w.r.t. any computable measure.
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[NST05] André Nies, Frank Stephan, and Sebastiaan Terwijn. Randomness,
relativization and Turing degrees. Journal of Symbolic Logic, 70:515–
535, 2005.

[RS07] Jan Reimann and Theodore A. Slaman. Probability measures and
effective randomness. Preprint, 2007.

[RS08] Jan Reimann and Theodore A. Slaman. Measures and their random
reals. Preprint, 2008.

[Rut] Jason Rute. Computable randomness and betting for computable
probability spaces. Preprint.

[SF77] C.-P. Schnorr and P. Fuchs. General random sequences and learnable
sequences. J. Symbolic Logic, 42(3):329–340, 1977.

[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin, 1987. A study of
computable functions and computably generated sets.

A Appendix

PROOF of Lemma 2.6. We proceed inductively as follows: First,

µΦ(∅) = µ(Φ−1(J∅K)) = µ(Φ−1(dom(Φ))) = 1,

since Φ is almost total. Now suppose that µΦ(σ) is computable. Then µΦ(σ0)
and µΦ(σ1) are both approximable from below, and since µΦ(σ) = µΦ(σ0) +
µΦ(σ1), it follows that both µΦ(σ0) and µΦ(σ1) are approximable from above.
Thus, both are computable.

For the second part, let ϕ be a computable function that bounds the use of
Φ, i.e. if Φ(x) = y, then for every n ∈ ω, Φx�ϕ(n) � y�n. Without loss of
generality, we can assume that if |σ| = n and |τ | < ϕ(n), then Φτ 6� σ. If we
define

PreΦ(σ) := {τ ∈ 2<ω : Φτ � σ ∧ (∀τ ′ � τ)Φτ ′ 6� σ},
(so that JPreΦ(σ)K = Φ−1(JσK)), it follows that

PreΦ(σ) = {τ ∈ 2ϕ(|σ|) : Φτ � σ}

and thus

µΦ(σ) = µ(Φ−1(JσK)) = µ
( ⋃
τ∈PreΦ(σ)

JτK
)

=
∑

τ∈PreΦ(σ)

µ(τ),
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which is Q2-valued because µ is Q2-valued and PreΦ(σ) is finite. Moreover,
since we can find, effectively in σ, the index for PreΦ(σ) as a finite set, it
follows that µΦ is a computable function from 2<ω to Q2, and thus is exactly
computable.

Remark A.1 In the proof of Theorem 3.2 below, we will have to be careful
with the enumeration of our Martin-Löf tests, and so we will ensure that these
tests have nice presentations. Recall that a set S ⊆ 2<ω is prefix-free if for
every σ, τ ∈ S, if σ � τ , then σ = τ . Then given a Martin-Löf test {Ui}i∈ω,
we will say that a uniformly computable sequence {Si}i∈ω of subsets of 2<ω is
a prefix-free presentation of {Ui}i∈ω if we have Ui = [Si] for every i ∈ ω.

PROOF of Theorem 3.2. Suppose that Φ(x) /∈ MLRµΦ
; we will show that

x /∈ MLRµ. Let {Ui}i∈ω be a µΦ-Martin-Löf test such that Φ(x) ∈ ⋂i∈ω Ui. We
define a µ-Martin-Löf test {Vi}i∈ω containing x as follows. First, let {Si}i∈ω
be a prefix-free presentation of {Ui}i∈ω. Then we define, for each i ∈ ω,

Pi =
⋃
σ∈Si

PreΦ(σ).

Note that since Si is prefix-free, for distinct σ1, σ2 ∈ Si, PreΦ(σ1)∩PreΦ(σ2) =
∅, and so

⋃
σ∈Si PreΦ(σ) is a disjoint union. Hence

µ(JPiK) = µ
( ⋃
σ∈Si

JPreΦ(σ)K
)

=
∑
σ∈Si

µ(JPreΦ(σ)K) =
∑
σ∈Si

µ(Φ−1(JσK)) = µΦ(Ui).

Now if we set Vi := JPiK for each i, we have µ(Vi) = µΦ(Ui) for each i. In
addition, since the collection {V}i∈ω is definable uniformly from {U}i∈ω, it
follows that {V}i∈ω is a µ-Martin-Löf test. Lastly, we must verify that x ∈⋂
i∈ω Vi. For each i, since Φ(x) ∈ Ui, there is some σ ∈ Si and some least n ∈ ω

such that Φx�n � σ. Thus x�n ∈ PreΦ(σ), and so it follows that x�n ∈ Pi and
x ∈ Vi.

PROOF of Theorem 3.4. The key observation in Kautz’s proof is that for
a given computable measure µ, almost every x ∈ [0, 1] has a binary representa-
tion given in terms of µ, which we will refer to as its µ-representation, denoted
by Kautz as seqµ(x). Using this µ-representation, we will define Φ so that Φ
maps x (considered as an infinite binary sequence) to seqµ(x) (also considered
as an infinite binary sequence). We should emphasize that even though the
correspondence between [0,1] and 2ω is not one-to-one (since rationals can be
represented as sequences with cofinitely many 0s or cofinitely many 1s), in
order to prove the theorem, we only need to consider the value that Φ takes
on non-computable, and hence non-rational, reals.
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To compute the µ-representation of x ∈ [0, 1], we make use of what we call a
µ-partition of [0,1]. A µ-partition of [0, 1] at level n is a collection of k = 2n

closed intervals Iσ0 , Iσ1 , . . . Iσk−1
such that

(1) σ0, σ1, . . . , σk−1 is a listing of all strings of length n in lexicographical
ordering,

(2)
⋃k−1
i=0 Iσi = [0, 1],

(3) sup Iσi = inf Iσi+1
for 0 ≤ i ≤ k − 2, and

(4) µ(σi) = λ(Iσi) for 0 ≤ i ≤ k − 1.

We further require that the µ-partition of level n is compatible with the µ-
partition of level n + 1 for every n, so that given a string σ of length n, we
have

Iσ = Iσ0 ∪ Iσ1.

Now, given a real x ∈ [0, 1] we can compute its µ-representation seqµ(x) as
follows. To determine the first bit of seqµ(x), we consider the µ-partition of
[0,1] at level 1, I0∪ I1. Given that µ is computable but not necessarily exactly
computable, we may have to approximate I0 and I1 until we see that x ∈ I0 or
x ∈ I1, which will occur as long as x is not the right endpoint of I0 (we omit
the details). If x ∈ I0, the first bit of seqµ(x) is a 0, and if x ∈ I1, the first bit
of seqµ(x) is a 1. Having determined the first n bits of seqµ(x) by finding σ
such that |σ| = n and x ∈ Iσ, we determine whether x ∈ Iσ0 or x ∈ Iσ1 (where
Iσ0 and Iσ1 are given by the µ-partition of [0,1] at level n + 1), and output a
0 or 1 accordingly, as in base case described above.

Thus, if x is not an endpoint of Iσ for any σ ∈ 2<ω, then seqµ(x) is the unique
real y ∈ 2ω such that x ∈ Iy�n for every n. Clearly, then Φ is almost total, and
we have that

Φ−1(JσK) = {x : Φ(x) � σ} = Iσ,

so that
λΦ(σ) = λ(Φ−1(JσK)) = λ(Iσ) = µ(σ).

In the case that µ is atomless, we have moreover that for every y ∈ 2ω,
limn→∞ λ(Iy�n) = 0, which implies that there is a unique x such that

⋂
n∈ω Iy�n =

{x}. Thus, if Φ(x1) = Φ(x2), we must have x1 = x2. Next, if µ is positive,
then for every σ ∈ 2<ω, λ(Iσ) > 0, which means that Φ−1(σ) is non-empty for
every σ ∈ 2<ω. Thus, given y ∈ 2ω, since

Φ−1(Jy�nK) ⊇ Φ−1(Jy�(n+ 1)K)

for every n and each is non-empty, there is some x such that

x ∈
⋂
n∈ω

Φ−1(Jy�nK).

Lastly, in the case that µ is both atomless and positive, then since Φ is one-
to-one, it has an inverse Φ−1. Since Φ is onto up to a set of measure zero, it
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follows that Φ−1 is almost total. Given y ∈ 2ω in the range of Φ, i.e. Φ(x) = y
for some x ∈ 2ω, then Φ−1(y) can be computed by successively computing
Φ−1(Jy�nK) for each n and then intersecting these sets. More specifically, since⋂

n∈ω
Φ−1(Jy�nK) = {x},

for each i, we will eventually find some ni such that

z ∈
⋂
n≤ni

Φ−1(Jy�nK)⇒ z�i = x�i.

Thus we will have (Φ−1)y�ni � x�i for every i.

Proposition A.1 The following are equivalent.

(i) x is complex in the sense of Definition 5.2.
(ii) There exists a computable order function h such that C(x�n) ≥ h(n) for

all n, C denoting plain Kolmogorov complexity.

Item (ii) corresponds to the original definition of complex reals by Kjos-
Hanssen et al.

PROOF. (i)→ (ii) is trivial as Km ≤ 2C. For the reverse direction, we use
the following result of Kjos-Hanssen et al: a real satisfies (ii) if and only if it
wtt-computes a sequence of strings (σn) such that C(σn) ≥ n. Now suppose
that x is complex, and therefore wtt-computes such a sequence σn. Let ϕ
be a computable bound on the use of this reduction. We have the following
inequalities:

Km(x�ϕ(n)) ≥+ C(σn)− 2 log n ≥ n− 2 log n ≥+ n/2

The second inequality is true by definition of σn. To see that the first one holds,
let p be the shortest Km-description of x�ϕ(n). Using p, one can compute an
extension τ of x�ϕ(n). Then, specifying n (for a cost of 2 log n + O(1) bits),
one can retrieve x�ϕ(n) and therefore compute σn. Since Km is monotonic, it
follows that

Km(x�n) ≥+ ϕ−1(n)/2

and the right-hand side is a computable order function.

PROOF of Proposition 6.4 The idea behind the proof is to define a non-
decreasing tt-functional Θ such that µΘ is a generalized Bernoulli measure,
i.e. such that for every n, there is some pn ∈ [0, 1] such that

pn =
µΘ(σ0)

µΘ(σ)
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for every σ ∈ 2<ω of length n. Moreover, we will define Θ so that

|pn − 1/2|2 ≤ 2−|σ|

for every n ∈ ω. Lastly, we would like to define Θ in such a way that the
resulting values pn will always be contained in some fixed interval [ε, 1 − ε]
for ε ∈ (0, 1

2
); such measures are called strongly positive. Now by the effective

version of Kakutani’s Theorem (see, for instance, [BM09]), given two com-
putable, strongly positive, generalized Bernoulli measures µ1 (with associated
values p1, p2, . . . ) and µ2 (with associated values q1, q2, . . . ) such that

∞∑
i=1

|pi − qi|2 <∞,

it follows that MLRµ1 = MLRµ2 . Thus, if we can define such Θ satisfying the
given conditions, then we will have

∞∑
i=1

|pi − 1/2|2 <∞,

and hence MLRµΘ
= MLR.

To define Θ, we sketch the main idea and leave the details to the reader. To
define p1, we look for a finite, prefix-free collection of strings {σ1, . . . , σk} such
that

Iσ1 ∪ . . . ∪ Iσk = [0,
1

2
− ε1],

for some ε1 <
1
2
, where Iσ is as defined in the proof of Theorem 3.4 (we can

find such a collection effectively because µ is atomless). Then we define Θ so
that extensions of each σi is mapped to extensions of 0 (and reals that extend
none of the σi’s are mapped to extensions of 1). Thus p1 =

∑
i≤k µ(σi).

Now we repeat this procedure, partitioning the intervals [0, 1
2
−ε1] and [1

2
−ε1, 1]

each into two intervals, each of which is determined by a finite, prefix-free
collection of strings, just as we partitioned the interval [0,1] above, but we must
make sure that ratios of the sizes of the components of each partition is the
same, i.e. the left component of each is p2 times the length of the given interval,
where p2 is within 1

4
of 1

2
. In so doing, we will get four collections of strings,

extensions of which will be mapped to extensions of 00,01,10,11 (depending
on which of the four partitions the sequences belong to). Continuing this
procedure, we will eventually define Θ with the desired properties.
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