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1

Introduction

Presburger arithmetic [Pre29] is a decidable logic used in a large range of ap-
plications. As described in [Lat04], this logic is central in many areas includ-
ing integer programming problems [Sch87], compiler optimization techniques
[Ome], program analysis tools [BGP99, FO97, Fri00] and model-checking
[BFLO04, Fas, Las]. Different techniques [GBDO02] and tools have been devel-
oped for manipulating the Presburger-definable sets (the sets of integer vec-
tors satisfying a Presburger formula): by working directly on the Presburger-
formulas [Kla04] (implemented in OMEGA [Ome]), by using semi-linear sets
[GS66] (implemented in BRAIN [RV02]), or automata (integer vectors being
encoded as strings of digits) [WB95, BC96] (implemented in FAsT [BFLP03],
LasH [Las] and MoNaA [KMS02]). Presburger-formulas and semi-linear sets
lack canonicity. As a direct consequence, a set that possesses a simple repre-
sentation could unfortunately be represented in an unduly complicated way.
Moreover, deciding if a given vector of integers is in a given set, is at least
NP-hard [Ber77, GS66]. On the other hand, a minimization procedure for au-
tomata provides a canonical representation. That means, the automaton that
represents a given set only depends on this set and not on the way we compute
it. For these reasons, autmata are well adapted for applications that require
a lot of boolean manipulations such as model-checking.

Whereas there exist efficient algorithms for computing an automaton that
represents the set defined by a given Presburger formula [Kla04, WB00, BC96],
the inverse problem of computing a Presburger-formula from a Presburger-
definable set represented by an automaton, called the Presburger synthesis
problem, was first studied in [Ler03] and only partially solved in exponential
time (resp. doubly exponential time) for convex integer polyhedrons [Lat04]
(resp. for semi-linear sets with the same set of periods [Lug04]). Presburger-
synthesis has many applications. For example, in software verification, we
are interested in computing the set of reachable states of an infinite state
system by using automata and in analyzing the structure of these sets with a
tool such as [Ome] which manipulates Presburger-formulas. The Presburger-
synthesis problem is also central to a new generation of constraint solvers
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for Presburger arithmetic that manipulate both automata and Presburger-
formulas [Lat04, Kla04].

The Presburger-synthesis problem is naturally related to the problem of
deciding whether an autamaton represents a Presburger-definable set, a well-
known hard problem first solved by Muchnik in 1991 [Muc91] with a quadruple
exponential time algorithm. To the best of our knowledge no better algorithm
for the full class of Presburger-definable sets has been proposed since 1991.

In this paper, given an automaton that represents a set X of integer vectors
encoded by the least significant digit first decomposition, we prove that we
can decide in polynomial time whether X is Presburger-definable. Moreover,
in this case, we provide an algorithm that computes in polynomial time a
Presburger-formula that defines X.
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Notations

We provide in this chapter notations used in the sequel.

2.1 Sets, Functions, and Relations

We denote by Q, Q4, Z and N respectively the set of rational numbers, non-
negative rational numbers, integers, and non-negative integers.

The intersection, union, difference, and symmetric difference of two sets
A and B are written AN B, AU B, A\B, and AAB = (A\B) U (B\A).

The class of subsets (resp. the class of finite subsets) of a set E is denoted
by P(E) (resp. Ps(E)). The cardinal of a finite set X is written |X| € N. A
partition € of a set E is a class of non-empty subsets of E such that X;NX5 = ()
for any X1, Xo € Cand F = Uy X.

The Cartesian product of two sets A and B is written A x B. The set
X" is called the set of vectors with m € N components in a set X. Given
an integer ¢ € {1,...,m} and a vector x € X™, the i-th component of z is
written z[i] € X.

The set of functions f : X — Y, also called sequences of elements in Y
indexed by X is written YX. A function f € XY is said injective if f(x,) #
f(z2) for any a1 # x9 € X, surjective if for any y € Y there exists z € X
such that y = f(z), and bijective or one-to-one if it is both injective and
surjective. A function f € YX is either denoted by f : X — Y, or it is
denoted by f = (fz)zex and in this last case Y is implicitly known. Given
a function f : X — Y and two sets A and B, we define f(A) and f~1(B)
respectively the image and the inverse image of A and B by f, given by
f(A) ={f(x); x € XN A} and f~}(B) = {x € X; f(z) € B} (remark that
A is not necessary a subset of X and B is not necessary a subset of V).

An enumeration of a set E is an injective function f : N — E. A countable
set ' is a set E that has an enumeration. Recall that a finite set is countable
and the class of finite subsets of a countable set is countable.
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Let V be a countable set of boolean variables. A boolean formula ¢ over the
boolean variables V is a formula in the grammar ¢ := v|¢ N ¢|d U ¢|d\p|p A
where v € V. A boolean valuation p is a function that maps each boolean
variable v to a set p(v). Observe that a boolean valuation p can be naturally
extended to any boolean formula ¢. Given a boolean formula ¢(vy,...,v,)
where vy, ..., v, are the boolean variables occurring in ¢ and some sets F1, ...,
E,,, we denote by ¢(FE1, ..., E,) the unique set p(¢) where p is any valuation
such that p(v;) = E;. A set E is called a boolean combination of sets in a class
C of sets if there exists a boolean formula ¢(vy,...,v,) and some sets Eq, ...,
E, in C such that E = ¢(En, ..., E,).

Lemma 2.1. We can decide in polynomial time if a finite set E is a boolean
combination of sets in a finite class C of finite sets. Moreover, in this case
we can compute in polynomial time a boolean formula ¢(v1,...,v,) and a
sequence Eq, ..., E, of sets in C such that E = ¢(E,...,E,).

Proof. Let us consider an enumeration E1, ..., E,, of the sets in € and let X =
UL, E;. Let us consider the function f: X x {1,...,n} — P(E) such that
f(z,4) is the unique set in {E;, X AFE;} that contains x. Let us also consider
the set K, = (), f(x,i) and observe that E is a boolean combination of sets
in Cifand only F' = {J,cp Ke. O

A relation R is a subset of S7 x Sy where S; and Sy are two sets. We
denote by s1Rso if (s1,82) € R. Such a relation is said one-to-one if there
exists a unique sy € S5 such that s;Rss for any s; € S7, and if there exists a
unique s; € 57 such that s;Rss for any sy € S5. The concatenation Rq.Ro of
two relations R; C 57 x S9 and Ro C Sy x S3 is the relation R1.Ro C S X S5
defined by s1R1.Ross if and only if there exists sy € S5 such that s1Rqs2
and s9Ras3. A binary relation R over a set S is a relation R C S; x S such
that S = 5 = S5. Recall that a binary relation R over S is an equivalence
if R is reflexive (sRs for any s), symmetric (s1Rss if and only if s9Rs;
for any s1,s2 € S), and transitive (s1Rs2 and saRss implies s;Rs3 for any
s1, 82,83 € S). Given an equivalence binary relation R over S, the equivalence
class of an element s € S is the set of ' € S such that sRs’. Recall that
equivalence classes provide a partition of S.

2.2 Linear Algebra

The unit vector e; ., € Q™ where j € {1,...,m} is defined by e; ,,[j] = 1 and
e;m[i] =0 for any i € {1,...,m}\{j}. The zero vector eg,, € Q™ is defined
by €o,m = (O, “ee ,O)

Vectors x+y and t.z are defined by (z+y)[i] = (x[i]) + (y[¢]) and (t.x)[i] =
t.(x[i]) for any i € {1,...,m}, x,y € Q™, ¢t € Q. We naturally define A+ B =
{a+b; (a,b) € Ax B} and T.A = {t.a; (t,a) € T x A} for any A, B C Q™
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and T C Q. For any a,b € Q™ and t € Q, let us define a + B = {a} + B,
A+b=A+{b},t.A={t}.Aand T.a = T-{a}.

The infinite norm of a vector x € Q™ is defined by ||z||,, = max; |z[i]]
where |z[i]| is the absolute value of x[i].

The dot product of two vectors z,y € Q™ is denoted by (x,y) =
S il

The greatest common divisor (ged) of m € N\{0} integers z1, ..., &y, is
denoted by ged(xq,...,2m). Recall that the ged of of some integers can be
efficiently computed in polynomial time thanks to an Euclidean algorithm.

A rational number g € Q can be canonically represented as a tuple (n,d) €
Z x (N\{0}) such that ¢ = % and ged(n,d) = 1. The integer size(q) € N is
defined as the least (for <) integer such that n,d < osize(q)  The integer
size(x) € N where z € Q™ is defined by size(x) = Y || size(x[i]). The integer
size(X) € N where X € P(Q™) is defined by size(X) = . y size(x).

A function f : Q™ — Q™ is said affine if for any i € {1,...,m}, there
exists v; € Q™ and ¢; € Q such that f(z)[i] = ¢; + (v, x) for any z € Q™.

The set of matrices with n € N rows and m € N columns with coefficients
in aset X C Q is denoted by M,,, ,(X). Its elements are denoted by M|i, j] €
X wherel <i<nand 1<j5<m.

2.3 Alphabets, Graphs, and Automata

An alphabet 3 is a non-empty finite set. Given an alphabet Y, we denote by
X the set of non-empty words over X. Given a non-empty word o = by ... by,
of k € N\{0} elements b; € ¥, and an integer i € {1,...,k}, we denote by
oli] the element o[i] = b;. We denote by e the empty word. As usual X*
denotes the set of words X+ U {e} and a language L is a subset of X*. The
concatenation of o1 € X* and o9 € X* (resp. L1 C X* and Lo C X*) is
denoted by o1.09 (resp. £1.L9 = {01.09; (01,02) € L1 X La}). Given a word
o € X*, we define as usual o where i € N and o* = {¢%; i € N}. The length
of a word o € ¥* is denoted by |o| € N. The residue o~ 1.L of a language
L C X* by a word o € X* is the language 0 1.L = {w € X*; o.w € L}.

A graph G labelled by X is a tuple G = (Q, X, §) such that @ is the non
empty set of states, X is an alphabet and 0 : @ x XY — @ is the transi-
tion function. Two graphs G1 = (Q1,X,01) and Gy = (Q2, X, 52) labelled
by X are said isomorph by a one-to-one relation R C Q1 x Q2, if we have
01(q1,b)Rd2(g2,b) for any ¢1Rge and for any b € . As usual, the transition
function § is uniquely extended into a function § : @Q x X* — @ such that
0(q,€) = q for any ¢ € @ and such that §(q,01.02) = 6(d(¢g,01),02). Given a
word 0 € X*, we denote by = the binary relation over @ defined by ¢ = ¢
if and only if ¢’ = d(g, o). In this case, we say that there exists a path from a
state ¢ to a state ¢’ labelled by o. Such a path is called a cycle on ¢ if ¢ = ¢’

and o # €. Given a language L C X*, the binary relation £, is defined by
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L= User Z.. The binary relation — is defined by =27, A state q' is said
reachable from a state qo if g — ¢’. The notion of reachability is naturally
extended to the subsets of : a subset Q' C @ is said reachable from a subset
Qo C Q if the exists a state ¢’ € Q' reachable from a state gy € Qq. In this
case the set Q' is said co-reachable from Q. A strongly connected component
Q' is an equivalence class for the equivalence binary relation = defined over
Q by g= ¢ if and only if ¢ — ¢’ and ¢ — q. A graph G is said finite if Q
is finite. In this case |G| = |Q] denotes the number of states of G, and the
integer size(G) € N is defined by size(G) = | X].|Q|.

An automaton A labelled by X is a tuple A = (ko, K, X, §, Kr) such that
(K,X,0) is a graph labelled by X, kg € K is the initial state and Kp C
K is the set of final states. Two automata Ay = (ko1,K1,%, 61, Kp1) and
Ag = (ko2, K2, X, 62, K2) labelled by X are said isomorph by a one-to-one
relation R C K; x Ky if (K3,X,01) and (Ks, X, 02) are isomorph by R,
(ko.1,k02) € R, and we have ky € Kp; if and only if ko € Kpgo for any
(k1,k2) € R. An automaton with a finite set of states K is said finite. In
this case, we denote by |A| the number of states | K| and the integer size(A)
is defined by size(A) = |X|.|K|. The language L(A) C X* recognized by an
automaton A labelled by X is defined by L(A) = {o € X*; §(qo,0) € Kp}. A
language L C X* is said regular if it can be recognized by a finite automaton.
Recall that a language L C X* is regular if and only if the set of residues
{o~1.L; o € ¥*} is finite. In this case the automaton (£, K, X, §, Kr) defined
by the set of states K = {o71.L; o € ¥*}, the transition function §(k,b) =
b=1.k which is in K since b~1.o71.L = (0.b)71.L and the final set of states
Kp = {k € K; € € k} is the unique (up to isomorphism) minimal (for the
number of states) automaton labelled by X' that recognizes L.
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Logic and Automata
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Finite Digit Vector Automata

In this chapter, the Finite Digit Vector Automata (FDVA) representation, a
state-based representation of set of integer vectors is presented.

3.1 Digit Vector Decomposition

In this paper, r denotes an integer in N\{0, 1} called basis of decomposition.
The set X, = {0,...,r — 1} is called the set of r-digits and the set S, =
{0,7—1} C X, is called the set of r-signs. Given an integer m € N\{0} called
dimension, we intensively used the alphabets X, = X" and S, ,, = S"
whose the elements are respectively called the (r,m)-digit vectors and the
(r,m)-sign vectors. Naturally, a word over the alphabet X, ,,, can also be seen
as a word over the alphabet X, with a length multiple of m. In order to simplify
notations, these words are identified. Moreover, given a word o € X*

r,m?

denote by ||, the length of o seens as a word over the alphabet X, ,, and
defined by |o],, = 12, and given a word o = by ...by of k € N\{0} (r,m)-

digit vectors b; € E;nm and an integer ¢ € {1,...,k}, we denote by o[i],, the
(r,m)-digit vector o[i], = b;.

A (r,m)-decomposition (o,s) of an integer vector = € Z™ is a cou-
ple (0,5) € X%, X Sy m corresponding to a least significant digit first de-
composition of x in basis r. More formally, we have = p;.,(0,s) where

Prom 20 gy X Spm — 2™ is defined by the following equality:

[o]m

pr,m(gu 3) ‘U‘m- + Z 7'1 1 m

Example 3.1. (011,0) is a (2, 1)-decomposition of 6 = 2! 4 22.

1), (1,1), (11,1), ..., (1...1,1) are the (2,1)-decompositions

(
Ezample 3.2. (e, 1
0), (0,0), ..., (0...0,0) are the (2, 1)-decompositions of 0.

of —1 and (e,
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Following notations introduced in [Ler04], function p;., can be defined
thanks to the unique sequence (Vrm,o)oex: of functions v, o + Z™ — Z™
such that v, 1 o1.00 = Yr.m,o1 OVr,m,o0 fOT ANy 01,02 € X%, vy 1 ¢ is the identity
function, and such that v, . p(x) is defined for any (b,x) € X, x Z™ by the
following equality:

Yemp(x[1], ... z[m]) = (rz[m] + b, z[1],...,z[m — 1))

In fact, we deduce that for any (r,m)-decomposition (o, s), we have the fol-
lowing equality since vy () = r.x + w for any (w,z) € Xy, x Z™:
s

pr,m(oa S) = Vr,m,a(m)

Function p,. ., can be used to associate to any language L C 2rm X Srom,
the set of integer vectors X = p;.,(L). Remark that p,,, is a surjective
function (we have py. (2, X Sp.m) = Z™) because any vector x € Z™
owns at least one (r, m)-decomposition. Hence, for any subset X C Z™, there
exists at least one language £ such that X = p,,,,(L). However, intersection
of languages does not correspond to intersection of sets of integer vectors:
for instance, consider £L; = {(0,0)} and L2 = {(0.0,0)} and remark that
{0} = pr1(L1)Nppr1(L2) # pra(L1NLa) = 0. In order to avoid this problem,
we introduce the notion of saturated languages.

A language L C X7 x S, ., is said (r,m)-saturated if for any (r,m)-
decompositions (o1, $1) and (o2, s2) of the same vector, we have (o1,s1) € £
if and only if (02,s2) € L. Remark that ¥, x S, is a (r,m)-saturated
language such that p;. (X}, X Spm) = Z™, and L1#Ly is a (r, m)-saturated
language such that p, ., (L1#L2) = prm(L1)#0rm(L2) for any pair (L1,L2)
of (r, m)-saturated languages, and for any # € {U,N,\, A}.

The (r, m)-decompositions of the same integer vector are characterized by
the following lemma 3.3.

Lemma 3.3. Two (r,m)-decompositions (o1,s1) and (o2, 82) represent the
same integer vector if and only if s1 = so and 1.8 N oa.85 # ().

Proof. Consider two (r,m)-decompositions (o1,s1) and (o2,s2) such that
there exists s € S, and k1, k2 € N satisfying s; = s = sp and 01.57" = 02.552,
and let us prove that (o1, 1) and (o2, $2) represent the same vector. Just re-
mark that 7. s(25) = 1= for any s € S, ,,,. Hence, an immediate induction
(over ki and k) shows that (o1, 1) and (o2, s2) represent the same vector.

For the converse, consider two (r, m)-decompositions (o1, $1) and (o2, s2)
that represent the same vector. Remark that for any (r, m)-decomposition
(0, 8) of an integer vector = € Z™, we have s[i] = 0 if z[i] € Nand s[i] = r—1if
x[i] € Z\Nfor any i € {1,...,m}. Therefore, as (01, $1) and (o2, s2) represents
the same vector, we deduce that there exists s € S, ,, such that s; = s = ss.
Consider k; and ko such that |o1|+k1 = |oa|+ke. From the first paragraph, we
deduce that (wy,s) and (ws, s) represent the same vector where wy = o7.s7"
and wy = 02.312“2. By uniqueness of the (r,m)-decompositions with a fixed
length, we deduce that wy = we. O
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3.2 State-based Decomposition

A language of (r, m)-decompositions can be naturally represented by a state-
based representation. Our representation is obtain by considering the natural
one-to-one function from the set of (r, m)-decompositions to the set of words
in X% ,.0.5, m that associate to a (r,m)-decomposition (o, s) the word 0.¢.s
where ¢ is an additional letter not in X,..

Observe that an automaton A recognizing a language included in X7 ,.0.S;. 1
can be decomposed into (1) a graph called Digit Vector Graph corresponding
to the part of A before a ¢ letter, and the part of A after a ¢ letter called a
final function.

Definition 3.4. A Digit Vector Graph (DVG) is a tuple G = (Q,m, K, X,., §)
where Q is the non empty set of principal states, r € N\{0, 1} is the basis of
decomposition, m € N\{0} is the dimension, and (K, X,,d) is a graph such
that Q C K and 0(Q, Xym) C Q.

A Finite Digit Vector Graph (FDVG) G is a DVG with a finite set of states
K. Given a FDVG G, the integer size(G) € N is defined by size(G) = r.|K|.
The parallelization [G] of a DVG G = (Q, m, K, X,,0) is the graph [G] =
(Q, Xy.m,0). We introduce DVG rather than graph labelled by X, ,,, in order
to establish fine polynomial time complexity results that should be useless
with an exponential size in m of the alphabet X, ,,. Naturally any graph
labelled by X, ., is equal to the parallelization of at least one DVG in basis r
and in dimension m.

Definition 3.5. A final function is a tuple F = (Q, f,m, K, S,.,§, Kr) where
Q is the mon empty set of principal states, r € N\{0,1} is the basis of
decomposition, m € N\{0} is the dimension, (K,S,,0) is a finite graph,
f:Q — K is a function mapping principal states to states in K, and Kp C K
is the set of final states such that the language recognized by the automaton
(f(q), K, Sy, 0,KF) is a subset of Sy for any principal state g € Q.

A final function F' is said finite if the set of principal states @ is finite (observe
that K is finite by definition). Given a finite final function F'| the integer
size(F') € N is defined by size(F') = |Q|+|K|. The parallelization [F| of a final
function F' = (Q, f,m, K, S,, 6, Kp) is the function [F] : @ — P(S,m) such
that [F](q) is the language recognized by the automaton (f(q), K, Sy, d, Kr).

A DVG G and a final function F' are said compatible if they are defined
over the same set of principal states with the same basis r and the same
dimension m. Given a tuple (¢, G, F') where ¢ is a principal state, G is a DVG
and F is a final function compatible, we denote by L((¢, G, F')) the following
language of (r, m)-decompositions:

L((q, G, F)) = {(w,8) € X7, X Srms s € [F](6(q w))}

Recall that we are interested in recognizing (r, m)-saturated languages. A final
function F' is said saturated for a DVG G if it is compatible with G and if
L((q,G, F)) is (r,m)-saturated for any principal states g € Q.
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Proposition 3.6. A final function F is saturated for a DVG G if and only
if F and G are compatible and [F](q1) N {s} = [F](q2) N {s} for any 1 > qo
with (q1,8,q2) € Q X Spm X Q.

Proof. Assume first that L((¢, G, F)) is (r,m)-saturated for any state ¢ € @,
and let us prove that s € [F](q1) if and only if s € [F](g2) for any ¢; = g2 with
(q1,$,q2) € @X Sy mx Q. Assume first that s € [F](q1). Lemma 3.3 proves that
Prm(€,8) = prm(s,s). As L((q1,G, F)) is (r,m)-saturated, we deduce that
(s,5) € L((q1,G, F)). From g2 = 6(q1,s) we get s € [F](g2). Next assume
that s € [F](g2). We get (s,s) € L((q1,G,F)). As this language is (r,m)-
saturated and prm (s, s) = pr.m(€, s), we deduce that (e,s) € L((q1,G, F)).
Therefore s € [F](q1).

Next, assume that [F](q1) N {s} = [F](g2) N {s} for any ¢ = g2 with
(q1,$,q2) € QxS mxQ, and let us prove that L((g, G, F)) is (r, m)-saturated
for any state ¢ € Q. Let us consider two (r, m)-decomposition (o, s) and (o, s)
of the same integer vector such that (o’,s") € L((¢q,G, F)) and let us prove
that (o,s) € L((¢q,G, F)). From lemma 3.3, we deduce that s = s’ and there
exists k, k' € N such that o.s" = ¢’.s*. As s € L((q1,G, F)) if and only
if s € L(q2,G,F) for any ¢1 > ¢o with ¢1,¢2 € Q, an immediate induc-
tion shows that (o’,s") € L((¢, G, F)) implies (o, s) € L((¢, G, F)). Therefore
L((¢,G,F)) is (r,m)-saturated for any ¢ € Q. O

We can now introduce our definition of digit vector automata.

Definition 3.7. A Digit Vector Automaton (DVA) is a tuple A = (qo, G, Fp)
where qo € @Q s the initial state, G is a DVG and Fy is a final function
saturated for G.

A Finite Digit Vector Automaton (FDVA) A is a DVA with a finite DVG G
and a finite final function F. Given a FDVA A, the integer size(A) is defined
by size(A) = size(G) + size(F). Given a DVA A = (qo, G, Fy), the (r,m)-
saturated language L(A) = L((qo, G, Fv)) is called the recognized language of
A. The set X = p,,m(L(A)) is called the set of integer vectors represented by
A.

Let us show that any set X C Z™ can be represented by a DVA by
introducing the DVG G, n(X) = (Qrm(X),m, Ky m(X), Xy, drm) where
Krm(X) = {vmw(X); w € X7}, Qrm(X) = {y;.0(X); w € X7, }, and
Srm is defined by 0, (Y,b) = 7 L (V) for any YV € K, ,,(X) and b € Z,.
Finally, let us consider the tuple Arm(X) = (X, Grm(X), Frm) where F p, is
any final function such that [F}. ,,](Y) = S, ,mN(1—7).Y forany Y € Qpm(X).

Proposition 3.8. The tuple A, ,,(X) is a DVA in basis v and in dimension

m that represents X.

Proof. Let us first prove that A, ,,(X) is a DVA in basis r and in dimension
m. It is sufficient to show that [Fyn](¢1) N {s} = [Frm](g2) N {s} for any

@1 = g2 where (q1,5,¢2) € Q X Spm X Q. As q1 = qa, we get g2 =, 4 (1)
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Remark that [Fy](q1) = Srm N (1 —7).q1 and [Frn](g2) = Spm N (1 —7).q2.
AS Yrm,s(125) = 195, we deduce that [F}.](q1) N {s} = [Fm(g2)] N {s}. We
are done.

Now, let X’ be the set represented by the DVA A, ,,,(X), and let us prove
that X’ = X. Let « € X'. There exists a (r, m)-decomposition (o, s) of x such
that (0,5) € L(Apm(X)). Let ¢ = 6,.m(qo,0). We get ¢ = 7,1, ,(X). From
s € [Frm](q), we deduce s € Sy, N (1 —7).q. Hence %= € ¢ = 7,1, ,(X)
and we obtain v, m.(15) € X. As prm(0,s) = x, we get © € X and we
have proved the inclusion X’ C X. For the converse inclusion, let z € X.
Let us consider a (r, m)-decomposition (o,s) of x. As x = p,(0,s) and
Prom(0,5) = Vrpmo(X), we get s € Sppm N (1 —7).q where ¢ = 4,1, (X).

Therefore go = q and s € [F}.,,](g). That means p,.,,(c,s) € X’ and we have
proved the other inclusion X C X’. O






4

Modifying a DVA

The sets obtained by mowving the initial state of a DVA are geometrically char-
acterized in section 4.1 and the set obtained by modifying the final function
of a DVA are studied in section 4.2.

4.1 Moving the initial state

The DVA obtained from A by replacing the initial state go by another principal
state ¢ € () is denoted by A,. Given a set X implicitly represented by a DVA
A with a set of principal states (), we denote by X, the set represented by the
DVA A,. In this section the set X, is geometrically characterized in function

of X,, for any path q; = go where (q1,w, g2) € Q x Xrm X Q.

Proposition 4.1. Let X be a set represented by a DVA in basis v and in
dimension m with a set Q of principal states. We have Xq, = ~, 1, (Xq,) for

any path ¢ = qo where (q1,w,q2) € Q X Xrm X Q.

Proof. Consider © € X,,. There exists (o,s5) € L(Ag) such that z =
Pr.m(0,8). From (w.o, s) € L(Ag, ), we deduce that p, ,(w.0,s) € Xg,. Just re-
mark that p, (0.0, 8) = Y m.w(Prm (0, 8)) = Yrm,w(x). We have proved that
Xg, € Yyomw(Xg,). For the converse, consider = € 7,1, (Xg, ). As any vec-
tor owns at least one (r, m)-decomposition, there exists a (r, m)-decomposition
(0, s) such that = py, (0, s). From z € v, (Xq,), we get Ypm,w(z) € X, .
Just remark that v, () = pr.m(w.o,s). As L(Ag, ) is (r, m)-saturated, we
get (w.o,s) € L(Ag,). In particular (o,s) € L(Ay,). Hence x = p (o, s) €
X4,- We have proved the other inclusion ’7;711'7,,111(XQ1) Cc X, O

Theorem 4.2. Let X be a Presburger-definable set represented by a DVA
A = (q,G, Fy). The set X, is Presburger-definable for any reachable (for
[G]) principal state q € Q.
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Proof. The proof is immediate because if X is Presburger-definable, there
exists a formula ¢ in FO (Z,N, +) that defines X. Consider a reachable (for
[G]) principal state ¢ € Q. There exists a path ¢ = ¢ with ¢ € X me
From proposition 4.1, we deduce that X, is defined by the Presburger formula
bo(z) == Fy; (Y = Vrmo(x) A d(y)). Therefore X, is Presburger-definable.
O

e
-
-
-
-

Fig. 4.1. On the left, F{’zl’g with its fix-point &2,2(c). On the right I 5 (0,0)(Z°)

Previous proposition 4.1 provides a characterization of the sets obtained by
moving the initial state of a DVA to another principal state. This character-
ization can be translated into a geometrical one by considering the unique
sequence (I mw)wes: of affine functions I3, : Q™ — Q™ such that
Lyomwyws = Drymown © Lrmow, for any (w1, ws) € X, such that I, . is the

identity function and such that I5. ., () is defined for any (b, z) € X, x Q™
by the following equality:

Ly p(2[1], ..., z[m]) = (rx[m] + b, z[1], ..., x[m — 1])

AS Yrmo(x) = Inmo(x) for any z € Z™, we deduce that ~. ) (X)
I (XN no(Z™)). Now, just remark that given o € X7 I o (2)
rlolm 2 4 Vr.m,o(€0,m) is simply a scaling function (an affine function of the
form * — p.x + v where p € Q\{0} and v € Q™) and I}, ,(Z™) =

rlol.zm 4+ Yr.m,o(€0,m) 18 a pattern (see figure 4.1 and section 9.3).

Remark 4.5. Function I5. ,, o, is the unique affine function that extends v, p 4t

there exists a unique affine function f: Q"™ — Q™ such that f(x) = v, rw(x)
for any x € Z™.
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The following lemma introduces the geometrically characterized vectors
& m(0) that will be useful in the sequel.
Lemma 4.4. The function &, ., : X, — Q™ defined by & (0) = %{j?ﬂ’")
is the unique function such that & (o) is a fiz-point of Iy .o for any
oce Xt

Proof. Remark that &, ,,(0) is a fix-point of I, ,,, », and if x is a fix-point of
Iyomo, then rlolm o4 Yr.m,o(€0,m) = x and we deduce that z =&, ,,(0). O

In the sequel the sets X C Z™ such that there exists o € E;‘: m Satisfying
Yrm.o(X) = X are useful since intuitively & (o) is a fix point of these sets.

Such a set is said (r,m, 0)-cyclic.

4.2 Replacing the final function

Given a set X implicitly represented by a DVA A = (qo, G, Fy) and given a
final function F saturated for G, we denote by X ¥ the set represented by the
DVA AF obtained from A by replacing I, by F.

4.2.1 Detectable sets

A set X’ C Z™ is said (r,m)-detectable in a set X C Z™ if v} (X') =
Vrm.oy (X') for any words 01,09 € X7, such that v} (X) =~} . (X).
The following theorem 4.5 shows that these sets characterize the sets X’ C Z™
such that for any DVA A = (qo, G, Fy) that represents X, there exists a final

function F saturated for G such that X’ = X ¥

Theorem 4.5. A set X' C Z™ s (r,m)-detectable in a set X C Z™ if and
only if for any DVA A that represents X, there exists a final function F
saturated for G such that X' = XF.

Proof. Assume first that for any DVA A = (qo, G, Fp) that represents X,
there exists a final function F saturated for G' such that X’ = X7¥. Let
us consider the DVA A, . (X) = (X,Grm(X), Fr ) where Gy (X) =
(Qrm (X),my Ky (X), Xy, 0r,m). There exists F' : Qrm(X) — P(Srm) such
that X' is represented by the DVA (X, G, ,,(X), F). Consider 01,02 € X7,
such that v, 1 (X) = 7,4 5, (X). By definition of A,.,,(X), there exists
Y € Q, m(X) such that 6,,,(X,01) =Y = 6, (X, 02). Proposition 4.1 proves
that v, %, o (X') = X{ =~} ,,(X'). Therefore X" is (r, m)-detectable in X.

Next, assume that X’ is (r, m)-detectable in X and let us consider a DVA
A = (qo, G, Fy) that represents X where G = (Q,m, K, X,,0). Let F be a
final function over @ such that [F](q) = {s € Sy ;30 € 27,5 0(qo,0) €

0(q,8*) N pr.m(o,s) € X'}
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Let us first prove that F is saturated for G. Consider a transition ¢ = ¢/
with s € Sy, and let us prove that s € [F](q) if and only if s € [F](¢').
Assume first that s € [F](g). We deduce that there exists o € X, , and
integer k € N such that §(qo,0) = 6(q,s*) and p, (0, s) € X'. From
§(qo,0.5) = 8(¢',s*) and p,m(0.5,8) = prm(o,s) € X', we deduce that
s € [F](¢'). Let us prove the converse and assume now that s € [F](¢).
There exists a word o € X%, an integer k € N such that 6(go,0) = (¢, s*)
and such that p,.,(0,s) € X'. Just remark that §(go,0.s) = d(q, s**1) and
Prm(0.8,8) = prm(0,s) € X'. Hence s € [F](q). We have proved that F is
saturated for G.

By construction of F, we have X’ C X¥. Let us prove the converse
inclusion. Consider a vector € X There exists a (r, m)-decomposition
(w,s) € LE such that p,m(w,s) = x. Let ¢ = §(qo, w). We get s € [F](q).
That means there exists 0 € X, such that §(qo,0) € 0(g,s*) and such
that p,m(o,s) € X'. By replacing w by a word in w.s*, we can assume
that d(go,0) = ¢. From d(qo,0) = d(qo,w), proposition 4.1 shows that
Yrmo(X) = Yrmw(X). As X' is detectable in X, we get 5,1 (X') =
Yrmao(X'). Moreover, as pr.m (0, s) € X', we deduce from the previous equal-
ity that = p,,,(w, s) € X'. We have proved the other inclusion X C X'.
O

The following proposition will be useful for deciding if a set X’ is (r,m)-
detectable in a set X represented by a DVA A in basis r.

Proposition 4.6. Let us consider a FDVA A in dimension m in basis r with
n states. We can compute in polynomial time a set U of at most r.m.n pairs
(01,09) of words in X=" satisfying |o1|+m.Z = |oa| +m.Z for any (o1,02) €
U, and such that for any set X' C Z™, there exists a final function F such
that X' is represented by A" if and only if v}, 5 (X') = vy g 0, (X') for any
(01 , 02) evU.

Proof. We first show that for any z € N and for any X C Z™ we have
erﬂﬁ %m,g(vr_y;l_’g(X)) = X. Naturally %)mp(vr_y;l_’g(X)) C X for any word
o € X7 and in particular we get the inclusion (J,¢ 5. Yrm,o (Vrm.o (X)) € X.
For the converse inclusion, let € X. There exists a (r, m)-decomposition
(w, s) of x and by replacing w by a word in w.s*, we can assume that |w| > z.
In particular there exists a decomposition of w into w = o.w’ where o € XZ.
Since pr (0.0, 8) = Vrm,o(Pr.m(W', 8)) and pp (o', s) = x € X, we deduce
that ppm(w',s) € 7,4 »(X) and hence & € Ym0 (V.0 (X)). We have proved
the converse inclusion. '

Let S be the set of couples s = (k,Z) € K x Z/m.Z such that there
exists a word o € X* satisfying s = (6(qo, 05),|0s| + m.Z), and let (05)secs
be a sequence of words satisfying the previous condition, o4, m.z) = € and
|os| < n for any s € S. Observe that such a sequence (05)ses is computable
in polynomial time. Let us consider the set U of pairs (o, .b, 05,) where s; =
(kl,Zl), So = (kQ,ZQ) are in S and b € X, satisfies s9 = (5(k1,b),Zl + 1)
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Note that U is computable in polynomial time and it contains at most r.m.n
pairs (o1,02) of words in ¥=" satisfying |o1| + m.Z = |o2| + m.Z for any
(01,02) € U.

Assume first that there exists a final function F such that X’ is rep-
resented by A and let us prove that v} , (X') = v, ,,(X') for any
(01,02) € U. Remark that it sufficient to prove that ~, 1 , (X') =71 ,,(X')
for any pair (o1,02) of words in X such that there exists s = (k: Z) ceU
satisfying (0(qo,01),|o1] + m.Z) = s = (0(qo,02), |o2]| + m.Z). There exists
z € {0,...,m — 1} such that Z + z = m.Z. Since §(qo,01) = d(qo,02) we
deduce that 6(qo,01.0) = §(qo,02.0) for any word o € X?. As 01.0 and 03.0
are both in X, . proposition 4.1 shows that v}, . (X') = 7}, . -(X).
Thus 570 0 (X1) = Yo o(X5) for any o € L7 where Xj = %mal( ’)

and X} = *yrm 02( ). We have proved that Uaezz ”yrvmﬁg(%’m ~(X1)
erzz Yrm,o (Vrom, U(Xé)) From the first paragraph we get X| = XJ.
Next assume that .}, , (X') = 7,4, (X') for any (01,02) € U and let

- ’7r m,o2
us prove that there exists a final function F such that X' is represented by
AP As previously, it is sufficient to prove that v, 2, , (X') = % 5, (X')
for any pair (01,02) of words in X such that there exists s = (k,Z) € S

satisfying (6(qo, 01), |o1| + m.Z) = s = (6(qo,02), |o2| + m.Z). Let us remark

that it is sufficient to prove that 5\ (X') = 4,4, (X') for any 0 € I
where s = (6(qo, o), |o| +m.Z). Let us consider a sequence by, ..., b; of r-digits

bj S ET such that o = bl . bl and let S5 = (5((]0,()1 . bj),j + mZ) e S for
any j € {0,...,i}. By hypothesis, we have v b, (X)) = Yo oo (X7). In
’ WWsj—1 ? ) S]

particular 'yT_)fnmjilhbjmb_(X’) = 'Vr_vlno le...bi(X/) for any j € {1,...,3}.

i

We deduce that 7;71717030.b1...b¢ (X)) = ”yr,}l USZ( ’). Since 05, =€, 0 =by...b;
and s; = s, we have proved that ~,} (X') =~} , (X'). O

Let Zym,s be the set of vectors @ € Z™ having a (r, m)-decomposition of
the form (o, s) where o € X7, . This set is defined by the follwoing Presburger-

formulas:
(N zlilzon( A zlil<0)

i; s[i]=0 iy s[i]=r—1

The sets Z,., s naturally appear as (r, m)-detectable sets as shown by the
following proposition 4.7 that characterize these sets.

Proposition 4.7. A set is (r, m)-detectable in any set X C Z™ if and only if
it is equal to a union of Zy m s.

Proof. Let us consider a finite set L C S, ,,, and a DVA A that represents a set
X and just remark that UseL r.m,s is represented by the DVA AF where F
is a final function such that [F](¢q) = £ for any ¢ € Q. Therefore J,cp Zr,m.s
is (r,m)-detectable in any set X C Z™. Conversely, let us consider a set X’
that is (r, m)-detectable in any set X. As () is represented by a DVA with one
unique principal state go, and X’ is (7, m)-detectable in @), we deduce that



20 4 Modifying a DVA

there exists a final function F such that X’ is represented by A¥". Therefore
X' = Useirigo) Zrms- O

Ezample 4.8. The set X1# X5 is (r, m)-detectable in X for any (r, m)-detectable
sets X1, X2 in X, and for any # € {U,N,\, A}. Thus, any boolean combina-
tion of sets (r, m)-detectable in X is (r,m)-detectable in X.

4.2.2 Eyes and kernel

Consider a FDVG G = (Q,m, K, ¥,,0). Given a (r,m)-sign vector s € Sy,
let us consider the equivalence relation ~, over the principal states @ defined
by ¢1 ~s g2 if and only if §(q1,s*) N d(q2,s*) # 0. An equivalence class
Y C Q for ~; is called an s-eye (or just an eye). Given an s-eye Y, we
denote Fsy : Q@ — P(Sym) a final function defined by [Fsy|(q) = {s} if
g € Y and defined by [F;,v](g) = 0 otherwise. Notice that a final function
F:Q — P(Sym) is saturated for G if and only if [F] is a finite union of final
functions [F y].

Fig. 4.2. On the left an s-eye. On the right its s-kernel.

The s-kernel kers(Y) of an s-eye Y C @ is defined by kery(Y) =
Nien 0(Y, s"). Remark that the s-kernel of an s-eye Y is a non empty set

of the form kery(Y) = {qu,...,q.} such that ¢; = ¢2...qx = q1 (see figure
4.2).
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Expressiveness

The expressiveness of the FDVA representation is studied in this section. We
first prove in section 5.1 that a subset of Z™ can be represented by a FDVA
if and only if it is r-definable [BHMV94]. Next in section section 5.2, we show
that the Number Decision Diagram (NDD) [WB00] representation, an other
state-based symbolic representation for subsets of Z™ is slightly equivalent
(up to polynomial time translation) to the FDVA.

5.1 Sets r-definable

Recall [BHMV94] that a set X C Z™ is said r-definable if it can be defined
in the first order theory FO (Z,N, +,V,.) where V,. : Z — Z is the r-valuation
function defined by V,(0) = 0 and V,.(z) is the greatest power of r that
divides « € Z\{0}. Note [BHMV94] that a subset X C N™ is definable in
FO (N, +, V) if and only if the language {o € X} ; prm(0,€9,m)} is regular.
We are going to prove that a set X C Z™ can be represented by a FDVA
in basis r if and only if it is r-definable by decomposing such a set into sets
of the form f, , s(Xs) where X, C N™ s € S,.,, is a (r,m)-sign vector, and
fr.m,s 1s the function given in the following definition.

Definition 5.1. Given a (r,m)-sign vector s € Sy, we denote by frm.s
Z™ — 7™ the function defined for any x € Z™ and for anyi € {1,...,m} by:

x[i] if s[i]=0
—1—x[i] otherwise

fr,m,s(x)[i] = {

Remark that X = {J,cq from,s(Xs) where Xy = NN f,.,, (X). The fol-
lowing two propositions 5.2 and 5.3 shows that a FDVA that represents X is
computable in linear time from a FDVA that represents X.

Proposition 5.2. For any (r,m)-sign vectors s € Sy, a FDVA that repre-
sents fr.m,s(X) in basis r is computable in time O(m.size(A)) from a FDVA
A that represents a set X C Z™ in basis r.
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Proof. Let us consider a FDVA A = (qo, G, Fp) that represents X in basis 7.
Without loss of generality, we can assume that G and Fj share the same set of
states K and the same transition function §. That means G = (Q, m, K, S,., §)
and F' = (Q, f,m, K, S,,0, Kp).

Let us first assume that there exists a function [ : K — Z/m.Z such that
(k) = I(k) + 1 for any transition k = k' where (k,b,k') € K x 5, x K,
such that [(go) = 1 and I(f(¢)) = 1 for any ¢ € Q. Let us consider the two
bijective functions ¢, o, t, ,—1 : X — X, where t, o is the identity function and
trr—1(b) = r—1—bfor any b € X,. By replacing the function ¢ in G and Fy by
the function ¢’ given by 0’(k,b) = 6(k, . sq1(r)) (b)) we deduce a DVG G’ and
a final function F’ such that the DVA A’ = (qo, G', F') represents fy m. s(X)
in basis r. This result is well know and the proof is left to the reader.

In the general case, if the labeling function [ does not exist, by multiplying
the size of A by m, a DVA A” that represents X in basis r and owns a labelling
function [ can be easily obtained. Hence, we are done. O

Proposition 5.3. A FDVA that represents N™ N X in basis v is computable
in linear time from a FDVA that represents a set X C Z™ in basis r.

Proof. Let us consider a FDVA A = (qo, G, Fp) that represents X. Remark
that in linear time we can compute a final function F with the set @ of
principal states such that [F](q) = {eom} if eo.m € [Fo](q) and [F](q) =
() otherwise. Now, just remark that N”* N X is represented by the FDVA
(qO, G, F) O

We can easily deduce the following theorem 5.4.

Theorem 5.4. A set X C Z™ can be represented by a FDVA in basis r if and
only if it is r-definable.

Proof. Assume first that X is r-definable and let us prove that X can be
represented by a FDVA in basis r. As X is r-definable, the set X, = N N
from,s(X) is r-definable for any s € S, . As Xy C N, from [BHMV94]
we deduce that {o € 2 ms prm(0,€0.m) € Xs} is regular. Therefore X
can be represented by a FDVA in basis r. From proposition 5.2 we deduce
that f,m s(Xs) can be represented by a FDVA in basis r. Therefore X =
Usesr,m frm,s(Xs) can be represented by a FDVA in basis r. For the converse,
assume that X is represented by a FDVA in basis r and let us prove that X is r-
definable. From propositions 5.2 and 5.3 we deduce that X, = NN f,. p, s(X)
can be represented by a FDVA in basis . As Xy C N™ from [BHMV94] we
deduce that X is r-definable. As X = from,s(Xs), we deduce that X
is r-definable. O

SESr,m

Remark 5.5. We can easily prove that for any set X C Z™, the set X is r-
definable if and only if the DVA A, ,,,(X) is finite and moreover in this case
it is the unique (up to isomorphism) minimal (for the total number of states)
FDVA that represents X in basis r.
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5.2 Number Decision Diagrams (NDD)

Recall [WBO00] that a Number Decision Diagram (NDD) A in basis r and in di-
mension m that represents a r-definable set X C Z™ is a finite automaton over
the alphabet X, that recognizes the regular language {c.s; (0, s) € p, ) (X)}.
We do not consider NDD in this paper because (1) the class of regular lan-
guages included in X7, .S, is not stable by residue which means the au-
tomaton obtained by moving the initial state of a NDD is not a NDD any-
more, and (2) rather than replacing the final function Fy of a FDVA A by
another final function F' is structurally obvious, the corresponding operation
over NDD is not immediate since the FDVG G and the finite final function
Fpy are encoded into a single automaton. Nevertheless, polynomial time algo-
rithms provided in this paper can be applied to NDD thanks to the following
translation proposition 5.6.

Proposition 5.6. A NDD that represents X in a basis r is computable in
quadratic time from a FDVA that represents a set X in basis r. Conversely, a
FDVA that represents X in basis r is computable in linear time from a NDD
that represents a set X in basis r.

Proof. Let us consider a letter ¢ not in X,. and let us consider the one-to-one
function f: X .0.Srm — X .-G m. It is sufficient to show that (1) a finite
automaton that recognizes L' = f(L) is computable in quadratic time from
a finite automaton that recognizes a language L C X7, .0.S; 1, and (2) a
finite automaton that recognizes L = f~!(L’) is computable in linear time
from a finite automaton that recognizes a language L' C X7 .S, .. These
two computations are immediate. 0O
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Some Examples of FDVA

The FDVA A, 1(Z), Ar1(N), A, 3(+) and A, 2(V;), are given in figures 6.1,
6.2 and 6.3. Remark that a principal state ¢ € @ is labelled by the set X,
(in fact a formula in FO (Z,N, +,V,) defining X,), and a dot-edge from ¢ to
[Fb](q) is drawn for each state ¢ € @ such that [Fo(q) # 0.

=, =,

| |

| |

| |
v v
S, {0}

Fig. 6.1. On the left, FDVA A, 1(Z). On the right, FDVA A, 1(N)
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beXr 3; be Xy 35 bEX, 3;
B[1]+b[2]=b[3] b[1]+b[2]=b[3]+r BI1]+b[2]+1=b[3] +r

q1

beX, 33
b[1]+b[2]4+1=b[3]

be X, 3;
b[1]+b[2]€b[3]+r.Z

beX, 33
b[1]+b[2]+1¢b[3]+7.Z

s€S, 3;
s[1]+s[2]+1=s[3]+r

s€Sy, 3;
s[1]+s[2]=s[3]

Fig. 6.2. The FDVA A, 3;({z € Z% 2[1] + z[2] = z[3]})

{(0,0)} Xy x{0}

(Z\{0}) x{1}

{(0,0)}
bEX, o

(= (b[1]=0Ab[2]=0))

A(=(b[1]£0Ab[2]=1))

T x (Zr\{0})

Fig. 6.3. FDVA A,»({z € 7% Vi (z[1]) = z[2]})
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Reductions

In this section, we prove that the problem of deciding if the set X represented
by a FDVA A is Presburger-definable and in this case the problem of comput-
ing a Presburger formula that defines X can be reduced in polynomial time
to:

e the cyclic case: there exists a loop on the initial state go. In particular the
set X represented by A is cyclic from proposition 4.1.

e the positive case: the final function Fy is such that [Fo)(q) € {0, {eo,m}}-
In particular X C N™.

7.1 Cyclic reduction

Given a word 0 € Xf,  aset X C Z™ is said (r,m, 0)-cyclic (or just cyclic)
if v, mo(X) = X and a DVA A is said (r,m,o)-cyclic (or just cyclic) if
0(g0,0) = qo. From proposition 4.1, we deduce that the set represented by a
(r,m, o)-cyclic DVA A is (r,m, o)-cyclic. Conversely, remark that if a set X is
(r,m, o)-cyclic then the DVA A, ,,(X) is (r, m, o)-cyclic. The notion of cyclic
sets is useful in the sequel for reducing some problems to the special cyclic
case since a cyclic Presburger-definable set can be defined by a Presburger

formula of a very particular form (see lemma 7.2).

Remark 7.1. The first application of the cyclic reduction is the positive reduc-
tion given in section 7.2.

Lemma 7.2. For any (r,m,o)-cyclic Presburger-definable set X, there ex-
ists an integer n € N\{0} relatively prime with r such that X can be de-
fined by a formula equal to a boolean combination of formulas of the form
(@ — & m(0)) < 0 where o € Z™ and formulas of the form x € b+ n.Z™
where b € 7.
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Proof. A quantification elimination shows that there exists an integer ng €
N\{0} and a finite set Dy C Z™ x Z such that X can be defined by a formula
equal to a boolean combination of formulas of the from (a,z) < ¢ where
(a,¢) € Dy and & € b+ ng.Z™ where b € Z™. Remark that there exists

. B no . .
an integer £ € N enough larger such that n = TR is relatively

prime with 7 and such that the rational number 3, . = r“"k|m.((r —1).c—
(at, prom (0, €0,m))) satisfies [Ba,c| < 1 for any (a,c) € Do. As v} (X)) =X,
we deduce that X can be defined by a formula equal to a boolean combination
of formulas of the form (a, 7, ,,, o+ ()) < ¢ where (a,¢) € Do and 7, ,,, -+ (@) €
b+no.Z™ where b € Z™. Now remark that <a, Vrm, ok (x)> < ¢ is equivalent to
(o, (r = 1)z + prom(0,€0.m)) < Ba,c. Since {a, (r — 1).x 4+ prm(0,e0m)) € Z
and |Ba,c| < 1, we have proved that <Oé,'}/r1m70-k (a:)> < ¢ is equivalent to
(o, — & m(0)) < 01if By < 0and it is equivalent to = (—a, x — & (0)) <0
if Ba,e > 0. Finally, remark that v, () € b+ nsZ™ is either false if
b & n.Z™ or equivalent to a formula of the form x € V' +n.Z™ where b’ € Z™
otherwise. O

Lemma 7.3. From an automaton A over X, that represents a finite language
L C X7, we can compute in polynomial time a Presburger formula ¢ that

defines prm (L, €,m)-

Proof. Let us consider a finite automaton A = (qo, @, Xy, d, @) that recog-
nizes L. We denote by A, the automaton obtained from A by replacing the

initial state gy by an other state ¢ € @. Let us remark that L C ETS‘Q‘ since
otherwise L is infinite thanks to the pumping lemma. For any k € {0,...,|Q|},
we can compute in polynomial time a finite automaton that recognizes LN Xk,
Hence, without loss of generality, we can assume that there exists k € N such
that L C X*. The cases k = 0 or £ = () are left to the reader. Since £ C 2rm
and L is not empty and included in Eﬁm, we deduce that m divides k. Let
n= % and remark that € p, (L, eg ) if and only if there exists a sequence
bi, ..., by, of integers in X, such that \7", z[j] = S bjym.ir" and such that
0(qo,b1...bk) € Q. Now remark that this last property can be translated
into a Presburger formula in polynomial time. 0O

Proposition 7.4. Let X C Z™ be a set represented by a FDVA A in basis
r and let Q. be the set of principal states reachable for |G| that have a loop.
The set X is Presburger-definable if and only if X, is Presburger-definable
for any q. € Q.. Moreover, from a sequence of Presburger formulas (¢4, )q.cQ.

such that ¢q4, defines X, , we can compute in polynomial time a Presburger
formula ¢ that defines X .

Proof. Assume first that X is Presburger-definable. Recall that we have
proved that X, is Presburger-definable for any principal state ¢ reachable
for [G]. In particular X, is Presburger-definable for any ¢. € Q.. Next,
assume that X, is defined by a Presburger formula ¢, for any ¢. € Q.
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and let us prove that we can compute in polynomial time a Presburger for-
mula ¢ that defines X. For any k € {0,...,|Q] — 1} and for any ¢ € Q,
we can compute in polynomial time an automaton Ay, over X, that rec-
ognizes Lpq = {0 € XF i 0(q0,0) = ¢}. From lemma 7.3 we can com-
pute in polynomial time a Presburger formula ¢, that defines the set
Xb.qo = Pr.m(Lk,g..€0,m). Let us prove that X is defined by the Presburger
formula 6(z) =V, co, VI 3y 32 (2 = r*.y+ ) Ay (1) A b (2))). Let
x € X. There exists a (r, m)-decomposition (w, s) of  such that |w|,, > m.|Q)|.
In this case, w can be decomposed in w = o.w’ where o € ETSJInQI is such that
there exists a loop on ¢. = 0(go.0) and w’ € X¥. From = = ;. »(2') where
' = prm(w,s) and z € X, we deduce that 2/ € ~.} (X) = X, . Let
k = |o|m. From x = r*.2" + py.n(0,€0m) € 8. X4 + X q. We deduce that
¢(z) is true. For the converse, consider = € Z™ such that ¢(x) is true. There
exists (ge, k) € Qo x {0,...,|Q| -1}, 2’ € X, and a word o € L(Ayg,q,) such
that © = r*.2’ + p,.;m(0,€0,m). Let us consider a (r,m)-decomposition (w’, s)
of /. As |o|m = k, we deduce that @' = v, o(x). As qo 2 q., we have
Xg. = Vim0 (X). Hence = € Ym0 (Ym0 (X)) € X. We have proved that
reX. O

7.2 Positive reduction

The following proposition 7.5 and proposition 5.2 provide the positive reduc-
tion since a set S satisfying the following proposition 7.5 is computable in
quadratic time.

Proposition 7.5. Let A be a FDVA that represents a set X C Z™. Lel us
consider a set S of (r,m)-sign vectors such that S N (Fo(q)AFo(q")) # O for
any state q,q¢' € Q such that Fo(q)AFy(q') # 0. The set X is Presburger-
definable if and only if the set N™ N fr 1 (X)) is Presburger-definable for any
s € S. Moreover from a sequence of Presburger formulas (¢s)scs such that ¢s
defines X = NN fr.m (X)), we can compute in polynomial time a Presburger
formula ¢ that defines X .

Proof. Naturally, if X is Presburger-definable, then Xy = N N f, ,,, o(X) is
Presburger-definable for any s € S. Let us prove the converse. Form proposi-
tion 7.4, we can assume that there exists a loop on the initial state. Consider
a sequence (¢s)ses of Presburger formulas ¢4 that defines X. Let us consider
the function sign : Z™ — S, ,,, that associate to any vector z € Z™ the unique
(r, m)-sign vector s € S, ,, such that there exists € Z, ., 5.

Let us consider the following Presburger formula 6, (z, k) and remark that
Os(z, k) is true if and only if z + k%";m € Zrm.s N X. We denote by
K, the Presburger-definable set K, = {k € Z; 6s(x,k)}. Since K, , is a
Presburger definable set included in Z, there exists a unique minimal integer
ns, € N\{0} such that there exists a finite set Bs, C {0,...,ns, — 1} and
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an integer ks, € Z such that K, N (ks +N) = kg o + Bs » + ns ».N. Let us
prove that ng, is relatively prime with 7. From lemma 7.2, we deduce that
there exists an integer ng relatively prime with » such that Z, ,, s N X can
be defined by a formula equal to a boolean combination of formulas of the
form (o, ) < cand & € b+ n,.Z™. Now, just remark that ns , divides ns. We
deduce that ng . is relatively prime with r.

xi] > 0= y[i] =

(7]
zi] < 0= y[i] =

95($,k) = Hy ¢sofr,m,s(y)/\/\ ( (
iz \V(

Let us consider the Presburger formula Ws(z,n) := n > 1 A 3k Vk >
ko; 0s(x, k) <= 0s(x,k + n). Remark that Ws(z,n) is true if and only if
n € ng ,.(N\{0}).

Next, let us denote by Qs the set of principal states ¢ € @ such that
s € [Fol(q). Observe that we can compute in polynomial time the partition
C of @ corresponding to the equivalence relation ~ defined by ¢; ~ ¢» if and
only if Fylg1] = Folqz]. Given C' € €, remark that [Fp](q) does not depend
on g € C' and we can denote by [Fp](C') the unique subset of S, ,, such that
[Fb](C) = [Fo](q) for any ¢ € C. From lemma 2.1, we deduce that for any
C € C there exists a boolean formula R¢ computable in polynomial time
such that C is defined by R ([Fo)(q)ses)-

We are going to prove that X is defined by the following Presburger for-
mula ¢(x):

o(x) := \/ (sign(z) € [Fo](C) AVYN In > N Re(bs(z,1+n) AWe(x,n))ses)
cee

Let us consider & € Z™ such that ¢(z) is satisfied and let us prove that
x € X. There exists C' € € such that sign(z) € [Fp](C) and for any N there
exists n > N such that Re(6s(x,1 4+ n))ses and Wi(x,n) are true. Let us
consider N = ks, — 1 and let n > N be such that Rc(0s(x,1 + n))ses and
Ws(z,n) are true. Since Wy(z,n) is true, we deduce that n € n,,.(N\{0}).
Let us consider a (r,m)-decomposition (o, sg) of ¢ such that rl7olm >k
for any s € S. Since ng ,, is relatively prime with r, by replacing oy by a word
in 0¢.s3, we can assume that rloolm e 1 4 Ng z.2Z. Since 1 4+ n and rloolm are
both greater than k; , and the difference of these two integers (1+n)— (rl7olm)
is in n ,.Z, we deduce that 0,(z, 1+n) is equivalent to 0,(z, 7170l ). Therefore
Re(0s(x, 1 + n))ses is true. Remark that 6,(z,rl70lm) is true if and only if
T+ T“’O‘m.% € Zrm,s N X. Remark that = + r“’“"’h% = pr.m(00, 9).
Therefore 0(x,rl70lm) is equivalent to s € [Fy](g) where ¢ = §(qo,00). We
deduce that R (s € [Fol(q))ses is true. Hence ¢ € C' and from sg € [Fp](C)
we get sg € [Fo](¢). We have proved that z € X.

Now, let us consider z € X and let us prove that ¢(x) is true. Since
Q is finite and [],.gns.. is relatively prime with r, there exists a (r,m)-
decomposition (og, sp) of x and an integer dy € N\{0} such that ¢ = §(qo, 00)
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satisfies d(gq, sgo) = ¢ and such that rl?0lm and r% are in 1 4 n,,.Z. Since
C is a partition of @, there exists C' € € such that ¢ € C. Let us consider
N € Z. There exists k € N such that the integer n = rloolmtkdo _ 1 jg
greater than or equal to N and 1. Remark that n € n,,.(N\{0}). Therefore
Wy(z,n) is true. Moreover, as © € X we deduce that so € [Fy](¢) and hence
sign(xz) € [Fy](C). Moreover, as ¢ € C we get Ra(s € [Fol(q))ses is true.
Remark that s € [Fy](q) if and only if p, . (00.55%,8) € Zpm.o N X if and
only if = + T“""’"H“'d“.% € Zrm,s N X if and only if 64(x,1 4 n) is true.
Therefore ¢(x) is true. 0O
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Linear Sets

8.1 Vector spaces

Fig. 8.1. The vector space V = Q.(2,1)

A wector space V of Q™ is a non empty subset of Q™ such that A.V C V
for any A € Q and such that V' +V C V. As any finite or infinite intersection
of vector spaces of Q" remains a vector space and we deduce that any set
X C Q™ is included into a unique minimal (for C) vector space denoted by
vec(X) and called the vector hull of X or the vector space generated by X. A
basis of a vector space V is a sequence v, .., vg of vectors in V such that for
any = € V there exists a unique sequence A1, ..., A\g of rational numbers such
that x = Zle Ai.v;. Recall that any vector space has a basis and the number
of elements of a basis only depends on V and it is called the dimension of V,
and it is denoted by dim (V) € {0,...,m}.
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There exists unduly complicated basis of vector spaces. For instance con-
sider the vector space V = Q? and for each n € N let v}, v} be the basis of
V given by v = (2.n + 1,n) and v§ = (2,1). That means complex basis of
simple vector spaces (for instance Q2) can be computed if vector spaces are
symbolically manipulated by basis. In order to overcome this problem, we are
going to associate to any vector space a canonical basis.

A set of indices I C {1,...,m} is said full rank for a vector space V if for
any = € Q! there exists a unique v € V such that v[i] = x[i] for any i € I.

Proposition 8.1. Any vector space has a full rank set of indices.

Proof. Let us consider subset I C {1,...,m} maximal for the inclusion
amongst the subset J C {1,...,m} satisfying for any 2 € Q7, there ex-
ists a unique v € V such that v[j] = z[j] for any j € J. Remark that such
a set I exists since J = () satisfies the condition. Let us consider two vectors
v1,v2 € V such that vq[i] = voi] for any i € I and let w = v; — vo. Assume
by contradiction that w # e ,,. There exists jo € {1,...,m}\I such that
wljo] # 0. Let J = T U {4jo} and let us prove that for any z € Q7 there exists
v € V such that v[j] = z[j] for any j € J. By definition of I, there exists
vg € V such that vo[i] = «[i] for any ¢ € I. Let v = vy + %w and
remark that v[i] = x[i] for any ¢ € I since w[i] = 0 and v[jo] = 0. Therefore
I is not maximal and we get a contradiction. Thus w = eg,, and we have
proved that for any z € Q’, there exists a unique v € V such that v[i] = z[i]
foranyie . O

A wector I-representation of a vector space V where [ is a full rank set
of indices for V is a sequence (v;);ecr of vectors in V satisfying v;[¢{] = 1 and
v;[j] = 0 for any j € I\{i}. Observe that such a sequence (v;);cr is a basis
of V and given a full rank set I, there exists a unique vector I-representation
of V. The integer size(V) € N of a vector space V is defined by size(V) =
maxy (), size(v;)) where (v;);es is the unique vector I-representation of V.

The following proposition provides a simple way for computing incremen-
tally a vector I-representation of a vector space V.

Proposition 8.2. Let I be a full rank set of indices for a wvector space V,
let (v;)ier be the vector I-representation of V' and let V' be the vector space
V' =V + Q. where x is any vector in Q™. The vector spaces V and V'
are equal if and only if the vectors y = x — ., x[i].v; and ey, are equal.
Moreover, if V' is not equal to V' then given jo such that y[jo] # 0, the set of
indices J = I U{jo} is full rank for V' and the vector J-representation of V'
is the following sequence (v})jes:

o — Jui—viliolggy i€l
T if = jo
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Proof. Assume first that y = eg,, and let us prove that V' = V’. Since
Yy = €o,m, we get x = > ., xlilv; € V and we deduce V' = V'. Otherwise,
if V=V’ we deduce that y € V. Since (v;);er is a basis of V, there exists
a sequence (A;);er of rational numbers such that y = ZZ—GI \;.v;. From this
last equality, we get y[i] = A; and from y = « — Y., x[i].v;, we get y[i] =
x[i] — z[i] = 0. Thus A; for any ¢ and we have proved that y = eg ,,. We have
proved that the vector spaces V and V' are equal if and only if the vectors
y=1a— . x[ilv; and eg,, are equal.

Now, assume that V' is not equal to V and observe that .J is a set of
indices full rank for V'’ and the sequence (’U;) jeJ is a vector I-representation
of V. DO

Our representation is motivated by the following corollary.

Corollary 8.3. The size of a vector space V is at most polynomially larger
than the size of any finite subset Vo C Q™ that generates V.

Proof. Assume fixed a full row set of indices I of V. Let us consider a finite set
Vb of vectors that generates V. It is sufficient to show that we can compute in
polynomial time a sequence (v;);cs from Vp. By applying the polynomial time
algorithm given in proposition 8.2 and adding one by one the vector vy in V'
and by selecting jo in I, we deduce that the sequence (v;);ecr is computable
in polynomial time. O

8.2 Affine spaces

\

Fig. 8.2. On the left an affine space A = (0,1) 4+ Q.(2,1). On the right its direction.
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An affine space A of Q™ is either the empty-set, or a set of the form
A = ag+V where ag € Q™ and V is a vector space of Q™. This vector space
V' is unique, denoted by A and called the direction of A (see figure 8.2). If
A = 0, we denote by A = 0 the direction of A. A non-empty affine space A
is called a V-affine space if A is equal to a vector space V.

An affine I-representation of a V-affine space A where [ is a full rank
set of indices of V is a couple (a, (v;);er) where a is a vector in A such that
afi] = 0 for any ¢ € I and (v;);er is the I-vector representation of V. Observe
that such a couple is unique. The integer size(A) € N of a non-empty affine
space A is defined by size(A) = max;(size(a)) + size(V) where (a, (v;)ier)
is the unique I-affine representation of A. The integer size(()) is defined by
size()) = 0. Notice that size(A) = size(V) if the affine space A is a vector
space A =V since in this case a = g .

The direction of affine spaces, has an interesting application intensively
used in the sequel and given by the following lemma.

Lemma 8.4 (Comparable affine lemma). Two comparable (for C) affine
spaces that have the same direction are equal.

Proof. Consider two affine spaces A; and As such that A; C As and such
— — — —
that A1 = As. Naturally, if A; = ), as A; = Ay we deduce that As = ) and
we are done. Assume that A; # (. Consider a; € Ay. As a1 € A1 C As, we
— — — —
deduce that Ay = a1 + As. From A; = Ao, we get Ay = a1+ Ay = A;. O

Recall that any finite or infinite intersection of affine spaces of Q" remains
an affine space, and we deduce that any set X C Q™ is included into a unique
minimal (for C) affine space denoted by aff(X) and called the affine hull of X
or the affine space generated by X. The direction of aff(X) is denoted by
— —
aff(X) = aff(X).

Finally, recall that the orthogonal X+ of a subset X C Q™ is the vector
space X1+ = {y € Q™; Vz € X (y,z) = 0}. Recall that (X+)* = vec(X). In
particular, X = V is a vector space if and only if (V) = V. The orthogonal
projection over a non-empty_?jﬁne space A is the unique function IT4 : Q™ —
A such that ITy(z) — 2 € (A)*L for any € Q™ (see figure 8.3). Recall that
I, is an affine function that satisfies ITa(z) = (1 — >, x[i]). I a(€0,m) +
S i) s (e m).

8.3 Vector lattices

An additive group M of Q" is a non-empty finite subset of Q™ such that
—M C M and M + M C M. As any finite or infinite intersection of additive
groups remains an additive group and Q™ is a group, any set X C Q™ is
included into a minimal (for C) additive group, denoted by group(X) and
called the group generated by X. An additive group M such that there exists
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Fig. 8.3. Orthogonal projection ITa(z) = &2 of z = (3,-2) over A = (0,1) +
Q.(2,1).

a finite set X satisfying M = group(X) is called a vector lattice. Lattices are
characterized by introducing discrete sets. A set Z C Q™ is said discrete if
for any x € M, there exists a rational number € > 0 such that ||z —y|| > €
for any y € M\{z}.

Proposition 8.5 ([Tau92]). A group is discrete if and only if it is a vector
lattice.

Proof. Assume first that M is a discrete group and let us prove that M is a
vector lattice. Since eg,, € M, there exists € > 0 such that ||z||, > € for any
x € M. Let V be the vector space generated by M and let vy, ..., vq be a basis
of V formed by vectors in M. Let us denote by B = {Zle Ali].vi; 0 < A[f] <
1}. The rational k = Z'Z:l [|vil] o, satisfies ||b]| < k for any b € B. Assume by
contradiction that M N B contains more than (MTH)" elements. Hence, there
exists x1,22 € M N B such that x; # 2 and such that ||z, — 23|[ < €. By
definition of € we deduce that x1 —x2 = eg ,, and we get a contradiction. Thus
MM B is finite. For any z € M, there exists A € Q¢ such that z = Zle Ali].v;.
Let us consider a vector z € Z4 such that 0 < A[i] — 2[i] < 1 and remark that
:C—Z'iizl z[i].v; € MNB. Thus M = group({v1, . ..,vq}U(MNB)) and we have
proved that there exists a finite set X of vectors such that M = group(X).
For the converse, assume that M is a vector lattice and let us prove that M
is discrete. There exists a finite set X of vectors such that M = group(X).
Let us consider an integer d € N\{0} such that d.X C Z™ and let us remark
that for any x,y € M such that « # y, we have ||z —y|| > é. Thus M is
discrete. O

Thanks to this characterization, we deduce that any group included in a vector
lattice is a vector lattice since any set included in a discrete set remains
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discrete. Given a vector space V', a vector lattice M such that V = vec(M) is
called a V-vector lattice. The previous proposition also proves that Z™ NV is
a V-vector lattice since it is a discrete group such that vec(Z™ NV) =V.

8.3.1 Hermite representation

We are going to provide a canonical (up to a full rank set of indices I for V)
representation of any V-vector lattice.

An Hermite matriz B of order d is a lower triangular (we have BJi, j] = 0
for any j > ), non-negative square matrix B € Mg4(Q4), in which each
row has a unique maximal entry which is located on the main diagonal of B.
Given a full row set of indices I = {i1 < --- < i4q} of a vector space V, an
Hermite I-representation B of a V-vector lattice M is an Hermite matrix B
of order d such that we have the following equality where (v;);er is the vector
I-representation of V:

d
M = group{$_ Blk, jl-vi,; j € {1,...,d}}
k=1

The integer size(M) € N of a V-vector lattice M is defined by size(M) =
max (size(B)) + size(V).

The following theorem shows that the Hermite I-representation provides
a canonical representation that is polynomially bounded by the size of any
finite set X such that M = group(X).

Theorem 8.6 (Theorem 4.1, 4.2 and 5.3 of [Sch87]). Given a full rank
set of indices I of a vector space V', any V -vector lattice M owns a unique
Hermite I-representation. Moreover, this representation is computable in poly-
nomial time from any finite set of vectors that generates M.

This theorem also proves that for any V-vector lattice, there exists a basis vy,
..., g of V such that M = Z?:l Z.v; (for instance take v; = Eizl Bk, j].vi,).
Such a sequence vy, ..., vq is called a Z-basis of M.

The following proposition will be useful in the sequel.

Proposition 8.7 (Corollary 5.3b and 5.3c of [Sch87]). From an I-
representation of a vector space V, we can compute in polynomial time the
Hermite I-representation of the V -vector lattice Z™ N'V.

8.3.2 Stability by intersection

Naturally, any intersection of vector lattices remains a vector lattice. The
following lemma 8.8 shows that the class of V-vector lattice is stable by fi-
nite intersection (remark 8.9 shows that this class is not stable by infinite
intersection).
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Lemma 8.8. The class of V-vector lattices is stable by finite intersection.
Moreover, given a finite sequence My, ..., M, of V-vector lattices, we can
compute in polynomial time the V -vector lattice ﬂ?zl M;.

Proof. Let I be a full rank set of indices. Recall that from an Hermite I-
representation of M, we get a Z-basis vy j, ..., vq,; of M;. Now, remark that
xr € M where M = ﬂ;-lzl M; if and only if there exists 21, ..., z, in Z* such

that x = Zle zj.v;; for any j € {1,...,n}. Let us consider the vector space
W = {(z,21,...,2,) € Q" x Q% x ---Q% ﬂ?zlx = Z'Z:l zj.0; ;}. From
proposition 8.7 we deduce in polynomial time a Z-basis of Z™ N W of the
form (x1,21,1,--+,21,n)s - (Tds 2d1s- - -5 Zd.n)- Let us remark that ﬂjzl M; is
the V-vector lattice generated by x1, ..., 4. We deduce the I-representation
of M in polynomial time. O

Remark 8.9. The class of V-vector lattices is not stable by infinite intersection.
In fact, let M,, be the V-vector lattice M,, = (n+ 1).Z™ where V = Q™, and

just remark that (), .y M, = {€o,n} is naturally a group as any intersection

of groups, but it is not a V-vector lattice if m > 1.

8.3.3 Sub-lattice

The quotient M'/M of two V-vector lattices M C M’ is defined by M /M’ =
{m’ + M; m’ € M}. The following theorem 8.10 proves that this set is finite.

Theorem 8.10 ([Tau92]). Given two vector lattices M C M’ there exists a
unique sequence ni, ..., ng of integers in N\{0} such that n; divides n; 1 for
any i and such that there exists a Z-basis vy, ..., vqg of M’ satisfying ny.v1,
weey NGVg 18 @ Z-basis of M. Moreover such a sequence (ny,v1), ..., (ng,vq) is
computable in polynomial time.

The unique sequence nq, ..., ng is called the characteristic sequence of M in
M.
The following lemma will be useful in the sequel.

Lemma 8.11 ([Tau92]). Given three V -vector lattices M C M' C M", we
have the following equality:

|M"/M|.| M /M| = |M" /M|

8.3.4 Vector lattices included in Z™

In the sequel we denote by h, : N\{0} — N\{0} the function defined by
h.(n) = zod(ay» and we denote by 6, is the function 6y, € {1,...,m} —
{1,...,m} defined by 0,,(i) € (i — 1+ m.Z)N{l,...,m}.
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Inverse image by ~r,m,o0

Theorem 8.10 proves that any V-vector lattice M included in Z™ is a set of
the form M = Z?:l n;.Z.v; where vy, ..., vq is a Z-basis of Z™ NV and nq, ...,
ng are integers in N\{0}. Thus, the following lemma 8.12 shows that the class
of V-vector lattices included in Z™ is stable by inverse image by Vi m.eq. . -

Lemma 8.12. Given a Z-basis vy, ..., vg of Z™ NV where V is a vector space
and a sequence ny, ..., ng of integers in N\{0}, we have:
d d
7;,171760,m (Z n;.Z.v;) = Z he(n;).Z.v;
i=1 i=1
Proof. Let x € v, o, m(Z?:l n;.Z.v;). There exists z1, ..., z¢ in Z such that
r.T = 2?21 n;.2;.0;. In particular x € Z™ NV and there exists tq, ..., tg in Z
such that z = Zle t;.v;. As vy, ..., vq is a Z-basis, we get r.t; = n;.z; for any i.

Therefore r;.t; = h,(n;).z; where r; = 3- As r; and h,.(n;) are relatively

gcd(:zi,r
prime, there exists u;, v} in Z such that w;.r; +u}.h,(n;) = 1. From u;.r;.t; =
hy(ni).u;.zi, we get t; = hy.(n;).(u;.z; +ul.t;). Therefore, x € 2?21 hr(n;).Z.v;
and we have proved the inclusion v, }, o (Z?Zl n;.Z.v;) C Zle hy(n;).Z.v;.
Let us prove the other inclusion. Consider = € E?:l h.(n;).Z.v;. There
exists a sequence 21, ..., zg in Z such that x = Zle hy(n;).z;.v;. Hence
Yrmseom (&) = Doi_y he(ng).z;.0,. As n; divides r.h,(n;), we deduce that
Vrm,eo.m (L) € Zle n;.Z.v;. Therefore = € ’y;,lmeOm (Zle n;.Z.v;) and we
have proved the other inclusion. 0O

The stability of vector lattices by inverse image by ;.m0 is provided by
the following proposition 8.13.

Proposition 8.13. The set M, = v, (M) is a V,-vector lattice included
i Z™ for any V-vector lattice M included in Z™ where V, is the wvector
space V, = T‘T’IZ,O(V) and for any z € N. Moreover, from an Hermite I-
representation of M, we can compute in polynomial time the Hermite I,-

representation of M, where I, = 0%, (I).

Proof. Recall that form the I-representation of M, we immediately deduce a
Z-basis v1, ..., vg of M. Let us remark that v, 7, (M) is the set of vectors z €
Z™ such that there exists a vector k € Z% satisfying I'7,, o(z) = Ele kli].v;.
Let us consider the vector space W = {(k,z) € Q* x Q™; I}, o(z) =
2?21 kli].v;}. Remark that W is a vector space and J = {1,...,d} is a
full rank set of indices of W. From proposition 8.7 we deduce that we can
compute in polynomial time the J-representation of W. That means we can
compute in polynomial time a Z-basis of Z™ N W denoted by (k1,z1), ...,
wg = (kq,zq) where k; € Z% and x; € Z™. Now, just remark that 7;;70(M)



8.3 Vector lattices 43

is a the V,-vector lattice generated by the vectors zi, ..., x4. Therefore,
the I.-representation of v, * (M) is computable in polynomial time for any
z € {0,...,m — 1}. Observe that in general, an integer z € N can be decom-
posed into z = 2z’ + m.k where k € N and 2z’ € {0,...,m — 1}. Observe that

77‘_;7];;71790,771 (M) can be computed in polynomial time thanks to lemma 8.12. 0O

Relatively prime properties

A V-vector lattice M included in Z™ is said relatively prime with a basis of
decomposition r if the integer |Z™ NV/M]| is relatively prime with r.

Thanks to lemma 8.11, we deduce that the class of V-vector lattices in-
cluded in Z™ and relatively prime with r is stable by finite intersection. In fact
given two relatively prime V-vector lattices M; and Ms included in Z™, from
MiNMs C n.Z™NV C Z™NV where n = |Z™NV /My |.|Z™NV/Ma|, we deduce
that |Z™ NV/My N\ My|.|MyN\ My /n.ZmNV| = |Z™N\V/n.Z" N V| = ndimV),
In particular |Z™ N V/M; N Ms| divides an integer relatively prime with r.
That means it is relatively prime with 7.

We are going to show that the V-vector lattices included in Z™ and rel-
ativelly prime with r naturally appear when computing inverse images of a
V-vector lattice by 7, m,o-

As h,(n) < n for any integer n € N\{0} we deduce that (h¥(n))ken is a
non increasing sequence ultimely stationary: there exists k,, € N such that
hE(n) = hkn (n) for any k > k,,. We denote by h°(n) this limit. Remark that
h2°(n) is relatively prime with r and h2°(n) = n if and only if n is relatively
prime with 7. The previous lemma 8.12 shows that (% o, (M))ken is a
non decreasing sequence of V-vector lattices ultimately statidnary. The limit
is denoted by (M) and naturally satisfies the following equality:

— 00

,m,€0,m
- —k
Yrmseom M) = Vi 0. (M)
kEN
From the previous lemma 8.12 we deduce that v, >, (M) is relatively prime

with 7 and if M is relatively prime with r then 7,2, (M) = M. In partic-
ular the class of V-vector lattices relatively prime with r is stable by inverse
image by ¥r.m,eq.m -

Let us remark that the elements in 7, ;’ﬁeo’m(M ) are geometrically char-
acterized by the following lemma 8.14

Lemma 8.14. Given a vector lattice M included in Z'™ and a vector x € Z"™,
we have x € v, . (M) if and only if there exists k € N such that r*.ax e M.

Proof. Let V' = vec(M). There exists a Z-basis of M of the form ny.v1, ...,
ng.vq where ny, ..., ng are integers in N\{0} and vy, ..., vq is a Z-basis of
Z™ NV. From lemma 8.12 we deduce that h°(ny).v1, ..., h$°(ng).vq is a Z-
basis of v, e, (M). Remark that there exists an integer ky € N such that

rkoh2e(n;) divides n; for any i € {1,...,d}.
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First, let us first prove that there exists k € N satisfying 7*.2 € M for
any r € v, e, . (M). There exists z € Z% such that x = E?:l h2e(n;).z[i].v;.

In particular 7oz = Zle rko hee(n;).z[i].v; € M and we have proved that

there exists an integer k € N such that r*.z € M.

Next, let us show that x € v, 7, (M) for any x € Z™ such that there
exists k € N satisfying r*.2 € M. As r*.2 € M, we deduce that € Z™ N
V. Hence, there exists z € Z? such that » = Zle z[i].v;. Hence 7F.x =

Z'Z:l z[i]r*.z[i].v;. Moreover, as r*.x € M, there exists t € Z% such that

rkax = Zle ni-tlilvi. As v, ..., vg is a Z-base, we get rF.z[i] = n;.t[i].

As h$°(n;) divides n;, we deduce that n} = % is N. Hence 7*.z[i] =
h2e(n;).n}.ti]. As h2°(n;) is relatively prime with r, then h$°(n;) is relatively
prime with % and we deduce that r* divides n/.t[i]. Hence z[i] € h°(n;).Z.
We deduce that = € ~, ! (M). O

7,1M,€0,m

8.4 Affine lattices

An affine lattice P is a subset of Q™ of the form P = a + M where a € Q™
and M is a lattice. A V-affine lattice P is an affine lattice P of the form
P = a+ M where M is a V-vector lattice.

Given a V-affine space A, observe that Z™ N A is either empty or a V-
affine lattice of the form a + (Z™ N'V') where a is any vector in Z™ N A. The
following proposition will be useful for computing a vector in Z™ N A when
such a vector exists.

Proposition 8.15 (Corollary 5.3b and 5.3c of [Sch87]). Given an affine
space A, we can decide in polynomial time if Z™ N A is non empty and in this
case, we can compute in polynomial time a vector a in this set.

Corollary 8.16. Given two affine lattices Py = by + My and Py = bs + My
where by, by are two vectors in Q% and My, My are two vectors lattices, we
can decide in polynomial time if (by + M7) N (ba + Ms) # 0. Moreover, in this
case we can compute in polynomial time a vector a in this set. Observe that
we have Py N Py = a+ (M1 N Ms).

Proof. From the vector I -representation of M;, we deduce in linear time a
Z-basis v1,1, ..., 1,4, of My, and from the vector Ip-representation of My, we
get in linear time a Z-basis v 1, ..., v2,4, of Ms. Observe that (by + M;) N
(ba + M) # 0 if and only if Z™ N A is non empty where A is the affine space
A= {(x1,22) € QM x Q%; by + XM a[i]vri = ba + 302, @[i].v2,:}. Note
that proposition 8.15 provides a polynomial time algorithm for deciding if
Z™ N A is non-empty and in this case it provides in polynomial time a vector
(x1,22) € Z™ N A. Note that a = by + Zf;l x1[i].v1,; is a vector in Py N Ps.
O
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Semi-linear Sets

9.1 Semi-linear Spaces

As Vs
Vi

Ay

\

0A4

Fig. 9.1. On the left a semi-affine space S. On the right its direction.

A semi-affine space (resp. a semi-vector space) S of Q™ is a finite union of
affine spaces (resp. vector spaces) of Q™ (see figure 9.1). Given a vector space
V', a finite union of V-affine spaces is called a semi-V -affine space. In this
section we show that a semi-affine space can be canonically decomposed into
maximal affine spaces, called affine components. Moreover, by proving that
any finite or infinite intersection of semi-affine spaces remains a semi-affine
space, we define the notion of semi-affine hull.
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9.1.1 Affine components

Definition 9.1. An affine component A of a semi-affine space S is a mazimal
(for C) affine space included in S. The set of affine components is denoted by
comp(S).

We are going to prove that comp(S) provides a canonical representation of S.
We first prove the following lemma, intensively used in the sequel.

Lemma 9.2 (Insecable lemma). Let C be a non-empty finite class of affine
spaces and Ao be an affine space such that Ag C|J .0 A. There exists A € C
such that Ag C A.

Proof. Let us consider an affine space Ay and let us prove by induction over
n € N\{0} that for any finite class € of affine spaces such that |G| = n
and Ag € [Jyce A, there exists A € € such that 49 C A. Naturally the
case n = 1 is immediate. Assume that the induction hypothesis is true for
an integer n € N\{0} and let us consider a finite class C of affine spaces
such that [€] = n+ 1 and Ay € (J,ce A. Let us consider A" € €. The case
Ag C A’ is also immediate so we can assume that Ay € A’. Let us consider
€' =C\{A4'}. As Ay € A, there exists ag € Ap\A’. Let a1 € Ap and remark
that a; = ap + t.(a1 — ap) € Ap for any t € Q because A is an affine space.
From Ag C (Jyce A, we deduce that for any ¢ € Q, there exists A € € such
that a; € A. As Q is infinite whereas C is finite, there exists A € € and at
least two different ¢ € Q satisfying a; € A. As A is an affine space, we deduce
that a; € A for every t € Q. From ag € A and ag € A’, we deduce that A € €.
We get a1 € Uyecer A- We have proved that Ag € Jyce A From €] = n,
we deduce that there exists A” € €’ such that Ag C A”. We have proved the
induction hypothesis for €. O

Proposition 9.3. The set comp(S) of a semi-affine space S is finite and S is
equal to the finite union of its affine components S = UAecomp(S) A. Moreover,
from any finite class C of affine spaces such that S = J 4ce A, we can compute
in polynomial time comp(S).

Proof. Let us consider a semi-affine space S = (J e A where C is a finite
class of affine spaces.

Consider the class €' of non-empty affine spaces in € maximal for C. Let
us first prove that S = (J, ce A’. Naturally, from €’ C €, we deduce that
Uarcer A € S. For any A € €, either A = () and in this case A C (Jy/ oo 4,
or A # (), and in this case there exists A’ € €’ such that A C A’. Hence
ACUyce A’ Therefore, S =], co A'.

By replacing € by €', we can assume without loss of generality that C is
a finite class of non-empty affine spaces such that A; C Ay implies A; = A,
for any Ay, As in C.

Let us now prove that comp(S) = €. Let Ay € € and consider an affine
space A’ such that A9 C A’ C S. Insecable lemma 9.2 proves that A’ C S =
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Uace A implies that there exists A € € such that A’ C A. From Ay C A and
A, Ag in C, we get Ay = A. We deduce that Ay = A’. Hence Ay is a maximal
(for C) non-empty affine space such that Ao C S. That means Ay € comp(S)
and we have proved that € C comp(.S). Let us prove the converse inclusion.
Let Ag € comp(S). As Ag € S = Jyece A, insecable lemma 9.2 shows that
there exists A € € such that 49 € A. From Ag € A C S, we deduce by
maximality of Ag that Ag = A. Hence Ay € € and we have proved that
comp(S)C €. O

9.1.2 Size

The set of affine components provides a natural way for canonically repre-
senting semi-affine spaces as finite set of affine spaces. The integer size(S) € N
where S is a semi-affine space is naturally defined by size(.S) = >~ 4 ccomp(s) Size(4).

9.1.3 Direction

Definition 9.4. The direction ? of a semi-affine space S is defined by ? =

—

UAGcomp(S) A.

Remark that the semi-affine space direction definition extends the affine
space direction definition because if S = A is a non-empty affine space then
comp(S) = {A}, and if S = @ then comp(S) = 0. Remark also that insecable
lemma 9.2 shows that for any class C of affine spaces such that S = J e 4,

we have S = Uace A even if € is not equal to comp(S). That shows in par-

N
ticular that a semi-affine space S is a semi-vector space if and only if S = 5.

Ezxample 9.5. Let us consider the semi-affine space S = A; U Ay U A3 U Ay
where A; = Q.(2,1), A2 = (0,1) + Q.(2,1), A3 = (—1,0) + Q.(3,—4) and
Ayg = {(~3,-3)} given in figure 9.1. We have S = V;UV; where V1 = Q.(2,1)
and V3 = Q.(3,—4). Remark that S owns 4 affine components comp(S) =
{41, As, A3, Ay} and S owns only 2 affine components comp(?) = {1, V3}.

9.1.4 Semi-affine hull

Following proposition 9.6 proves that any finite or infinite intersection of semi-
affine spaces remains a semi-affine space. In particular for any subset X C Q™,
there exists a minimal (for C) semi-affine space written saff (X) that contains
X. This semi-affine space is called the semi-affine hull of X. The semi-vector

—
space saff(X) is written saff (X).

Proposition 9.6. Any finite or infinite intersection of semi-affine spaces re-
mains a semi-affine space.
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Proof. Observe that a semi-affine space is a finite union of affine spaces that
can be represented by a finite set of vectors in Q. Hence the class of semi-
affine spaces is countable. In order to prove the lemma, it is therefore sufficient
to prove that (1, o Sy is a semi-affine space for any sequence (.S, )nen of semi-
affine spaces. As the class of semi-affine spaces is stable by finite intersection,
we can also assume that (S, )nen 18 non-increasing. Let us prove by induction
over the dimension & € NU {—1} that any non-increasing sequence of semi-

affine spaces (Sp)nen such that dim(aff(Sp)) < k, is ultimately stationary.
Case k = —1 is immediate because in this case S,, = () for any n € N. Now,
assume the induction true for £k > —1 and let us consider a non-increasing
sequence of semi-affine spaces (S, )nen such that the dimension of aff (Sp) is
equal to k+1. Remark that if S,, is an affine space for any n > 0, then (S, )n>0
is a non-increasing sequence of affine spaces. In particular, this sequence is
ultimately constant. So, we can assume that there exists an integer ng > 0
such that S, is not an affine space. There exists a finite class C of affine
spaces such that Sy, = (Jce A Let A € C. From A C S,,, € Sy C aff(Sy),

we deduce that the dimension of A is less than or equal to k+1. Moreover, if it
is equal to k+1, from A C aff(Sy), we deduce A = aff(Sy) and we get S,,, = A
is an affine space which is a contradiction. As the sequence (S, N A)p>o is
a non-increasing sequence of semi-affine spaces such that the dimension of
au—f[C (S, NA) C A is less than or equal to k, the induction hypothesis proves
that there exists n4 > 0 such that S, N A =.95,, N A for any n > na. Let us
consider N = maxsee(no,na). For any n > N, we have S,, C Sy = Upce 4
and S, N A = Sy N A Hence S, = S N (Unced) = Unee(SnNA) =
Usace(Sn N A) = Sy N (Upece 4) = Sy for any n > N and we have proved
the induction. 0O

Ezample 9.7. The semi-affine hull of a finite subset X C Q™ is equal to X
because X is the finite union over x € X of the affine spaces {x}. The semi-
affine hull of an infinite subset X C Q (remark that m = 1) is equal to Q. In
fact, the class of affine spaces of Q is equal to {Q, 0} U {{z}; = € Q}.

Remark 9.8. As aff(X) is an affine space and in particular a semi-affine space
that contains X, we deduce that saff(X) C aff(X). This last inclusion can be
strict as shown by the example X = {€gm,...,€mm}. In fact, in this case,
we have saff(X) = X and aff(X) = Q™.

The following lemma will be useful to compute the semi-affine hull of some
subsets of Q™ (see example 9.10).

Lemma 9.9 (Covering lemma).

e For any affine function f: Q™ — Q™ and for any subset X C Q™, we
have saff (f (X)) = f(saff(X)).

e For any subsets X, X' C Q™, we have
- saff (X x X') = saff(X) x saff(X”),
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- saff (X U X') = saff (X) Usaff(X’), and
- saff (X + X') = saff(X) + saff (X”).

Proof. Let us consider an affine function f. From X C saff(X), we de-
duce f(X) C f(saff(X)). As f(saff(X)) is a semi-affine space that con-
tains f(X) (observe that f(A) is an affine space for any affine space A
and for any affine function f), by minimality of the semi-affine hull, we
deduce saff(f(X)) C f(saff(X)). Let us prove the converse inclusion. As
f(X) C saff(f(X)), we have X C f~!(saff(f(X))). As f~1(saff(f(X))) is
a semi-affine space (observe that f~1(A) is an affine space for any affine space
A and for any affine function f), by minimality of the semi-affine hull, we
et saff(X) C [~ (saff(f(X))). Hence f(saff(X)) C f(/~ (safl(f(X))). Re-
call that for any function g : A — B, and for any subset Y C B, we have
g9(g7H(Y)) = g(A) NY. Hence f(f~*(saff(f(X)))) = f(Q™) N saff(f(X)).
From f(X) C f(Q™), we also deduce saff(f(X)) C f(Q™) and we get
F(Q™) Nsaff(f(X)) = saff(f(X)). Therefore f(saff(X)) C saff(f(X)).

Let us consider X, X’ C Q™ and let us prove that saff( X UX’) = saff (X)U
saff(X’). From X U X’ C saff(X) U saff(X’), we deduce by minimality of
the semi-affine hull saff(X U X’) C saff(X) U saff(X’). Moreover, from X C
X UX' Csaff(X UX'), we get saff(X) C saff(X U X’) and symmetrically
saff(X') C saff (X U X'). We have shown saff (X)) U saff(X’) C saff (X U X").

Let us consider X, X’ C Q™ and let us prove that saff (X x X’) = saff (X) x
saff(X’). From X x X’ C saff(X) x saff(X'), we deduce that saff(X x X') C
saff(X) xsaff(X’). By considering the affine function f; , : Q™ — Q2™ defined
by fi1z(2') = (z,2"), we get saff({z} x X') = {z} x saff(X’) for any = € X.
From {z} x X’ C X x X', we deduce saff({z} x X’) C saff(X x X’). So
X x saff(X’) C saff(X x X’). In particular, for any 2’ € saff(X’), we have
X x {2/} C saff(X x X'). Affine function fo, : Q™ — Q> defined by
four(x) = (x,2") proves that saff(X) x {2’} C saff(X x X') for any 2’/ €
saff(X’). So, we have proved saff(X) x saff(X') C saff (X x X').

Let us consider X, X’ C Q™ and let us prove that saff(X + X') =
saff(X) + saff(X’). By considering the affine function f : Q?™ — Q™ de-
fined by f(z,2') = x 4+ 2/, we deduce that saff(X) x saff(X’) = f(saff(X) x
saff (X)) = f(saff (X x X)) = saff (f(X x X')) =saff(X + X’). O

Ezxample 9.10. The semi-affine hull of N™ is equal to Q™. In fact, from covering
lemma 9.9, we deduce saff(N") = > saff(N.e; ) = > saff(N).e; ,, =
Z;’;l @'ei,m =Qm.

9.1.5 Cyclic sets

Recall that a (r,m, o)-cyclic set X where o € X, is a subset of Z™ such that
Yrm.o(X) = X. The following proposition 9.11 shows that the semi-affine hull
of a (r,m,o0)-cyclic set X C Z™ is a finite union of affine spaces of the form

&m(0) +V where V is a vector space.
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Proposition 9.11. We have saff(X) = &,.,,,(0) + sa_ff)(X) for any (r,m,o)-
cyclic set X CZ™.

Proof. 1t is sufficient to prove that for any affine component A of saff(X),
we have & (s) € A. Consider # € X. As v, ,(X) = X then 7}, ,(z) =

T,m,o

rklol (z — €(0)) + €(0) € X for any k € N. Covering lemma 9.9 proves that
Q.(x — & m(0)) + & m(0) C saff(X). In particular, for any A € Q, we have
M(X =& m(0)) + & m(0) Csaff(X). From covering lemma 9.9, we also prove

that A.(saff(X) — & m(0)) + & m (o) C saff(X). Let A be an affine component
of saff(X). We have proved that Q.(4A — &, (0)) + &-m(0) C saff(X). From
ACQ(A=&m(0) + & m(o) C saff(X), we deduce by maximality of the
affine component A, the equality A = Q.(A — £(0)) + & m(0). In particular
&ml(o)e A O

9.2 Semi-affine lattices

Fig. 9.2. On the left a semi-Q?-affine lattice P;. On the right a semi-Q.(1, 1)-affine
lattice Ps.

A semi-V -affine lattice P is a finite union of V-affine lattices. Observe that
the class of semi-V-affine lattice is stable by boolean combinations.

Lemma 9.12. For any non-empty semi-V -affine lattice, there exists a non-
empty finite set B C Q™ and a V -vector lattice M such that P = B+ M.

Proof. There exists a non-empty finite sequence (aj, M;);cs where a; € Q™
and M; is a V-vector lattice such that P = J; ;(a; + M;). From lemma 8.8,
we deduce that M = [, ; M; is a V-vector lattice. Since M C M;, theorem
8.10 shows that there exists a finite set B; C M, such that M; = B; + M. We
have proved that P = B 4+ M where B is the finite set B = J;;(a; + Bj).
O
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The group of invariants inv(X) of a subset X C Q™ is the group of vectors
v € Q™ that let X invariant: we have X —v = X.

Lemma 9.13. The group of invariants of a non empty semi-V -affine lattice
1s a V-vector latlice.

Proof. Let P be a non-empty semi-V-affine lattice. Lemma 9.12 proves that
there exists a non-empty finite set B C Q™ and a V-vector lattice M such
that P = B+ M. Let us show that inv(P) C (VN (B — B)) + M. Consider a
vector v € inv(P). Let b € B. Since P — k.v = P for any k € N, there exists
by € B and my € M such that b — k.v = b, + my. Since B is finite, there
exists k1 < ko such that by, = bg,. We deduce that (k1 — k2).v = my, — myg, .
In particular v € V since M C V. Moreover, from v = b — by + m; and
m1 € M CV, weget b—by € V. We have proved that v € (VN (B —B))+ M.
Thus inv(P) is included in the discrete set (V N (B — B)) + M and we have
proved that inv(P) is a vector lattice. Let us prove that vec(inv(P)) = V.
From inv(P) C (VN (B — B)) + M we get vec(inv(P)) C V. Moreover, from
M C inv(P) we get V = vec(M) C vec(inv(P)). Therefore inv(P) is a V-
vector lattice. O

The V-vector lattice of invariants of a non-empty semi-V -affine lattice is
geometrically characterized by the following proposition 9.14.

Proposition 9.14. Let P be a non-empty semi-V -affine lattice and let M be
a V -vector lattice. There exists a finite subset B C Z™ such that P = B+ M
if and only if M C inv(P).

Proof. Observe that if there exists a finite set B C Z™ such that P = B+ M,
we deduce that M C inv(P). Let us now prove the converse. Assume that
M is a V-vector lattice such that M C invy (P) and let us prove that there
exists a finite set B C Z™ such that P = B + M. Lemma 9.12 proves that
there exists a non-empty finite set By C Q™ and a V-vector lattice M, such
that P = By + M. As M C inv(P), we deduce that P = By + M+ M. Since
M C My+ M, theorem 8.10 proves that there exists a finite set By C Mo+ M
such that Mo+ M = By + M. Therefore P = B+ M where B = By+ B;. O

Proposition 9.15. Let M be a V-vector lattice and let B be a non-empty
finite subset of Q™. We can compute in polynomial time the V -vector lattice

of invariants of P = B + M.

Proof. Let us fix a vector by € B and let us prove that the V-vector lattice of
invariant inv(P) is equal to the V-vector lattice M’ generated by M and the
vectors v € B —bg such that v+ B+ M = B+ M. Observe that M’ C inv(P).
Conversely, let z € inv(P). We have x + B+ M = B + M. In particular
r+ by € B+ M and we deduce that there exists v € B — by and m € M such
that x = v+m. Observe that x+ B+ M = B+ M implies v+ B+ M = B+ M.
Thus z € M’ and we have proved that inv(P) = M’. Note that a vector



52 9 Semi-linear Sets

v € Q™ satisfies v+ B+ M = B+ M if and only if for any b € B there exists
b € B such that v + b — b € M. Since we can decide in polynomial time if a
vector is in M, we are done. O

Corollary 9.16. Given two semi-affine lattice Py = By + M7 and P, = Bs +
My where By, By are two finite subsets of Q™, and My, My are two vector
lattices, we can decide in polynomial time if By + My = By + Ms.

Proof. Naturally if B; and Bs are both empty then P, = P> and if only
one of then is empty then P; # P». Thus, without loss of generality, we cam
assume that By and By are non empty. From proposition 9.15, we deduce
that inv(P;) and inv(P;) are computable in polynomial time. Observe that
if inv(Py) # inv(P;) then P; # P,. Hence we can assume that there exists
a vector lattice M such that inv(P;) = M = inv(P,). We have reduced our
problem to decide if By + M1 = By + M> where M7 and M, are equal to a V-
vector lattice M. Let S1 and S3 be the semi-V-affine spaces S; = (J,c g (b+V).
If S1 # Sy then P, # P,. So, we can assume that there exists a semi-V-
vector space S such that S; = S = S5. Remark that P, = P, if and only
if (BiNA)+ M = (BaNA)+ M for any affine component A of S. Thus
we can assume that B and Bs are included into a V-affine space A. Let
ap € A (for instance take ag € B;) and notice that P, = P» if and only if
(B1 — ag) + M = (By — ag) + M. Hence, we can assume that By and Bs are
included in V. From an Hermite I-representation of M, we get in linear time
a Z-basis vy, ..., vg of M. Let us consider the function A € V' — Q% defined
by A(v) is the unique » € Q¢ such that 0 < z[i] < 1 and such that there
exists k € Z¢ satisfying v = Zle(ac + k)[i].v;. Note that A\(v) is computable
in polynomial time and By + M = By + M if and only if A\(B1) = A\(Ba).
Thus, we can decide in polynomial time if By + M = Bo+ M. O

Example 9.17. Let Py be the semi-Q?-affine lattice P; = {(0,0), (1,0), (0,1)}
2.Z2 and let P, be the semi-Q. (1, 1)-affine lattice P, = {(0,0), (0, ) (0, ) (1,
Z.(2,2) given in figure 9.2. We have inv(P;) = Z.(2,0)+Z.(0,2) and 1nv(P2)
7.(2,2).

+
2)}+

9.3 Semi-patterns

A V-pattern is a V-affine lattice included in Z™ and a semi-V -pattern is a
semi-V-affine lattice included in Z™.

Observe that the the V-lattice inv(P) of a non-empty semi-V-pattern P
is included in Z™ NV and if P is empty then inv(P) = V. We denote by
invy (P) the V-vector lattice invy (P) = Z™ NV Ninv(X) for any (empty or
non-empty) semi-V-pattern P.
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9.3.1 Inverse image by v, m,o

Proposition 9.18 proves that the class of semi-patterns is stable by inverse
image by vy.m,. Where o € 2.

Proposition 9.18. Let B be a finite subset of Z™ and let M be a V -vector
lattice included in Z'™. For any word o € X7, we can compute in polynomial
time a finite set B, C Z™ such that |B,| < |B| and v, }, ,(B+ M) = B, +

r,m,oc
Tl (M).

Proof. Let us consider for each b € B such that v, ., -(Z™) N (b + M) # 0,
a vector b’ € Z™ such that v, (') € b+ M. We denote by B’ the set of
b’ € Z™ obtained. Note that corollary 8.16 provides a polynomial time algo-
rithm for computing B’. Let us prove that ~, % (B+ M) = B’ + vl (M).

r,m,o r,m,0

Let z € B + ”y_IUI (M). That means, there exists ¥ € B’ such that

r,m,0

V‘Ti‘n,o(x —b') € M. Moreover, by definition of b’, there exists b € B such

lo| —lo|

that v,.m,o(b') € b+ M. From 7,7, o(z = V') = Ym0 (T) = Yy mo(b'), We get
Yrmo(2) € B+ M. Therefore z € ~,), ,(B 4+ M), and we have proved the

inclusion B’ + 1, ,lg)'O(M ) € Yrm.o(B+ M). For the converse inclusion, con-

sider « € ;) ,(B + M). There exists b € B such that v, ;.o(z) € b+ M.
By construction, there exists b’ € Z™ such that v, m.»(') € b+ M. Hence

Yo () = .o (V) € M. From 3,7 o2 = V) = Ypim.o (#) = Yo (B), we
get %‘f;‘nyo(x — ') € M. Therefore z € b’ + nggy‘o(M) and we have proved the
other inclusion. O

9.3.2 Relatively prime properties

A semi-V-pattern P is said relatively prime with r if the V-lattice invy (P) is
relatively prime with 7. From lemma 8.11 we deduce that the class of relatively
prime semi-V-patterns is stable by boolean combinations. In fact, consider
two semi-V-patterns Py and P» and # € {U,N,\, A}. Observe that invy (P;)N
invy (Py) Cinvy (Py#P2) C Z™NV. From these inclusions, lemma 8.11 proves
|Z™ N V/invy (Py#PR)|.[invy (P #P2) /invy (Py) N invy (Py)] is equal to the
integer |Z™ N V/invy (Py) N invy (P)]. As invy (Py) and invy (P2) are two
V-lattices relatively prime with r, we deduce that invy (Pp) N invy (Ps) is
relatively prime with r. In particular |Z™NV/invy (Py#P,)| divides an integer
relatively prime with r and we deduce that this integer is relatively prime with
r. Hence Py#P» is relatively prime with r.

The following lemma provides a geometrical characterization of these semi-
V-patterns. This characterization and proposition 9.18 prove that the class of
semi-V-patterns relatively prime with r is stable by inverse image by v, me
for any o € X .
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Lemma 9.19. A semi-V -pattern is relatively prime with v if and only if there
exists a V-lattice M relatively prime with r and a finite set B C Z™ such that
P=DB+ M.

Proof. Remark that if P is relatively prime with r then there exists a finite
subset B C Z™ such that P = B + invy (X). Conversely, assume that there
exists a V-lattice M relatively prime with r and a finite set B C Z™ such that
P = B+ M and let us prove that P is relatively prime with r. Since M C
invy (X) C Z"NV, lemma 8.11 shows that |Z™NV/invy (X)|.|invy (X) /M| =
|Zm™ N V/M|. As |Z™ NV /M| is relatively prime with r, we deduce that |Z™ N
V/invy (X)] is relatively prime with r. Thus P is relatively prime with r. O

The class of semi-V-patterns relatively prime with r that are also included
into a V-affine space naturally appear when computing the inverse image of a
semi-V-pattern by v, ., when o is a word enough longer in X7 as proved
by the following proposition 9.21.

,m

Lemma 9.20. Any (r, m,w)-cyclic semi-V -pattern P is relatively prime with
r and included in the V-affine space A = & pm(w) + V.

Proof. As P is (r,m,w)-cyclic, we deduce that P =~ - m, wk( ) for any k € N.
From proposition 9.18, we deduce that P is relatively prime with r. Moreover,
from proposition 9.11, we get saff(P) = &, (w) + sa—f)f(P). As P is a semi-V-
pattern, we deduce that sa—f)f(P) is either empty or equal to V. Hence saff (P) C
&om(w) + V. From P C saff(P), we are done. [

Proposition 9.21. The class of semi-V -pattern relatively prime with r and
included into a V-affine space is stable by inverse image by Yy m.. for any
o€ X, Moreover, given a general semi-V -pattern P, there exists an integer
ke N such that ”miU(P) is a semi-V -pattern relatively prime with r and
included into a V -affine space for any word o € Erz)ffl

Proof. Let us first consider a semi-V-pattern P relatively prime With r and
included into a V-affine space A, let o € X and let us prove that v, }, ,(P) is
a semi-V-pattern relatively prime with r and 1ncluded into a V-affine space.
Recall that we have previously proved that v,} ,(P) 1s a semi-V-pattern
relatively prime with r. Since P C A, we deduce that Yrm.o(P) C© A’ where
A’ is the V-affine space A" = I, (A). We are done.

Now, let us consider a general seml—V—pattern there exists an integer k € N
such that v, ) ,(P) is a semi-V-pattern relatively prime with r and included
into a V-affine space for any word o € Z‘TZ,’,Z Since P is Presburger-definable,
there exists a FDVA A that represents P in basis r. Let us consider the integer
k = |A| the number of principal states of A. Now consider o € X7 . Since
|o| > |A], the word o can be decomposed in o = 01.03 such that there exists a
loop q = ¢ where w € Xf,and q = 6(qo,01). As Py = 7,1, ,, (P) this set is
a semi-V-pattern. Moreover, as vr_’%@)w(Pq) = P, lemma 9.20 proves that P,
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is relatively prime r and included in a V-affine space. Finally, as v, 7}%U(P) =
.0 (Py), the previous paragraph shows that +,) ,(P) is relatively prime

7r,m,og
with r and included into a V-affine space. 0O

Given a non-empty semi-V-pattern P included into a V-affine space A, we
naturally deduce that v, ), ,(A) = 0 implies v, ,(P) = 0. The class of semi-
V-pattern relatively prime r that are included into a V-affine space plays
an important role since the following corollary 9.23 intensively used in the
sequel proved that for this class, the converse is true: =, 7}%U(P) = () implies

Vrim,o(A) = 0.

Lemma 9.22. Let P be a semi-V -pattern relatively prime with r and included
into a V-affine space A. We have v, ,(P) = &.m(s) + P — prom(0, s) for any
semi-V -pattern P relatively prime with v and included into a V -affine space
A and for any (r,m)-decomposition (o,s) such that p,m(o,s) € A and such
that rlolm € 1 +1Z™ N V/invy (P)|.Z.

Proof. Let us consider x € 7, ,(P). We have . m o (z) = rl7lm 2+ p,. (0, s).
Hence 7l7lm (z — &.,,(s)) € P — prm(0,s). In particular, from P C A and
prm(0,8) € A, we deduce that r7.(z — &, (s)) € V. Hence © — &, (s) €
Z™ V. From rl?lm € 14 |Z™ NV /invy (P)|, we deduce that (rl7lm —1).(z —
Erm(8)) € vy (P). Asz—& m(s) € P—(rlolm —1).(x—&, 1 (8)) = pr.m (0, 5), we
get & € &.m(s) + P — prm(0, s) and we have proved the inclusion v, ,(P) C
&m(8) + P — prm(o,s). For the converse inclusion, let © € &.,,(s) + P —
Prm(0,8). From v, o (x) = r19m (. — &,.,,.(5)) + pr.m (0, s), we deduce that
there exists p € P such that v, ;.o (z) = 717" (p = prom(0,8)) + pram(o, s).
Hence Yym.o(z) = p+ (r17lm —1).(p — pr.m(0,5)). As prm(o,s) and p are
both in A, we deduce that p — p,...(0,s) € Z™ N'V. Moreover, as 717lm — 1 ¢
|Z™ N V/invy (X)|.N, we deduce that (r1?lm —1).(p — p.n(0,)) € invy (P).
From p € P, we get ¥m.o(x) € P and we have proved the other inclusion
&rm(s) + P = pram(0,5) C V;,}n,a(P)' O

Corollary 9.23 (Dense pattern corollary). Let P be a non-empty semi-
V -pattern relatively prime with r and included into a V -affine space A. The

set 7y .o (P) is a non-empty semi—FT;ITzIO(V) -pattern relatively prime with r

and included into the I (V)-affine space I} (A) for any word o € X*

r,m,0 T, M,

such that ~, ), (A) # 0.

Proof. As v, ,(A) is non empty, there exists a couple (w,s) such that
Prom(w, s) € ¥4 5(A) and such that |o| + |w| € m.Z. By replacing w by a
word in w.s*, we can assume without loss of generality that r/7%l» e 1+ |Z™N
V/invy (P)|.Z. From lemma 9.22, we deduce that ~, % . (P) = &.m(s) + P —

T,m,0.w

prom (0w, 8). AS Vm 500(P) = Voo w (Vom0 (P)) and 55, o, (P) # O, we de-
duce that ~, % (P) # 0. From proposition 9.18 we deduce that v, } _(P)

T,m,o r,m,o
—1

is a semi-I7°! (V)-pattern. Let us now show that v, ,(P) is relatively

r,m,0
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prime with r. Since P C A, we deduce that v, ,(P) is included in the
rlel (V)-affine space I} (A). Now, let us prove that ~, L _(P) is rela-

r,m,0 r,m,o r,m,o
tively prime with 7. From proposition 9.18 we deduce that =, lgy‘o(invv(P)) -
vy (Y, p.0 (P)). As invy (P) is relatively prime with r we get 5, > o (invy (P)) =
invy (P). Hence 17750 (.o (imvv (P)) = Yy 0 (s (v (P)) = 7, o (invy (P)

and we have proved that v, 7‘;‘0 (invy (P)) is relatively prime with r. From the

inclusion ”y;lsﬁlo (invy (P)) € invy (v, ), ,(P)) and lemma 8.11, we deduce that
invy (7,4 o (P)) is relatively prime with r. We are done. O
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Degenerate Sets

Given a vector space V', a subset X C Q™ is said V-degenerate if V' is not
included in saff (Z™ N X). The following lemma 10.1 shows that the binary
relation ~V defined over the subsets of Q™ by X; ~V X, if and only if X; AX,
is V-degenerate, is an equivalence relation. The equivalence class for ~V of a
subset X C Q™ is denote by [X]V.

\4

Lemma 10.1. The binary relation ~" is an equivalence.

Proof. The binary relation ~V is an equivalence relation. Naturally ~" is

reflexive and symmetric. So, it is sufficient to prove that ~V is transitive.
Consider X1, X9, X3 C Q™ such that X; ~V X5 and Xy ~Y X3 and let us
prove that Xl ~V Xg. We have Z™ N (XlAX:,)) g (Zm N (XlAXQ)) U (Zm N
(X2AX3)) and from insecable lemma 9.2, we deduce that V' is not included
in saff(Z™ N (X1 AX3)). Hence X, ~V X3, O

Given two equivalence classes X; and X9 and a boolean operation # €
{u,n,\, A}, the following lemma 10.2 shows that [X;#X5]V is independent
of X1 € Xq and X5 € Xs. This equivalence class is naturally denoted by
X1#Y Xo.

Lemma 10.2. We have [X1#X5]V = [X|#X5]V for any X1, X, X2, X} C
Q™ such that X1 ~V X| and Xo ~V X} and for any # € {U,N,\, A}.

Proof. Let us prove that (X1 #X2) A(X{#X)) C (X1 AXT)#(X2AXY) for any
X1, X1, X2, X, C Q™ and for any # € {U,N,\, A}.

Case # equals to A: in this case, we have the equality (X1 #X2) A(X{#X)) =
(X1AX])#(X2AX)) and we are done.

Case # equals to N: we have (X1#Xo)A(X{#X)) = (X1 N X2)\(X] N
X)) U ((X] N XH\ (X1 N Xa)). Remark that (X1 N X2)\(X]NXS) = ((X1nN
X\ X}, we deduce that (X7 N Xo)\(X] N X)) C (X1\X]) U (X2\XY)
(X1AX]) U (X2AXY%). By symmetry, we also get (X] N X5\ (X1 N X5)
(X1AX]) U (X2AX]). We are done.

NN
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Case # equals to \: this case can be reduced to the previous case N. In
fact, if # is equal to \ then (X;#X2)A(X{#X)) = (X1 N (Q™\X2))A(X] N
(Q™\X3})). From the previous case N, we deduce that (X1 N (Q"\X2))A(X1N
(@Q™\ X)) C (X1 AX]) U ((@™\X2) A@@™ N X5). As (Q™\X) AQ™ N X}) =
X2 AX), we are done.

Case # equals to U: we have (X31#Xo)A(X{#X)) = ((X1 U X2)\(X] U
XOU((X]UXH\(X1UX3)). Remark that (X7 UX2)\(X]UX)) = (X1\(XjU
X5)) U (X2\(X] U XJ)). From X7\ (X UX%) C X7\ X] and X5\ (X] U X))
X\ X, we deduce that (X; U Xo)\(X] U X}) C (X1\X]) U (X2\XY)
(X1AX]) U (X2AXY). By symmetry, we also get (X] U X5\ (X1 U X5)
(X1AX]) U (X2AX]). We are done.

From insecable lemma 9.2, we deduce that if X; ~V X| and X, ~V X
then X 1# Xy ~V X{#X) for any # € {U,N,\,A}. O

NN N

N~

For any equivalence class X and for any word o € X7,

10.3 shows that the equivalence class [7;71,170(X)]V does not depend on X € X.
This equivalence class is denoted by 7,1 (X).

r,m,o

following lemma

Lemma 10.3. We have ;% (X) ~Y 77k (X') for any X, X' C Q™ such
that X ~V X', and for any o € X7,

Proof. Consider X, X’ C Q™ such that X ~Y X’. We denote by Z =
s
Zm™ N (XAX'). As X ~V X', the vector space V is not included in saff(Z2).
We have Z™ 0 (v; 4 o (X1) Ay b 5, (X2)) = 4,0 5(Z). From covering lemma
we get saff(y. ) ,(Z)) € I} ,(saff(Z)). By considering the direction of
the previous inclusion, we get &Ef(%_)},w(Z)) C sa—fE(Z) since Iy o(x) =
r'”'.x+7r7m)g(eo7m). As V is not included in &E)f(Z), we deduce that V is nei-
-—
ther included in saff (Z"N (v, 1, o (X1) A%, 31 0, (X2))). Therefore~, 1, ,(X) ~V
(X,

/Yr,m,a
The following lemma 10.4 provides a commutativity result.

Lemma 10.4. We have 7, o(X1#Y Xa) = 7,0 o (X0)#Y v, o (X2) for any
equivalence class X1 and Xa, for any 4 € {U,N,\, A}, and for any o € X7,

Proof. Consider X; € X; and Xo € X5. We have 7:)71”70(361#‘/362) =
Drmo (X1#X2)Y = [0 (X0)# 7m0 (X2 = [rmo (XD #Y om0 (X2)]Y =
Yrimo (XD #Y Ym0 (X2). D
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Polyhedrons

In this section, we recall the definition of a polyhedron and associate to a
polyhedron C' included into a vector space V', a boundary that only depends
on the equivalence class [C]V.

Fig. 11.1. Let o = (1,1). On the left {z € Q% (a,2) < 0}. On the right {z €
Q% (o, z) > 0}.

11.1 Orientation

A V-hyperplane H, where V is a vector space, is a set of the form {z €
Vi (o, z) = ¢} where (o, ¢) € (V\{egm}) x Q. A V-hyperplane H provides
a partition of V\H into two open V-half spaces {x € V; {(a,z) < ¢} and
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{z € V; {(a,z) > ¢} that only depends on the V-hyperplane H (see figures
11.1).

An orientation o is a function that associate to any couple (V, H) where
H is a V-hyperplane, one of these two open V-half spaces. Given an im-
plicit orientation o, we denote by (V, H)~ and (V, H)< the open V-half spaces
(V,H)> =0o(V,H) and (V, H)< = (V\H)\o(V, H). We denote by (V, H)~ the
hyperplane H and the closed V -half spaces (V, H)Z and (V, H)< are naturally
defined by (V, H)Z = H U (V, H)> and (V, H)< = HU (V, H)<.

Remark that a V-hyperplane H is an affine space and in particular H is
well defined. Moreover, H is also a V-hyperplane. Remark that H + (V, ﬁ)>
is an open half space of the form (V, H)# where # € {<, >} depends on H.
A uniform orientation is an orientation that only depends on the direction of
the V-hyperplane H: we have (V,H)* = H + (V, ﬁ)# for any # € {<, <, =
>, 2}

In the remaining of this paper, we assume fixed a uniform orientation (see
remark 11.1 for the existence of such an effective and efficient orientation).
Moreover when V is implicit, the set (V, H)# is simply written H7.

Remark 11.1. Consider the function o that associate to any (V, H) where
H is a V-hyperplane, the open V-half space H + (Q4+\{0}).Ily(e;) where
i€ {1,...,m} is the least (for <) integer such that [Ty (e;) & H. Remark
that such an integer i exists because if Iy (e;) € H for any i € {1,...,m},

=
then V' C H which is impossible. Remark that o is an uniform orientation
computable in polynomial time.

11.2 V-polyhedral equivalence class

Recall that a polyhedron C of Q™ is a boolean combination in Q™ of sets
H#* where H is a Q™-hyperplane and # € {<,<,=,>,>}. A V-polyhedron
C is a polyhedron included into a vector space V. A polyhedron C' is said
(V, H)-definable, where H is a finite set of V-hyperplanes if C' is a boolean
combination in V of sets in {H#; (H,#) € H x {<,<,=,>,>}}.

Lemma 11.2. A polyhedron is a V-polyhedron if and only if it is (V,H)-
definable for a finite set H of V -hyperplanes.

Proof. Naturally, if C is (V, H)-definable then C' is a V-polyhedron. For the
converse, consider a V-polyhedron C. By definition C' C V and there exists
Dy € Pr(Q™\{eg,m}) and K € P;(Q) such that C'is a boolean combination in
Q™ of sets {z € Q™; (ap, ) #c} where (ag,c) € Do x K and # € {<, <, =,>
,>}. From C' C V we deduce that C = C'NV and in particular C'is a boolean
combination in V of sets {x € V; (ap,x) #c} = {z € V; (IIv(ag), x) #c}.
Let D = IIy(Dg)\{eo,m} and consider the set of V-hyperplanes H = {{z €
Vi (a,z) = c}; (a,¢) € D x K} and let us prove that C is (V, H)-definable.
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Let (ap,c) € Do x K. Remark that {z € V; (ITy(ag), x) #c} is either empty
or equal to V in the case ITy (cg) = €q.m, or it is in the class {H#; (H,#) €
H x {§,<,:,>,Z}} if Hv(ao)#eoﬁm. O

Definition 11.3. A V-polyhedral equivalence class C is the equivalence class
for ~V of a V -polyhedron.

H [ ]

L] ||

Fig. 11.2. Let V = Q2. On the left a V-degenerate V-polyhedron C;. On the right
a non V-degenerate V-polyhedron Cs.

11.3 Open convex polyhedrons

A V-polyhedron C is said open conver in V (or just open convex when V is
implicitly known) if it is equal to a finite intersection of open V-half spaces
(in particular V' is an open convex).

Definition 11.4. Given a finite set H of V-hyperplanes and a sequence
# € {<, >}, we denote by Cy.y the open convexr V-polyhedron Cy .y =
Nuege H (if H =0, then Cyu = V).

Given a (V,3H)-definable polyhedron C, remark that C\(Uycq H) is a
finite union of open convex polyhedrons Cy. 4 where # € {<,>}"C. As [C]V =
[C\(Upesc H)1Y, this property will be useful for decomposing V-polyhedrons.

11.4 Degenerate polyhedrons

We geometrically characterize the V-degenerate V-polyhedrons (see figure
11.2) thanks to the following proposition 11.7.
We first prove the following two lemmas 11.5 and 11.6.
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Lemma 11.5. For any V-hyperplanes Hy, Hy such that I—{_{ = 171—2), the open
convex V -polyhedron H{ N Hy is V-degenerate.

Proof. Let a € Z™ N V\{epm} and c1,c2 € Q such that H{ = {z €
V; {a,z) > c1} and such that Hy = {x € V; (a,z) < c2}. Let us prove
that C = H{ N Hy is V-degenerate. Let K = {k € Z; ¢1 < k < ¢}
and remark that for any x € Z™ N C we have ¢; < (a,z) < cg and
(a, ) € Z. Hence, there exists k € K such that (o, z) € K. We deduce that
7" NC C Upex Hr where Hy, is the V-hyperplane Hy = {z € V; (o, x) = k}.
Hence SE)E(Z’” NC) C{zeV; (o,x) =0}. As awis in V but not in this semi-
vector space, we deduce that V' is not included in saft (Z™ N C). Hence C is
V-degenerate. 0O

Lemma 11.6. We have [Cy,x]Y # [0V if and only if \yesc H#nu £ 0, for
any # € {<, >} where H is a finite set of V-hyperplanes.

Proof. Let us consider a sequence (apr, ¢ ) gegc of elements in (V\{eg m})xQ
such that H#*# = {z € V; (g, z) > cy}, and let C = (o9 H#1.

Assume first that (g H#w # () and let us prove that C is non V-
degenerate. Consider a vector v in this open convex V-polyhedron and remark
that (o, v) > 0 for every H € H. By replacing v by a vector in (N\{0}).v, we
can assume that v € Z™ NV. Let us first show that there exists xg € Z™ NC.
In fact, there exists k € N enough larger such that (ap,k.v) > ¢y for any
H € H. For such a k, just remark that o = k.v € Z™ N C. Next, let us prove
that there exists a finite set Vj of vectors in Z™ that generates V' and such that
(o, vo) > 0 for any (vg, H) € Vo x H. We know that there exists a finite set
Vb of vectors in Z™ that generates V. By replacing Vj by Vp+k.v where k € N
is enough larger, we can assume that (g, vo) > 0 for any (vo, H) € Vp x H.
We have proved that xo + Z’UoGVo N.vg € Z™ N C. From covering lemma 9.9,

we get saff (vo + >, oy, Novg) = 29 + V. Hence V C &E)E(Zm N C). Therefore
C is non V-degenerate.

Now, assume that (g H#n — (). Hence, for any v € V, there exists
H € H such that (ag,v) < 0. In particular for any v € C, there exists H € H
such that cy < (ag,v) <0. Lemma 11.5 shows that C' is V-degenerate. O

Proposition 11.7. A V-polyhedron is V-degenerate if and only if it is in-
cluded into a finite union of H{ NHy where Hy and Hy are two V -hyperplanes
with the same direction.

Proof. As a finite union of V-degenerate subsets of V' remains V-degenerate,
we deduce from lemma 11.5 that if a V-polyhedron is included into a finite
union of H{ N Hy where Hy and Hy are two V-hyperplanes with the same
direction, then it is V-degenerate.

For the converse consider a V-polyhedron C' such that for any finite set
D C V\{egm}, the V-polyhedron C' is not included in (J,cp{z € V; -1 <
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(o, ) < 1}. Let H be a finite set of V-hyperplanes such that C is (V, H)-
definable. Recall that ¢’ = C\(Upycqc H) is a finite union of open convex
definable polyhedron Cy,» where # € {<, >} and it satisfies [C]Y = [C']V.
So, we can assume without loss of generality that C' = Cy,x. Consider a
sequence (o, cxr) gesc of elements in (V\{eg m}) x Q such that H## = {x €
Vi (am,z) > cy}. Naturally, C' # () (otherwise we obtain a contradiction).
Hence, there exists zp € C'. Let us consider ¢ € Q such that ¢ > 1, ¢ > (o, x¢)
and ¢ > —cy for any H € H. As C is not included in Jyqc{z € V; —1 <
<°‘TH,x> < 1}, there exists z; € C and such that for any H € H either
(g, x1) > cor {ag,r1) < —c. As x1 € C, recall that (apg,z1) > ¢,. Hence
(g, 1) < —c implies ¢ < —c¢, which is impossible. Therefore (o gy, x1) > ¢
for any H € H. Consider v = z1 — g and remark that («ay,v) > 0 for any
H € 3. Hence v is in () ycq¢ H##. From lemma 11.10, we deduce that C' is
non V-degenerate. O

Ezample 11.8. The Q2-polyhedrons C; = {z € Q% (-1 < z[1] +z[2] < 1)V
(-1 < z[1] —z[2] £ 1)} and Cy = {x € Q% —=z[1] +2.2[2] > 0 A 2.2[1] —
z[2] > 0} are given in figure 11.2. Remark that C; is Q?-degenerate because
sa—ff}(Zm NCy) = Vi UV, where Vi = {z € Q% z[l] = z[2]} and Vo = {z €
Q?; z[1]+x[2] = 0}, and C5 is non Q2-degenerate because sa—ff(ZmﬂCg) = Q2

11.5 Boundary

We are interested in associating to a V-polyhedral equivalence class C, a set
of V-hyperplanes that intuitively corresponds to the “constraints of C”.

A possible V-boundary H of a V-polyhedral equivalence class € is a finite
set of V-hyperplanes such that there exists a (V, H)-definable polyhedron in
C. Following lemma shows that a possible V-boundary can be translated, and
in particular the direction of any possible V -boundary remains a possible V -
boundary.

Lemma 11.9. For any possible V-boundary H of a V -polyhedral equivalence
class € and for any sequence (Vi )meac of non-empty finite subset of V', the
set {v+ H; H € H;v € Vyg} is a possible V-boundary of C.

Proof. There exists a (V, H)-definable polyhedron C' € €. That means C is a
boolean combination in V of sets in {H<, H<, H=, H>, H=; H € H}. Lemma
11.5 proves that [(v + H)#]V = [H#]V for any (H,#) € H x {<,<,=,>,>}
and for any v € V. O

Lemma 11.10. Let C' be an open convex V -polyhedron and Hy be a V-
hyperplane such that [C N H{ Y # [0]Y and [C N HT]Y # [0]Y. For any
V -hyperplane Hy such that f[_(; # f]—;, there exist #¢ € {<,>} such that
[CnHF NHSY # [0V and [COHF N HZY #[0]Y.
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Proof. As C is an open convex set, there exists a finite set H of V-hyperplanes
and # € {<, >}’"such that C = Cy 4. Let us consider a sequence (o, cir) redc
of elements in (V'\{eg.m}) x Q such that H## = {x € V; (ap,x) #mcu}. Let
us also consider (ag, o) and (aq,¢1) in (V\{0}) x Q such that Hg#o ={xz ¢
Vi (oo, z) #ocoy and H' = {z € V; (a1, z) #1¢1}. As [CnHFY £ 0]V,
lemma 11.6 shows that there exists vy, € Q™ such that (aq,vg,) #10 and
such that (ap,vy,) #m0 for any H € H.

Let us first prove that there exists a finite set V; of vectors in (14 H#n
that generates 171) There exist p< and p~ in Q4\{0} such that the vector
V= = ll<. V< + ps .05 satisfies (o, v=) = 0. Remark that v— € 171) and satisfies
(g, v=) #y0 for any H € H. Let us consider a finite set of vectors V; that
generate 171) and just remark that there exists u € Q4 enough larger such
that (ag,v) #50 for any (H,v) € H x (V4 + p.v=). Finally, as V; generates
171) and v— € 171), the set Vi + p.v— also generates 171) By replacing Vi by
Vi 4+ p.v—=, we are done.

— — —

Naturally, if V3 C Hy then Hy = Hy which is impossible. Hence, there
exists v1 € V4 such that (g, v1) # 0. Let #¢ € {<, >} such that (g, v1) #00.
Remark that there exists ¢ € Q4 enough larger such that vy, + pv; €

— — —
Npege H*7 N Ho#o N Hi#* for any #; € {<,>}. Lemma 11.6 shows that
[CnHFNHF)Y # 0]V and [CNHI N HZ)Y #[0]Y. O

Lemma 11.11. Let C' be an open convexr V -polyhedron and H be a V-
hyperplane such that [C N H<]V # [0]Y and [C 0 H>]Y # [0]V. The set

et — —
C N H is non H-degenerate open convexr H -polyhedron.

Proof. Without loss of generality, we can assume that C=Xand H = H.
Since C N H# is an open convex non V-degenerate V-polyhedron, there exists
a vector vy in this set. Let us remark that there exists two rational numbers
T, s in Q4 \{0} such that © = z-.ve + 2~ .vs € H. Since 2, x> are both
in C and z., z~ are strictly positive rational numbers, we deduce that x € C.
Hence z € H N C and from lemma 11.6 we deduce that H N C' is non-H-
degenerate. 0O

Proposition 11.12. Let C be a V-polyhedral equivalence class and FHy (C) be
the set of V -hyperplanes H such that there exists an open convex V -polyhedron
Cy such that [Cy N H<]Y # [0]V and [Cy N H>]Y # [0]V, and such that
[CH]Y NV € is equal to one of these two equivalence classes. The set Hy (C)
1s a possible V-boundary of € included into the direction of any possible V -
boundary of C.

Proof. Let us first consider a possible V-boundary H of € and let us prove
that for any Hy € H\Hy (€), the set H\{Hop} is a possible V-boundary of
C. Let H' = H\{Hp}. As H is a possible V-boundary of €, there exists a
(V, H)-definable polyhedron C' in €. We have the following equality:
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o]

14
= U [ovenHsnC] W [CyvenHsNC
#e{<, >}

]V

As C is (V, H)-definable, we deduce that Cy» N HJ° N C is either empty or
equal to Cy.x N HO. Let us prove that [Cy. N C]Y is either equal to [(]V
or equal to [Cy,4]V. Naturally, if Cy, 4 N Hy or Cy.x N Hy is V-degenerate,
we are done. Otherwise, [Cy.4 N Hy Y # [0]V and [Cv4 N Hy Y # [0]V.
As Cy 4 is an open convex V-polyhedron and Hy ¢ Hy (C), we deduce that
[Cy.#]Y NV € is neither equal to [Cy,» N H ]V nor equal to [Cy.x N Hg]V.
However, (Cyv,% N C)\Hj is either equal to 0, Cy,4\Ho, Cv,x N Hy or Cy,x N
Hy . As the two last cases are impossible, we deduce that [Cy ] NV C is
either equal to [(]V in the first case, or equal to [Cy x| in the second case.
We have proved that the following (V, H’)-definable polyhedron C’ is in C.
That means H' is a possible V-boundary.

C = U Cv.4
#e{<,>}7; [Cv,»]V NV EA[0]V

Finally, let us now consider a possible V-boundary H of € and Hy € Hy (C),
and let us prove that I__IO) € ﬁ Lemma 11.9 shows that we can assume that
3 = 3. As Hy € Hy(€), there exists an open convex V-polyhedron C, such
that [C, NH Y # [0]V and [Ch, NHy' ]V # [0]Y and such that [Cy, ]V NV €
is equal to one of these two equivalence classes. Assume by contradiction that
f]z & ﬁ From lemma 11.10, an immediate induction proves there exists # &
{<, >} such that [Cy,NCy,xNH;]Y # [0]Y and [Cp,NCyv,xNH Y # [0]V.
As H is a possible V-boundary of €, we deduce that [Cy x]" NV C is either
equal to [0]V or equal to [Cy,x]". In particular [Ch, N Cy,x]Y NV € is either
equal to [0]Y or equal to [Cy, N Cy.»]Y. Moreover, as [Cg,]¥ NV € is equal
to [Cu, N HF]Y or [Cu, N H]Y, we also deduce that [C, N Cy 4]V NV € is
either equal to [Cg, N Cy,4 N Hy]Y or equal to [Cy, N Cy.4 N Hy V. Hence
there exists #¢ € {<, >} such that [Cy,NCy. 2 NHF°]V is either equal to [0]"
or equal to [Cph, N Cy,4]V. The first case is impossible and the second case
implies [Cgy, N Cy 4 N Hg‘%]v = [0]V where #{ € {<,>}\{#0}. We obtain a
contradiction. Therefore f[_(; S ﬁ O

The previous proposition 11.12 shows in particular that the set of direc-
tions of possible V-boundaries of a V-polyhedron C, owns a minimal elements
for C.

-

Definition 11.13. The finite class Hy (C) is denoted by boundy (C) and called
the V-boundary of C.
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Example 11.14. Let Cy = {z € Q% (a1,z) > 0A (ag,z) > 0} be the Q-
polyhedron given in figure 11.2 where ay = (—1,2) and as = (2, —1). Let H;
and Hs be the Q*hyperplanes defined by H; = {x € Q% (aj,z) = 0} and
Hsy = {z € Q% (az,z) = 0}. Naturally, as Cy is (Q?, { H1, H>})-definable, we
deduce that {Hy, H3} C boundge (IC5)?). Let us show the converse inclusion.
Consider the open convex Q2?-polyhedron Cy, = {x € Q% (az,z) > 0A
z[2] > 0}. Remark that [Cy, N HS]? and [Cy, N HY]? are not equal to
(0] and [Cp, N C2]? is equal to one of this two classes. We deduce that
H; € boundgz(C3). Symmetrically, we get Ha € boundg:( [C5]2%). Therefore
boundg: ([C5]%°) = {Hy, Hy}.

11.6 Polyhedrons of the form C + V+

In the sequel, we often consider Q™-polyhedrons of the form C + V- where
C is a V-polyhedron. In this section, we provide some properties satisfied by
these sets.

Given a V-polyhedral equivalence class €, following lemma 11.15 shows
that the equivalence class [C'+ V+]" does not depend on the V-polyhedron
C € C. This equivalence class [C' + V]V is naturally denoted by € + V+.

Lemma 11.15. We have C +V+ ~V "+ VL for any V-polyhedrons C and
C" such that C ~V C'

Proof. We have Z™ N ((C +V1)A(C" + V1)) =Z™ N (Cy+ V*) where Cp =
CAC'. As C ~V ', we deduce that Cy is V-degenerate. In order to prove
the lemma, we have to show that V' is not included in sa—ff}(Zm N (Co+ V1)),
Proposition 11.7 proves that there exists a finite set D C Z™ N V\{eo,m}
and an integer k& € N such that Co € J,ep{r € Vi [{(a,2)| < k}. Let
K = {—k,...,k} and remark that we get Z™ N (Co+V*) C Ut mepxxiz €

Q™; (a,z) = k}. Hence &E)E(Zm N(Co+ V™) CUpepat. As a €V for any
a € D, we deduce that V is not included in a* for any a € D. From insecable
lemma 9.2 we deduce that V' is not included in J,p ot In particular V is

—
not included in saff(Z™ N (Cy + V1)). Therefore C +V+ ~V C'+ V4L O

Remark that even if [C' + V4]V does not depends on a V-polyhedron C € €,
there exist subsets X C V in € such that [X + V+]V # [C + V1]V as shown
by the following example 11.16. That explains why our definition of € + V-
is limited to V-polyhedral equivalence classes C.

Ezample 11.16. Assume that m = 2, let V = {z € Q% z[1] = x[2]}. Let us
consider the V-polyhedron C' = ) and the set X = (3, 2)+ (Z™NV). Remark
that [O]Y = [X]V. However [C + V+]V = [0]V whereas [X + V|- £ [0]V
since Z™ N (X + V1) = (0,1) + 2.Z2
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Let us finally proves that -, }ma((i' +V4) =€+ V+ for any V-polyhedral
equivalence class € and for any word o € 2, . In fact, given a V-polyhedron
C € C, we have the following equalities:

Vim0 (C+ VL) = %m g([C + VL]V)
cC+VvhHyY

- [ r,m, cr(

We can easily prove that I, ,(C + V1) is a Q™-polyhedron of the form

C’ + V1 by introducing the sequence (vam,g)geg:m of affine functions
IV m,o 1 V — V defined by the following equality for any x € V:

FV,r,m,U(x) = T|U| X+ HV ('Yr,m,cr(eo,m))

Remark that I'v,m.o1.00 = {Vrm,or © I’Vrm .o, for any word 01,02 € X7,
I',rm.c is the identity function, and I}, ,(C +V+) = VT m.o(C)+V* for
any subset C' C V.

Thanks to the following proposition 11.17, we deduce the following corol-

lary 11.18.

Proposition 11.17. We have [T, ,(C)]Y = [C]Y for any V -polyhedron C
and for any o € X7

Proof. Let us consider a finite class H of V-polyhedrons such that C' is (V, H)-
definable. As C is a boolean combination in V of sets H# where H € H
and # € {<,>}, we can assume that C is equal to such a set. As H and

I’Vi m. ,(H) have the same direction, from lemma 11.5, we are done. O

Corollary 11.18. We have 7, (€ + VL) = @4 V+ for any V-polyhedral
equivalence class and for any o € X7,
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Presburger Decomposition

A subset X C Q™ can be naturally decomposed into X =
where Xy is defined by the following equality:

VGcomp(s?)ff(X)) Xv

Xy =XnN U A
Aé€comp(saff (X))
AcCv
Obseve that Xy is non empty and as shown by the following dense component
—
lemma 12.1, the semi-affine hull direction saff(Xy) is equal to V.

Lemma 12.1 (Dense component lemma). We have saff(X N A) = A for
any subset X C Q™ and for any affine component A of saff (X).

Proof. We have saff (X)) = AU S where S is the semi-affine space equal to the
finite union of affine spaces A’ € comp(saff (X))\{A4}. From X C saff(X), we
deduce that X C (XNA)US C saff(XNA)US. By minimality of the semi-affine
hull, we get saff (X) Csaff(X N A)US. As A C saff(X), insecable lemma 9.2
shows that either A C saff(X N A) or A C S. In this last case, by definition of
S, insecable lemma 9.2 proves that there exists A’ € comp(saff (X ))\{A} such
that A C A’. As A is an affine component of saff(X) and A C A’ C saff(X),
we get the equality A = A’ which is impossible. Therefore A C saff(X N A).
Moreover, as X N A C A, we get the other inclusion saff(X N 4) C A. O

We are going to prove that this decomposition of X can be refined when
X is Presburger-definable. In fact, in this case, we show that Xy can be de-
composed (up to V-degenerate sets) into sets of the form PN (C + V+) where
P is a semi-V-pattern and C' is a V-polyhedron.

Naturally, a set PN (C + V=) is Presburger-definable. The semi-affine hull
direction of such a set is characterized by the following lemma 12.2
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Lemma 12.2. Let P be a semi-V -pattern and C a V -polyhedral equivalence
class. We have [P]V NV (C+ VL) #£ [0]V if and only if P # 0 and C # []V.

Proof. Naturally if P = () or € = [0]V then [P]V = [0]" or C+ V+ = [0]V
and in this case [P]Y' NV (€ + V+) = [0]V. Assume that P # () and € is
non V-degenerate and let us prove that [P]Y NV (C+ V*) # [0]V. As €
is polyhedral, there exists a V-polyhedron C' € €. Let us consider a finite
class H of V-hyperplanes such that V' is (V, H)-definable. As C\(Uycqc H)
is a finite union of V-polyhedrons of the form Cy, 4 where # € {<, >}7C and
[H]Y = [0]V, we can assume without loss of generality that there exists # such
that C = [Cy.4]V. Moreover,as a semi-V-pattern is a finite union of V-pattern,
we can also assume without loss of generality that there exists a € Z™ and a V-
group M such that P = a+M. We have to prove that [P]V NV (C+V 1) #£ [0]V.
That means V is included in sa—ff((a—l—M)ﬂ(VV)#—i—VJ-)). Let (apr, cr)mesc be
a sequence of elements in (V\{eg ., })xQ such that H## = {z € V; (ay,z) >
cp} for any H € H. Lemma 11.6 proves that there exists v € V such that
(o, v) > 0 for any H € H. By replacing v by a vector in (N\{0}).v, we can
assume that v € M. Let @’ = Iy (a) be the orthogonal projection of a over V.
Vector v/ = a—a’ € V. There exists an integer k € N enough larger such that
(a,a’ + k) > ey for any H € H. In particular ¢’ +k.v € C. As kv € M, we
deduce that a+k.v € P. From a+k.v = (a/ +k.v)+v" we get a+k.v € C+V+.
Hence zg = a + kv € PN (C + V). Let us now consider a finite set Vg of
dim (V') vectors in Q™ that generates V. By replacing Vy by k.Vh where k €
N\{0} is enough larger, we can assume that V; C M. Moreover, by replacing
Vo by Vo + k.v where k € N is enough larger, we can assume that («g,vg) > 0
for every (H,vo) € H x Vy. We deduce that zo+3", oy, Novg € PN(C+ V).

Covering lemma 9.9 proves that sg)f(xo + 2 uev, Nevo) = V. In particular

from o+ 3, oy Novg € PN (C+VE) we get V C sﬁ'(Pﬂ (C+Vv4Lh). o

Definition 12.3. A V-polyhedral partition (C;);cr is a non empty finite se-
quence of V -polyhedral equivalence classes such that C;; NV C;, = [0]Y if and
only if i1 # i2 and such that [V]V = Uz/el C;.

Theorem 12.4 (Decomposition theorem). Let X C Z™ be a Presburger-
definable set and V' be an affine component of sa—ff(X). There exists a unique
V-polyhedral partition (Cv,p(X))pep, (x) indeved by a non-empty finite class
Py (X) of semi-V -patterns such that:

xvlV = U (P 0V Crp(X) + V1)
PePy (X)

Proof. Let us first prove that two V-polyhedral partitions (Cy.p)pep, and
(Cy p)prep, that satisfies [Xy]" = Ugeva([P]V N (Cy,p + V1)) and
(Xv]V = Ug/e?",([Pl]v Y (€, p + V7)) are equal. Consider P € Py. As
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[V]V = U}‘;/e?/v e/‘/JDI, we deduce that GVP = U}‘;/e?/v (GVP ﬂV G/‘/,P,)' In
particular, there exists P’ € P, such that Cy,p NV €y pr # [0]y. Consider
such a P’ € P,. By intersecting the equality U;eg,v([P]V NV (Cy.p(X) +
Vi) = UJVD,ET,V ([PY AV (€ p(X) + V1)) with Cyp NY € p/, we get
[PAP']Y 0V ((Cyp NV € p) + VL) = [0]V. Lemma 12.2 proves that
PAP' = (). Hence P = P’ and we have proved the inclusion Py C Pi,

and by symmetry the equality Py = P},. Remark that we have also proved
that for any P’ € P{\{P} we have Cyp N €, p = [0]". Therefore
CypnY (U‘Ig'eﬂ,\{P} Cyp) = 0. As (Cy. pr)prepr, is a V-polyhedral parti-
tion, we deduce that Cy,p CV €}, p and by symmetry Cy,p = €, p. We have
proved that (Cv,p)pep, and (Cy p/)prep;, are equal.

Next, let us prove that there exists a V-polyhedral partition (Cv. p)pep,
satisfying [Xy]V = Ugeg,v([P]V NV (Cv.p + V1)). Let us denote by Ay the

set of A € comp(saff(Xy)) such that A =V and let Xy =XvN(Uaca, 4)-
As X, is Presburger-definable, a quantification elimination shows that X{, is
a boolean combination in Z™ of sets of the form {z € Z"; (o, x) € ¢+ n.Z}
and of the form {z € Z™; («a,z) #c} where (a, #,¢,n) € (Z™\{0}) x {<,>
} x Z x (N\{0}). Remark that any boolean combination of sets of the form
{z € Z™; (o, ) € c+n.Z} is a semi-Q™-pattern and any boolean combination
in Q™ of {x € Q™; (a,x)#c} is a polyhedron. Hence, there exists a finite
sequence (P;, C;);cr where P; is a semi-Q™-pattern and C; is a polyhedron
such that X{, = (J,c;(PiNC;). Let us consider a sequence (v/y) a4, of vectors
vy € A. For any i € I and A € Ay, we have ANC; = AN (Ci 4 + V1) where
C;,4 is the V-polyhedron C; 4 = (AN C;) —vy. As I x Ay is finite, there
exists a finite set 3 of V-hyperplanes such that C; 4 is (V, H)-definable for
any (i, A) € I x Ay. We have:

AU @avy= U &0y +vh)
HeX #FE{<, >}
- U U @EnAN(Cia+ V)N (Cry+ V)

#e{<,>}H (i,A)eIx Ay

= U @EnAn(CianCuy) +VH)
#e{<, >} (1, A)elx Ay
= U Pen(Cvgp+vh
#e{< >}
Where Py is the semi-V-pattern Py = U ayerxay; CiyAmCV,#?é@(Pi NA) (re-
call that C; 4 N Cy 4 is either empty or equal to Cy 4). Let us denote by
Pv = {Py; [Cvxlv # [0]v} and consider the sequence (Cv,p)pep, of V-
polyhedrons defined by:

Cvp= U Cv,4

#e{<, >} Pp=P
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Remark that (Cy. p)pep, where Cy p = [Cy p]" is a V-polyhedral partition.
Moreover, the set Zv = XvA(Upep, (PN (Cv,p + V1)) is included in the
union of U e compsar(xv )av 4 Use(<.537 0y wv =)y (PN (Crig £V)),
and Jyeq¢(Xv N (H 4+ V). Remark that for any A € comp(saff(Xv))\Av,
we have [A]Y = [(]V, for any # € {<,>}?C such that [Cy x]v = [0]v, lemma
12.2 shows that [Py N (Cy.x + V)]V = [0]V, and for any H € H, we have
(XvN(H+VYHY = [Xy]Y "V [H+VHY = [ Xy ]V V0]V = [0]Y. We deduce
that [Zy]" = [0]V. Therefore [Xv]V = Upep, ([PIV NV (Cvp + V1)), O

Fig. 12.1. The Presburger-definable set X = {2z € N?; (z[2] > 4.2[1]) V (z[1] >
4.z[2])}

Example 12.5. Let us consider the Presburger-definable set X = {z € N?; (z[2] >
4.z[1]) V (z[1] > 4.2[2])} given in figure 12.1. We have saff(X) = Q2. Hence

V = Q? is the only affine component of saff (X). The V-polyhedral parti-
tion ([Cv,p]Y)pep, defined by Py = {Z%, 0}, Cyze = {z € Q% 0 < z[1] <
4.2[2] V0 < z[2] < 4.2[1]} and Cyy = V\Cy z2 satisfies decomposition theo-
rem.

The following proposition shows that the decomposition theorem can be
also applied to [X]V since [Xy]V = [X]V.
Proposition 12.6. We have [Xy]V = [X]V for any set X C Z™ and for any
—
affine component V' of saff (X).

Proof. Let us consider the semi-affine space S equal to the affine component

A of comp(saff(X)) such that A C V. Recall that Xy = X N S. In order to
prove that [Xy]¥ = [X]V, it is sufficient to show that V is not included in



12 Presburger Decomposition 73

sa—ff}(Zm N (XAXy)). Remark that Z™ N (Xy AX) = X\S. Moreover as X C
Usccompsati(x)) 4> we deduce that X\S C U sccomp(sarr(x)) (4\S). Naturally,
if A CV then AC S and in particular A\S = ). Hence X\S is included into
the finite union of affine component A of saff(X) such that A Z V. Assume
by contradiction that V' is included in saft (X\S). From insecable lemma 9.2,
we deduce thgt thei exists such an affine component A such thﬂ} vV C A.
Hence V.C A C saff(X) and as V is an affine component of saff(X), we
deduce that V = A which is in contradiction with A Z V. Hence V is not
included in sa—f)f(X\S) and we have proved that [Xy]" = [X]V. O
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13

Strongly Connected Components

A component T of a FDVG G is a strongly connected component of the
parallelization [G].

13.1 Untransient strongly connected components

A component T is said untransient if there exists a loop ¢ — ¢ where g € T
and 0 € ¥t . Otherwise, the component 7' is said transient.

In this section, we prove that for any untransient component 7" of a FDVG
G there exists a unique vector space Vi (T') and a unique sequence (ag(q))qer
of vectors in Vi (T)+ such that we have the following equality:

salt({&rm(w)i 4 "7 q)) = aglq) + Va(T)

Moreover, an algorithm for computing Ve (T) and (ag(q))qer in polynomial
time is provided.

Remark 13.1. The vector space Vi (T') does not depend on ¢ € T.

The polynomial time computation is based on a fix-point system provided
by the following proposition 13.2

Proposition 13.2. Let T be an untransient component of a FDVG G and
let Ko be the set of states kg € K reachable and co-reachable from T. There
exists a unique minimal (for the point-wise inclusion) sequence of affine spaces
(Aky ) ko, not equal to (0)g,er, such that for any transition ko LN k{ where
(ko, b, k) € Ko x X x Ko, we have the following inclusion:

I o(Aky) C Ak
wext

Moreover, this sequence satisfies saff({&m(w); kg —— ko}) = Ay, for
any ko € K.
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GE’;‘F’VYL
Proof. We denote by Zy, the set of Zy, = {& m(w); ko Lt ko}. By
developing the expression &,.,,(01.wk.09) where o1, o9 are in X* such that
o1.09 € X, we YT, and n € N, we obtain the following equality:

r,m> r,m

Lrm,on © &rm (W)
1 — rlor.oz2lm+n.|wlm

+ Frif}m,ag © 57‘,771(“})

fnm(ol.w".og) =

Let us first prove that (saff(Z, )k, cx, satisfies the fix-point system. Con-
sider a transition kg LR k{ where (ko, b, kj)) € Ko x X, x Ky. As ko and k{, and
in the same strongly connected component, there exists a path &, 2, ko. By
replacing o1 by 01.(b.01)m_1, we can assume that 01.b € E;fm. Let us consider

x € Zy,. There exists a loop ko — ko where w € X;f, such that z = & (w).

Remark that for any n € N, we have the loop & rwtb, kg. Therefore
&m0 w™b) € Zy; - Thanks the the equality given in the first paragraph and

covering lemma 9.9, we deduce that Q. . 0, (z) + 7l (z) C saff(Zk(/)). In

r,m,b
particular I'"! () € saff(Zy; ). We have proved the inclusion F;}hb(Zko) -

r,m,b
saff(Zy, ) and from covering lemma 9.9, we get Frjib(saﬁ(Zko)) C saff(Zy, ).
We have proved that (saff(Z,))r, ek, satisfies the fix-point system.

Now, let us prove that saff(Zy,) is an affine space. Remark that this semi-
affine space is not empty and in particular there exists at least one affine
component A of saff(Zy,). Let x € Zj,. Assume by contradiction that Zj,\ A
is not empty. Let us consider a vector x € Zy, \ A. By definition of Zj,, there
exists a loop ko 2 ko where w € Z;‘Tm such that z = & ,,(w). From the
previous paragraph, we deduce that I T;}Lwn (saft(Zy,)) C saff(Zy,) for any
n € N. In particular Frf,il,wn (A) C saff(Zy,) for any n € N. Remark that
Ik o (A) = r~ Wl (A — ) + 2 thanks to z = &, (w). Covering lemma 9.9

r,m,w"™

shows that Q.(A—x)+z C saff(Zy,). As A C Q.(A—z)+x C saff(Z,) and A is
an affine component of saff(Zy,), we deduce the equality A = Q.(A — ) + «.
In particular x € A and we obtain a contradiction. We have proved that
Z1io\A = 0. Therefore Z, C A. We get saff(Zy,) = A. Therefore saff(Zy,)
is an affine space (remark that even if these proof is similar to the one pro-
vided by proposition 9.11, we cannot apply this proposition since Zj, is not
necessary (r, m,w)-cyclic).

Finally, let us consider a sequence of affine spaces (Ay,)r,cxk, not equal

to (0)keex, such that -1 (Ag,) C Ay for any transition (ko LR k{ with

(ko,b,k{)) € Ko x X x K¢ and let us prove that saff(Zy,) C Ay, for any
ko € Ko. An immediate induction shows that I}, ,(Ag,) C Ay, for any path

r,m,o
ko = K} where (ko,0,k}) € Ko x X* x Kq. Since saff(Zy,) is an affine space,
it is sufficient to show that Zy, C Ap,. Since (A, )k,ck, is not equal to the
empty sequence (), e i, , there exists at least a state k1 € Ko such that Ay, f.
By definition of Ky, there exists a path k; ~ ko. From L) o (Ag) © Ak,

we deduce that Ay, # (0. Hence, there exists a € Ay,. Since x € Zy,, there

exists w € Yt such that ko % ko. From the path ko r, ko, we get
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Fg,}hwn (Ag,) C Ay, for any n € N. Hence Fg,}hwn (a) € A, for any n € N.

Since I} yn(a) = r= 1@k (a — & (w)) + &m(w), from covering lemma 9.9,

we get Q.(a — & m(w)) + & m(w) € Ag,. In particular &, (w) € Ay, and we
have proved that Zj, C Ay,. Thus saff(Zy,) C Ay, for any ko € Ko.
Since (saff(Z,))kock, is not equal to (0)x,ecx,, we are done. O

We deduce the following proposition 13.3 that shows that a characteristic
vector space denoted by Vi (T') is associated to any untransient component
T of a finite DVG G. This vector space is extremely useful in the sequel for
extracting geometrical properties from a FDVA.

Proposition 13.3. Let T' be an untransient component of a finite graph G
labelled by X, . There exists a unique vector space Vo (T') and a unique se-
quence (ac(q))qer of vectors in Va(T)L such that for any q € Q:

wEE:fm

saff ({&.m(w); ¢ q}) = ac(q) + Va(T)

wEE:fm

Proof. Let Ay = saff ({&m(w); ¢ q}). The previous proposition 13.2
proves that A, is a non empty affine space. It is sufficient to show that the

4

vector space A, that does not depend on ¢ € T'. By symmetry, it is sufficient to
— —

prove that A, C A, for any gi,¢2 € T Since T is strongly connected, there

exists a path ¢; = ¢g with o € X - Proposition 13.2 proves by an immediate
induction that I} (A, ) C Ag,. Since the affine space I} (A4, is equal

r,m,o MW
to r1wlm (A, — pr.m(w, €0.m)), its direction is equal to A,,. We deduce that
— —

A¢11 g Aq2' O

13.1.1 A polynomial time algorithm

Thanks to the fix-point system provided by proposition 13.2, we are going to
show that V(T) is computable in polynomial time from G.

Theorem 13.4. Let T be an untransient component of a FDVG G. The vector
space Ve (T) is computed in polynomial by the algorithm given in figure 15.1.

Proof. Naturally, the algorithm terminates in polynomial time. Let us prove
that the vector space V returned by the algorithm is equal to Vg (T). Let

ezl
(Sko ) kock, be the sequence of affine spaces Sy, = saff ({&.m(w); ko e,

ko}). For any state ko € Ky let us consider the set Jy, = A(ko) — A(ko) the
set of difference of two elements in A(kp).

Let us show that for any ko, ky € Ko, we have Ji, + m.Z = Jy; +m.Z.
It is sufficient to show the inclusion Jg, C Jké + m.Z. Let i1,i2 € Jg,. There
exists two paths q; 2 ko and g = ko where |o1| € iy + m.Z, |oo| €
io + m.Z and q1,q2 € T. Since T is strongly connected (for [G]), there exists
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a path kg % kjy. From the path ¢; 2% kf) and ¢o 2% ki) we deduce that
(Jo1] + |w]) = (Jo2| + |w]) € Jpy + m.Z. Hence iy — iz € Jy; + m.Z. We have
proved that for any ko, ky € Ko, we have Ji, +m.Z = Jy, +m.Z.

Thanks to the previous paragraph, we deduce that I (V) = 72 (V)

r,m,0 r,m,0
for any i1,i2 € A(kg) and for any ko € Kj is an invariant of the algorithm.

Thus, for any ko € Ko, there exists a vector space Vi, such that Vi, =
It (V) for any i € (ko). For any transition kg LA k{, such that (ko,b, k() €

r,m,0

KO X ET X Ko, let Iko,b,k[’) = Fr;il,b(ghm(ako)) — {Tym(ak(/)), and let Akg =
gT,m(Uko) + Vko'

Let us show that Vg (T) C V. Since for any transition ko LN k{ where

(Ko, b, kp) € Ko x X x Ko and for any i € A(ko), we have I, o(zx, 0.11) €V,

we deduce that F&}Lb(Ako) = Ay, and in particular (Ag,)k,ex, is a sequence
of affine spaces satisfying the fix-point system provided by proposition 13.2
and not equal to (0)g,ex,. By minimality of the sequence (Sk,)r,ecr,, We
deduce that Si, C Ay,. Taking the direction of the previous inclusion, we get
Va(T)C V.

Let us prove the converse inclusion V' C V(7). Remark that V is gen-

erated by vectors Fﬁ)m70(a:k07b1k6) where kg LR k{ is a transition such that
(ko, b, k{)) € Ko x X x Ko, and i € A(ko). Since V(T is a vector space, it is

sufficient to prove that I7"t! (Tho b,ky) € Vo (T'). Remark that &, (0%, ) € Sk,

7m0

and since Frj#t,b(sk()) C Sk, we get Frj%)b(ghm(ako)) € Sk,. Moreover, as
§r,m(0k6) € Sy, and Sy, is an affine space, we get Ty, px; € ?ké. By def-
inition of A, there exists a path ¢ % ko such that |o| € i + m.Z. As T
is strongly connected for [G], there exists a path kj — ¢ where ¢ € T
and obw € F, . As I ,(Sk) € Sy, taking the direction of the previ-

MW

2 — —
ous inclusion provides I’ IwI(Sk(r)) C Vg(T). From xy, pxy € Sy we get

r,m,0
Tho bkl € Fr‘jJ:rL,o(VG(T))' As ITh, o(Va(T)) = Va(T) (in fact for any vector
space W we have I, (W) = W), we deduce that Gamma‘rﬂ%o(VG (1)) =

Ff(Hl)(Vg(T)). Thus I'' 1! (Tko,b,ky) € Vo (T) and we have proved the other

r,m,0 r,m,0

inclusion V. C V(7). O

Ezample 13.5. Let A,1({1}) be the FDVA given in figure 13.2. The two
components 77 = {{0}} and T = {0} are untransient,and the component
To = {{1}} is transient.

Example 13.6. Let A, 3(+) be the FDVA representing {x € Z3; z[1] + z[2] =
x[3]} and given in figure 6.2. We denote by qo, ¢1 and ¢, , the principal states
qo = {z € Z%; z[1] + z[2] = z[3]}, 1 = {z € Z™; =z[1] + z[2] + 1 = z[3]} and
g1 = 0. The two strongly connected components Ty = {qo, 1 } and T, = {q. }
are untransient. We have Vg(T'L) = Q% and Vi (Ty) = {z € Q3; z[1] +z[2] =
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function Vg (7).

input

A FDVG G = (Q,m, K, X,,§) and an untransient component of 7" of G.
output

Va(T).

begin

for each state ko € Kp.
o
let oy, € Eiym such that ko LN ko.

2* . 7
let AM(ko) — {i €{0,...,m—1}; T —"- ko}.

end for.

let V — {eo,m}-

for each transition kg 5, k(.
let o — I (§rm(0ko)) = Erm(ory)-
let V.=V 43\ ko) Q.F,/L.j,ETO (z).
end for.
return V.
end

let Ky be the set of states kg € K reachable and co-reachable from T'.

Fig. 13.1. An algorithm computing in polynomial time V(7).

e\ {1} Zp\{0}

Fig. 13.2. The FDVA A, ({1})

Example 13.7. Let A,.2(V,.) be the FDVA representing {z € Z?; V,.(z[1])

x[2]} and given in figure 6.3. We denote by ¢o, ¢1 and ¢, the principal states
qo = {z € Z*; V,(z[1]) = 2[2]}, ¢1 = Z x {0} and g, = (). The three strongly
connected components Ty = {qo}, Th = {¢q1} and T| = {q, } are untransient.
Moreover, the vector spaces associated to Ty, T1, T'| are respectively equal to

{eo.m}, Q x {0} and Q2.
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13.2 Detectable semi-V -patterns

In this section, we prove that any semi-V-pattern P € Py (X) introduced by
decomposition theorem 12.4 is (r, m)-detectable in X for any affine compo-

nent V' of saff (X) and for any Presburger-definable set X. That means, given
a DVA A that represents X, there exists a final function F such that P is rep-
resented by AF. Independently, being given a semi-V-pattern P and a FDVA
A that represents a set X not necessary Presburger-definable, a polynomial
time algorithm for deciding if there exists a final function F' such that P is
represented by A’ is provided.

Lemma 13.8. Given a Presburger definable set X, an affine component V' of

—
saff(X) and a word o € X, we have:
v
om0 = U (o (PN 0 (Crp(X) + V7))
PePvy(X)

Proof. Recall that [X]V = Uge?v(x)([P]v NV (Cyp(X)+ V1)) from decom-
position theorem 12.4 and proposition 12.6. We deduce that [y, 1 ,(X)]V =
Ugefpv(x)([%_,},w(P)]v NV (Cy.p(X)+ V1)) from lemmas 10.3 and 10.4 and
corollary 11.18. O

Corollary_1>3.9. Let X be a Presburger-definable set and V' be an affine com-
ponent of saff(X). Any set P € Py (X) is detectable in X .

Proof. Let us consider a pair (01,02) of words in X such that v}, , (X) =
Yrm.oo(X). From lemma 13.8 we deduce that UgETv(X)([ (P)V nv
(Cv.p(X) + V1) = Upep, (0 (o (P 0V (Crp(X) + V). By in-

tersecting the previous equality by Cy,p(X) + V*, we get [y, ,, (P)]Y NV

—1
’Yr,m,ol

(Cv,p(X) + V) = [k o (P)Y NV (Cyp(X) + V). From lemma 12.2 we
deduce that ”y;ﬁlm (P) = *y;,lnm (P). O

Even if the following two corollaries are not used in this section, they
become useful in the sequel.

Corollary 13.10. Let X be a (r, m,w)-cyclic Presburger-definable set and let

V' be an affine component of EE(X). Any semi-V-pattern P € Py (X) is
relatively prime with r and included in the V -affine space A = & pm(w) + V.

Proof. Since any P € Py (X) is (r,m)-detectable in X, we deduce that any
P e Py (X)is (r,m,w)-cyclic. From lemma 9.20, any P € Py (X) is relatively
prime with r and included in A. O

Corollary 13.11. The set Z™ N (§m.m(w) + V) is (r,m)-detectable in X
for any Presburger-definable set X C Z™ and any affine component V &
comp(saff (X)).
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Proof. Let A be the V-affine space A = &, (w) + V. Let us consider P €
Py (X)\{0}. It is sufficient to prove that Z™ N A is (r,m)-detectable in P.
Consider a pair (o1, 02) of words in X, such that there exists P’ satisfying
Vi (P) =P =770 (P) Remark that if P’ = Q) then the dense pattern
corollary 9.23 shows that Ve (ZMNA) =0 =~ ), (Z"NA). If P =, we
deduce that saff (v, ), .. (P)) = I o (A). Therefore I o, (A) = FT s (A).

In particular, by intersecting the previous equality by Z™, we get Vr,m,al (Z™n
A) = Yo (Z"NVA). DO

Theorem 13.12. Let A be a FDVA, let M be a V-vector lattice included
i Z™, and let B be a non empty finite subset of Z™. We can compute in
polynomial time a partition By, B1, ..., B, of B such that a semi-V -pattern
P of the form P = B'+ M where B' C B is represented by a FDVA of the
form AT if and only if there ewists J C {1,...,n} such that B = Ujes Bj

Proof. Let us denote by € the class of subsets of X’ C Z™ that can be
represented by the FDVA A* where F is any final function. Since € is stable by
boolean operations in {U,N,\, A}, we deduce that exists a unique partition
By, Bi, ..., B, of a subset of B satisfying the theorem. From proposition
4.6, we deduce that there exists a finite set U of pairs (o1, 03) of words in
X* computable in polynomial time such that |o1| + m.Z = |o2| + m.Z for
any (01,02) € U, and such that a subset X’ C Z™ is in in € if and only
if Yy o (X)) = *ymln 0, (X') for any (o1,02) € U. Let us consider the binary
relation R over B defined by b1Rbs if and only if there exists (o1, 02) € U such
that v,y o, (b1 + M) Ny} o (ba + M) # 0. The symmetrical and transitive
closure of R denoted by R provides an equivalence relation of B. Let us
consider the equivalence classes Bj, ..., Bj, of R’ such that the last classes

B}, 1, ..., By, are the equivalence classes such that Bj 4+ M is not in C.

Let us prove that By = UZ n+1B and B, ..., B, are equal up to a
permutation to B1, ..., Bl, Observe that B; + M is in C for any ¢ > 1. Thus
for any (o1,02) € U, we have Vrm.oy (Bi+M) =~} o (Bi+M). In particular
b1 Rby implies that there exists i > 0 such that by,by € B;. We have proved
that for any equivalence class B’ of R’, there exists 7 such that B’ C B;. Note
that if B’ C By then B’+ M is not in € by definition of By. Next assume that
B’ C B; with i > 1. Let us consider (01,02) € U and let © € 7, ), , (B'+ M).
There exists by € B’ such that v, .0, (x) € by + M. Since B; + M € C, we
get Yoh o, (Bi + M) = ~;% o (Bi + M). As by € B’ C B, we deduce that
there exists by € B; such that Yy.m.q,(x) € by + M. Thus ~,}, (b1 + M) N
Vrm.os (b2 + M) # 0 and we have proved that byRbs. Since by € B’ we get
by € B’ and we have proved that ”y;;)siqmal (B'+ M) C Yyim.on (B + M). By
symmetry, we get the equality ~, ) , (B’ + M) =~} ,.(B' + M). We have
proved that B’ + M € C. Since B’ is non empty and included in B;, we deduce
that B’ = B;. We have proved that By = U B} and By, ..., B, are equal
up to a permutation to By, ..., Bl,.

Therefore it is sufficient to prove that we can decide in polynomial time
if ¥, o, (01 —|—M) Ny m.cn (b2 + M) # 0 for any by, by € B, and we can decide

i=n+1
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in polynomial time if B’ + M € € for any B’ C B. Proposition 9.18 prove
that for any word o and for any finite subset B’ C Z™, we can compute in
polynomial time a finite subset B, C Z" and a vector lattice M, such that
|Bs| < |B'| and 7, ,(B'+ M) = By + M,. Therefore, it is sufficient to
prove that given two vector lattices M7 and Ms, two finite subsets By and
By of Z™, and two vectors by and By in Z™, we can decide in polynomial
time if by + My N by + My # () and we can decide in polynomial time if
(B1 + M;) = (B2 + Ms). From corollaries 8.16 and 9.16, we are done. O

13.3 Terminal components

A terminal component T of a FDVA A = (qo, G, Fp) is a component of G
satisfying:

e T is reachable (for [G]) from the initial state qo,
e there exists a state ¢ € T such that [Fp|(¢q) # 0, and
e any state ¢’ reachable (for [G]) from T such that [Fy](q’) # 0 is in T

The set of terminal components of a FDVA A is denoted by T 4.
Observe that Vg (T) is defined for any terminal component T' since the
following proposition 13.13 show that such a T is untransient.

Proposition 13.13. A terminal component is untransient.

Proof. Let T be a terminal component of a FDVA A. Consider a state ¢ € T
such that [Fo)(q) # 0, and let s € [Fy](q). Since Fy is saturated for G and s €
[Fb](q) we deduce that s € [Fy](d(g, s™)) for any n € N. As T is terminal, we
have d(qo, s™) € T. Moreover, as @ is finite, there exits n € N and d € N\{0}
such that d(qo, s" %) = §(qo, s™). We have proved that there exists a loop of
the state ¢’ = (g, s"). From ¢’ € T we deduce that T is untransient. 0O

The terminal components have a lot of applications in the sequel. In this
section we show that saff(X,) = ac(q) + Ve (T') and we provide a geometrical
characterization of the sets X,.

Lemma 13.14 (Destruction lemma). Let 0 € Xt be a non-empty word
and let A be an affine space. There exists kg € N such that 7;7171 (Z™NA) =

0 if and only if & m (o) € A or Z™ N A = 0.

7Uk;0

Proof. We can assume without loss of generality that Z™NA # (. In particular
A is a vector space (because A is non empty) and there exists a finite set
D C Z™\{eg,m} such that A= {x € Q™; Ayep (o, ) =0}

Assume first that &.,,(0) € A. The set Z™ N A is equal to {z €
7" Naep (0,2 =& m(0)) = 0}. Remark that 7;51_,(,(27” NA = {z €
Z™; Naep (@ Yrmo () = &rm(0)) = 0} = Z™NA. In particular ’yr_,rln,ak (Z™n
A) # () for any k € N.
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Next, assume that v} (Z™ N A) # ( for any k € N. As Z™ N A # 0,

r,m,ok

there exists a € A. For any k € N, we have:

L (Z™ N A)

/}/7‘,771707c

- {I € Zma /\ <a57r,m,ak(x) - CL> = 0}

acD

= {:v ez™; /\ <a,rk"“‘m.(:v —&m(0)) + &m(o) — a> = O}

acD

rklolm

= {:v ezZ™: /\ <a, (T\a\m _ 1)';5 +%,m,a(eo,m)> _ (T\a\m _ 1)'
aceD
Let us consider k& € N enough larger such that |(rl7lm — 1)%| <1

for any o € D. As 7;; #(Z™ N A) # 0, there exists z in this set. From
(a, (rlolm —1).2 + Yrm,o(€0,m)) € Z, we deduce that (rlolm — 1).7@"“_&"’”‘(‘7)>

rklolm

is in the set {c¢ € Z; |c| < 1} = {0}. Therefore (o,a — & (o)) = 0 for any
a € D. That means &..,(0) € A. O

Proposition 13.15. Let A = (qo, G, Fy) by a FDVA that represents a set
X, let Y be an s-eye of a FDVG G and let T be a terminal component that
contains kers(Y'). We have saff(X,fs’Y (@) = ac(q)+ Va(T) for any principal
state g € T'.

Proof. Let us denote by Z, the set Z, = {&.m(w); ¢ = q}. Recall that
saff(Z,) = ac(q) + Va(T).

Let us first prove that saff(Z,;) C saﬁ(X,fS‘Y). Consider a vector = €
Z,. There exists a loop ¢ — ¢ with w € Xr,, such that z = &, (w). Let
q" € kery(Y). As ¢ and ¢’ are in the same component, there exists a path
q % ¢ with 0 € 2,.,,. Remark that p,. ., (w*.0,5) € X,f‘*"y for any k € N. By
developing p,...(w*.0, s), we get p,m(wF.o,s) = rFvwin (p, .(0,5) — 2) + .
From covering lemma 9.9, we get Q.(prm(0,s) — ) + 2 C saff(XfS‘Y). In
particular 2 € saff(X, ) and we get Z, C saff (X, ). By minimality of the
semi-affine full, we deduce the inclusion saff(Z,) C saff(X,fs’Y).

For the converse inclusion, let us consider a vector = € Xf *¥_ There exists
a (r,m)-decomposition (o, s) of & such that 6(q,0) € Y. By replacing o by
a word in 0.s*, we can assume that ¢’ = §(q, o) is in kerg(Y'). In particular,
there exists n; € N\{0} such that 6(¢’,s™) = ¢'. Proposition 13.2 shows
that Iy (&rm(s™)) € saff(&m,q). Remark that & ,,(s™) = 2=, and we

1—r>
deduce that x = prm(w, s) € saff(Z,). We have proved the inclusion st’y -
saff(Z,). By minimality of the semi-affine hull, we deduce the other inclusion

saff (X, °Y) C saff(Z,). O

(a,a — §T,m(0)>

}
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The following proposition shows that for any state ¢ in a terminal compo-
nent of a FDVA that represents a set X, the semi-affine space saff(X,) can
be easily computed thanks to ag(q) and Vg (T).

Proposition 13.16. Let X be a set represented by a FDVA A and let T be a
terminal component. We have saff(X,) = ac(q) + Va(T') for any state g € T

Proof. Let us consider the class Cr of couple (s,Y) € S, x P(Q) such that
Y is an s-eye satisfying kery(Y) C T and Fysy C Fy. As T is terminal, this
class is non-empty. Proposition 13.15 shows that saff(Xs ) = ac(q)+ Ve (T)
for any (s,Y) € Cr. Let F' =4 y)ce, Fsy- As ¢ € T and T' is terminal, we

deduce that X, = Xf = U(S Yyeer st‘y. From covering lemma 9.9, we get
saff(X,) = ac(q) + Va(T). O

Remark that by definition of boundy (X), there exists a unique semi-V-
pattern P € Py (X) such that [Cy 4]V CV €y p(X) for any sequence # €
{<, >}Powndv(X) such that [Cy4]v # [0]v. Let X be a Presburger-definable
set, let V' be an affine component of E(X), and let P € Py (X) be a semi-
V-pattern. We denote by Sy, p(X) the set of sequences # € {<, >}Poundv(X)
such that [O\/’#]V QV ev)p(X).

The following theorem provides a geometrical form of the set X, when ¢
is a state in a terminal component of a FDVA that represents a Presburger-
definable set X.

Theorem 13.17. Let X be a Presburger-definable set represented by a FDVA
A and let V' be an affine component of sa—ff(X). For any state q in a terminal
component T such that Vo (T) is equal to V', there exists a vector ag € Q™
such that we have:

X = U U (PgN(ag +Cvy + VL))
PG?\/(X) #GSV)P(X)

such that for any j € {1,...,m}, we have —1 < a4[j] <0 if V C ej:m and we
have —1 < aq4[j] < 0 otherwise.

Proof. Let us first prove that there exists a loop ¢ =, g such that w; ¢
(Zrm Nej,,)* for any j € {1,...,m} satisfying V & ej,,. As sa—ff(Xq) =V,
from proposition 14.11 we deduce that there exists P € Py (X) such that
P, # 0. Let us consider a vector # € Py. As V ¢ ej,,, there exists a vector
v € V such that v[j] # 0 and by replacing v by a vector in (Z\{0}).v, we
have proved that there exists a vector v € invy (F;) such that v[j] > 0. In
particular  + Z.v C P,. As v[j] > 0, there exists k € N enough larger such
that (z+k.v)[j] > 0. Let us consider a (r, m)-decomposition (o, s) of z+k.n.v.
Naturally, as (z + k.n.v)[j] > 0, we have o & (2, N ej,,)*. Moreover, as
pr.m(0,8) € Py, we get Py # () where ¢/ = d(q,0). Proposition 14.11 shows
that Xy # (. As T is terminal, we have proved that ¢’ € T. Hence, there
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exists a path ¢’ <, q. Remark that the loop ¢ SR q where w; = 0.0’ satisfies
w; & (Zrm N ej%m)*.

Let us consider the sequence (Cv,p)pep, (x) of V-polyhedrons defined
by Cvp = U#ESv,p(X) Cv,4#. Remark that ev)p(X) = [Ov_’p]v for any
P € Py(X). Hence, the set Z = XA(Upep, (x) Ugesy. ) (PaNlag+Crz+

V4))) is such that [Z]Y = [0]V. Let us consider a path gy % ¢ with ¢ in a
terminal component T such that V(T) = V. Thanks to the first paragraph,

we can assume without loss of generality that o & (X, ,, N ej:m)* for any
j € {1,...,m} satisfying V' & ej,,. As sa—ff(Xq) =V, and [y, ,(2)]" =
Yo (1Y) = [0]Y, we deduce that X, is not included in saff(v,} ,(2)).
Hence, there exists a (r,m)-decomposition (wi,s) € p, 1 (X,) such that
prom(wi,s) & saff(y,), ,(Z)). Destruction lemma 13.14 shows that by re-
placing w; by a word in wy.s*, we can assume that 7} . (Z) = 0. Let
q = (q,w1). As s € Fy(¢') and T is terminal, we deduce that ¢’ € T. As ¢
and ¢’ are in the strongly connected component 7', there exists a path ¢’ — q.
Let w = wy.wy and let ay = I}, (€0m). As 0 & (Xpm N e, )" for any
Jj € {l,...,m} satisfying V ¢ ej:m, we deduce that for any j € {1,...,m},

we have —1 < ag[j] < 0if V C ef,, and we have —1 < ay[j] < 0 other-

wise. Remark that for any V-hyperplane H such that H = H and for any
# € {<,<,=,>,>}, we have I} (H* + V1) = a, + H¥ + V1. As

M0 W

Vrim,o.w(Z) = 0 then X, = Upery ) Ugesy 0 (Fa N (ag + Cvg + V).
O
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Extracting Geometrical Properties

14.1 Semi-affine hull direction of a Presburger-definable
FDVA

In this section we prove that the semi-affine hull direction saff (X) of a
Presburger-definable set X represented by a FDVA is computable in poly-
nomial time.

This computation cannot be extended to saff (X). In fact, as shown by the
following lemma 14.1, the size of saff(X) can be exponentially larger than the
size of a FDVA representing X.

Lemma 14.1. There exist o, 8 € Q4 \{0}, a sequence (A, )nen of FDVA that
represents a sequence (X, )nen of Presburger-definable sets in basis r, such
that lim,, | o size(A,) = +oo and size(saff(X,,)) > a.20:517e(An),

Proof. Consider the finite set X,, = {0,...,7™ — 1}™. Remark that X,, is
Presburger-definable and the FDVA A, ;(X,,) that represents X, has n + 2
principal states. Moreover, as comp(saff(X,,)) = {{z}; = € X,,}, we deduce
that size(saff(X,)) =r". O

Remark 14.2. The semi-affine hull of a set X represented by a FDVA (X is
not necessarily Presburger-definable) can be computed in exponential time
thanks to the algorithm provided in [Ler03]. This result is not used in this

paper.

Our computation of sa—ff(X ) is based on the following lemma 14.3 that
—
shows that an under-approximation of saff(X) can be easily computed from
a FDVA that represents a set X. In this section, we prove that this under-
approximation is exact if X is Presburger-definable.
Lemma 14.3. Let X be a set represented by a FDVA. We have Upcq, Va(T) C
saff (X).
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Proof. Let us consider a FDVA A that represents a set X. Let us consider

a terminal component T' € T4 and let us prove that Vg (T') C EE(X ). Let
us consider ¢ € T. As T is reachable (for [G]) from the initial state, there

ceX:
exists a path qo S q. We have X, = v, ,(X) C I/}, ,(X). Covering
lemma 9.9 shows that sa—ff(Xq) Cc sa—ff(X). Moreover, as ¢ € T', proposition
— —
13.16 shows that saff(X,) = Vo (T'). Therefore Vg (T) C saff (X) and we have

proved the inclusion Upeq, Vo (T) C &E)E(X). O

Proposition 14.4. Let X be a Presburger-deﬁfwe set represented by a
FDVA A and let V' be an affine component of saff(X). For any principal
state g reachable for [G], there exists P € Py (X) such that Py # 0 if and only
if there exists a terminal component T € T4 reachable from q for [G] such
that Vo (T) = V.

Proof. Assume first that there exists a terminal component T" € T4 reach-
able from ¢ for [G] such that Vg(T) = V and let us prove that there

exists P € Py(X) such that P, # (0. There exists ¢ € T and a path
TEX] .
¢ — ¢'. From theorem 13.17, since Xy # 0, we deduce that there

exists P € Py(X) such that Py # 0. As Py = v, ,(P,) we get Py # 0
and we have proved that there exists P € Py (X) such that P, # (. Let
us prove the converse. Assume that there exists P € Py (X) such that
P, # 0 and let us prove that there exists a terminal component 7' € T4
reachable from ¢ for [G] such that Vg(T) = V. Since ¢ is reachable for
[G] from the initial state, there exists a path gy —= ¢. Let us consider a
sequence (Cv,p)pep, (x) of V-polyhedrons such that Cy,p € Cy,p(X). Let
us consider Z = XAUpeyp, (x)(P N (Cvp + V1)), We have [Z]V = [0]V.

That means V is not included in SE%(Z). Let Z' = 4,y 0, (Z). From cov-

ering lemma 9.9, we deduce that V is not included in saff (Z"). Observe
that if there exists P € Py (X) such that P, # emptyset then from Z’ =
XqAUpep, x)(PaN(Cv,p+ V1)), we deduce that V is included in sﬁf(Xq).
Thus, there exists a (r, m)-decomposition (o, s) such that p, (0, s) € X, and
pr.m(0,8) € saff(Z'). Destruction lemma 13.14 proves that by replacing o by a
word in 0.s*, we can assume that ;L _(Z') = 0. Let ¢ = §(q, o) and remark

r,m,o

that Xy, = UPe?V(X)(Pq' NIyt (Cvp)+ V1), As prole, s) € X, then

V,r,m,o
s € Fy(¢'). So there exists a terminal component T reachable (for [G]) from

wex’
q'. Let ¢" € T. There exists a path ¢ ——— ¢’ such that ¢” € T'. We have
X = Upegy (x) P N (Ty (Cy.p) + V1)) As Xy # 0, there exists

V,r,m,o.w
P € Py(X) such that Py # 0. In particular P,/ is a non-empty semi-V-
pattern. As Cy,p is non-V-degenerate and [Cy ply = [F‘Ziﬁmyg_w(vap)]v, we

deduce that I} (Cy,p) is non-V-degenerate. Lemma 12.2 proves that V'

V,rym,o.w

. . . T —1 1 —
is included in saff (P N (I (Cy,p) +V-)). Therefore V C saff (X ).

V,r,m,o.w
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— —
Moreover, as saff(P,+) C V for any P € Py (X), we deduce that saff(Xq) =

V. As ¢’ € T, recall that Vg(T') = SE)T(Xqu). Therefore, we have proved that
there exists a terminal component T such that Vo(T)=V. O

—

From the previous proposition 14.4, we deduce that saff(X) can be easily

computed in polynomial time from the sequence of vector spaces associated
to the terminal components.

Proposition 14.5. For any Presburger-definable set X represented by a FDVA
A, we have:

saff U Va(T
TET 4

Proof. Lemma 14.3 shows that Uzcq, Va(T) C E(X). Now, let us prove

the converse inclusion. Let V' be an affine component of saff (X). Proposition
14.4 shows that there exists a terminal component 7' such that Vg(T) =

V. Therefore V- C Urer, Va(T). We deduce the other inclusion sa—fE(X) -
Urer, Va(T). O

From theorem 13.4 and the previous proposition 14.5, we get one of the
main powerful theorem of this paper.

Theorem 14.6. The semi-affine hull direction of a Presburger-definable set
represented by a FDVA is computable in polynomial time.

14.1.1 An example

Let us consider the set X = X; U X where X; = {z € N?; z[1] = 2.2[2]} and
Xs = {z € N?; z[2] = 2.z[1]}. Naturally, the semi-vector space ﬁ(Xl) is
equal to the vector space Vi = {z € Q?; z[1] = 2.z[2]} and symmetrically the
semi-vector space sa—ff(Xg) is equal to the vector space Vo = {x € Q?; z[2] =
2.z[1]}. As sa—f)f(X) has two affine components V7 and Va, from proposition
14.5, we deduce that whatever the FDVA A that represents X we consider,
for any terminal terminal components T', we have Vg (T) C V4 or Vg (T) C Vs
(remark that we have implicitly used the insecable lemma 9.2). Moreover, we
also deduce that there exists at least one terminal component 737 such that
Ve (T1) = Vi and at least one terminal component 75 such that Vg (Tz) = Va.
This property can be verified in practice. Figure 14.1 represents the min-
imal FDVA As2(X; U X3) where X = {& € N; z[l] = 2.z[2] + 1} and
= {z € N; z[2] = 2.2[1] + 1}. Remark that this FDVA has 2 terminal
components Ty and T2 defined by Ty = { X3, X1} and T = {Xg7 X5}, We have

Vo(Ty) = aﬁ(Xl) = aﬁ(Xl) Vi and Vg (Ts) = aﬁ(Xg) = aff(XQ) Va.
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(0,0) (070)

Fig. 14.1. The FDVA A5 (X; U X3)

14.2 Polynomial time invariant computation

Let X be a Presburger-definable set and V' be an affine component of saft (X).
The V-vector lattice invy (X) of invariants of X is defined by the following
equality:
invy (X) = ﬂ invy (P)
PePv(X)

In this section we prove that the V-vector lattice of invariants invy (X) is
computable in polynomial time from a cyclic FDVA A that represents X in
basis 7. We also prove that |Z™ N V/invy (X)]| is bounded by the number of
principal states of A.

Recall that corollary 13.10 proves that any P € Py (X) is relatively prime
with 7 and included in the V-affine space &, ,,,(s) + V. This V-affine space will
be useful in the sequel. Our algorithm is based on the following proposition
14.8 and the remaining of this section is devoted to prove that all structures
needed for applying this proposition are small and they can be computed
efficiently.

Lemma 14.7. Let A be a V-affine space and s € Sy, be a (r,m)-sign vector
such that [Z,m sNA]Y # [0]V. There exists a vector v € V such that v[i] < 0 if
s[i] = r—1 and v[i] > 0 if s[i] = 0 for anyi € {1,...,m} such that e; ., ¢ V*.
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Proof. Since A is a V-affine space, there exists a € A. We denote by #¢ the
binary relation > and by #,_; the binary relation <, and we denote by I
the set of i € {1,...,m} such that e;,, ¢ V. Remark that Z,,, s N A =
Zm N AN (C+ Hy(a) + V+) where C is the V-polyhedron C = (" {z €
Vs wli] + ali]#4:0}. As {z € V; x[i] + ali]#:)0} = {z € V; (IIv(eim),z) +
alil# 10}, we deduce that {x € V; x[i] + a[i]#,};0} is either empty or equal
to V for any i € {1,...,m}\I. Moreover, as [Z,m.s N AV # [0]V, we get
{z € V; x[i] + ai]#,;0} = V for any i € {1,...,m}\I. Hence C' = ;. {z €
V; (Iv(eim),2) + alil 0} As (27 0 AN (C + ITy() + VE)° £ )Y
lemma 12.2 shows that [C]V # [0]Y. From lemma 11.6 we deduce that there
exists a vector v € V such that v[i] > 0 if s[{] =0 and v[i] < 0 if s[i] =r—1
foranyie . O

Proposition 14.8. Let X be a (r,m,w)-cyclic Presburger-definable set and
-—
let V' be an affine component of saff (X). Assume that we have:

A (r,m)-sign vector s € Sy, such that [Zym.s 0 (&mm(s) + V)]V # (0],
A couple (qo, G) such that qo is a principal state of a FDVG G such that
0(g0, 01) = 8(q0, 02) if and only if (V; .o, (P)) Pepy (x) = (Vrm.os (P)) Pepy (x)
Jor any 01,00 € X7,
o Theset Q' of principal states reachable for [G] from qo such that (0) pep, (x) #
(Vrim.o(P))pepy (x) if and only if ¢ € Q' for any path qo L ¢ with
oc X,
o An integer ng € N\{0} relatively prime with r such that |Z™ NV /invy (X)]
divides ny,

o An integer n € N\{0} such that ™ € 1 + ng.Z.

We denote by U the set of pairs u = (k,Z) € K x Z/mn.Z such that
there exists a pair of words (oy,0l,) in X% satisfying |oy.0,| € mn.Z,
(k,Z) = (6(qo,0u), |ou| + m.nZ) and there exists an s-eye Y' such that
0(k,ol,) € kerg(Y') C Q. Given a sequence (04,0, )ucy Satisfying the pre-
vious conditions and such that o (g m.n.z) = €, the vector lattice of invariants
invy (X)) is equal to the vector lattice generated by ng.Z™ NV and the vectors
Pram(Ouy .04, 8) = prm(0uy.0y,,,8) where uy = (k1,Z1) € U, b € X\ and
ug = (ko, Z2) € U are such that (ka, Z2) = (6(k1,b), Z1 + 1).

Proof. Let us denote by A the V-affine space A = &, (w) + V.

Since d(qo, o1) = 0(qo, 02) if and only if (v, 1, o, (P)) Pepy (x) = (Vrom,oa (P)) Pery (x)
for any 01,09 € X, , for any principal state ¢ reachable for [G] from go, there
exists a unique sequence denoted by (FP;)pep, (x) such that P, = v pP)
for any P € Py (X) and for any o € ¥, such that ¢ = 6(qo, ).

We first prove that p, .. (o', s) € A for any word ¢’ € £, such that there
exists an s-eye Y’ satisfying §(qo,0’) € kers(Y’) C Q’. As the principal state
q = 0(qo,0’) is in @', there exists P € Py (X) such that P, # (). As there

+
exists a path ¢/ ~— ¢ since ¢’ € kery(Y’), we get saff(P;) = &.m(s) +V

from lemma 9.20. Remark that P, =+, ! _(P). Thus, from covering lemma

o
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9.9, we get & m(s) +V C I o (saff (P)) in particular from saff(P) = A and
Prm(0,8) = Lrom.o(&m(8)), we deduce that p,.,(0’,s) € A.

Next, let us show that for any pair of integers z1, zo € N such that z; +
m.n.Z = zz+m.n.Z and for any x € Z™, we have ' = 7, () =7}, o() €
no.Z™. Naturally, by symmetry, we can assume that z; < z5 and by replacing
z by 7,,.0(7) and (z1,22) by (0,22 — 21) we can assume that z; = 0. In this
case z = =2 is in N and 2’ = (r™* — 1).2. Since r" — 1 divides r™* — 1 and
ng divides r™ — 1, we have prove that ' € ng.Z™.

Let us denote by M the vector lattice generated by ng.Z™ NV and the
vectors pr.om (0w, -b.0,,,5) = prm(0u,.0,,,s) where uy = (k1,21) € U, b € X,
and ug = (ke, Z3) € U are such that (ke, Z2) = (0(k1,b), Z1 + 1).

We first prove the inclusion M C invy (X).

Let us show that pr.m,(02,58) — prm(o1,s) € invy(X) for any pair of
words (01,02) in (X),,)* such that there exists a principal state ¢’ sat-
isfying 6(qo,01) = ¢ = 06(qo,02) and there exists an s-eye Y’ satisfying
q € kers(Y’) C Q. The previous paragraphs shows that p;..,(o1,s) and
pr.m(02,5) are both in A. Thus, from lemma 9.22 we get v, ,. (P) =
&om(s) + P — prm(0i,s) for any @ € {1,2} and for any P € Py(X). In
particular p, (02, 8) — pr.m(01,s) € invy (X).

We can now easily prove that M C invy (X) since ng.Z™ NV C invy (X)
(recall that |Z™ N V/invy (X)| divides ng) and from the previous paragraph
we deduce that p,. (0w, .b.07,,,8) = pr.m(0u,.0,,,5) € invy (X) for any u; =
(kl, Zl) S U, be X, and us = (kg, Z2) € U such that (kQ,ZQ) = (5(]431,1)),214—

1).

Next, let us prove the converse inclusion invy (X) C M.

Let us show that p, ,(02.07, 8)—pr.m(01.0",8) € pr.m(02.0",8)—pr.m(01.0", 5)+
M for any pair of words (01,02) in X} such that there exists u = (k,Z) € U
satisfying (d(qo,01), lo1] + m.n.Z) = u = (0(qo,02),|02| + m.n.Z) and for
any pair of words (¢/,0”) in X* satisfying Z + [0/| = m.nZ = Z +
|o”] + m.n.Z and there exists two s-eyes Y’ and Y satisfying 6(k,0’) €
kergs(Y') C Q" and 0(k,0”) € kery(Y") C Q. Let 2/ = (prm(02.0',s) —
Prm(01.07,8)) = (pr.m(02.0",s) — pr.m(o1.0”,5)). This vector is in V since
the vectors pym(01.07,8), prm(02.0",8), prm(o1.0”,s), and pym(02.0",s)
are in the V-affine space A from the previous paragraphs. Moreover, let
us remark that ' = 72 (x) — 7}, 0(x) where 21 = |o1], 22 = |o2| and
= prm(0’,8) — pr.m(0”,s). Thus, from the previous paragraphs, we get
T € ng.Z™ and we have proved that 2’ € ng.Z™ NV C M.

Let us show that p,m(02,8) — prm(o1,s) € M for any pair of words
(01,02) in (X7,,)" such that there a principal state ¢’ satisfying §(qo,01) =
4" = 6(qo, 02) and there exists an s-eyes Y satisfying ¢’ € kers(Y’) C @'. Since
M is a vector lattice, it is sufficient to prove that p, (0, s) — pr.m(ou, s) € M
for any word o € (X7,,)* such that u = (d(qo,0),m.n.Z) is in U. Let us
consider a sequence by, ..., b; of r-digits b; € X, such that o = b;...b;. We
denote by u; the couple u; = (6(qo, b1 ...b;5),7 +m.n.Z). Since u; = uis in U,
we deduce that u; € U for any k € {0,...,7}. By definition of M, we have
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Pron(Ou;_1-b5.0 . 8) = prom(0u; .00, s) € M for any j € {1,...,i}. From the
previous paragraph, we get pr., (0w, ,.bj...0i,8) = prm(0u;-bjp1...bi,8) €
M for any j € {1,...,i}. By summing all the vectors, we deduce that
Prom(Oug b1 .. b;) = prom (0w, ) € M. Now, just remark that o, = € and u; = u.

Let us consider v € invy (X) and let us prove that v € M. Lemma 14.7
shows that there exists a vector vy € V' such that vg[i] < 0 if s[i] =7 — 1 and
vpli] > 0 if s[i] = 0 for any i € {1,...,m} such that e, ,,  V*. By replacing
vo by a vector in (N\{0}).vo, we can assume that vy € invy (X), vo[i] +ov[i] < 0
if s[i] =r —1 and wo[i] + v[i] > 0 if s[¢] = 0 for any i € {1,...,m} such that
e.m & V*. Since [Z,ms N A]Y # [0]V, there exists a vector a € Z,.,, s N A.
Let a1 = a+ vy and let ag = a + vy +v. Remark that aq,as € Z, ,, s since for
any i € {1,...,m}, if e; ¢ V- then a1[i] = ali] +vo[i], az[i] = ali] +voi] +v]i]
and if e; € V- then a1[i] = ali], asi] = ali]. As a1,a2 € Z, m s, there exist
01,00 € X, such that a; = prn(01,5) and ag = p,m (02, s). By replacing o4
by a word in o7.s* and o9 by a word in o2.s* we can also assume that |0y | and
|oo| are in m.n.Z. Let P € Py (X). Since py. (0, 5) € Aand rloilm € 14|ZmN
V/invy (P)|.Z, lemma 9.22 proves that v, ), , (P) = &m.m(s) + P — prm(0i, 5)
for any i € {1,2}. As prm(02,8) — prm(01,5) = vo € invy(X), we deduce
that v,% 5, (P) = Yoy (P) for any P € Py (X). Therefore there exists a
state ¢’ € @' such that 6(go,01) = ¢’ = d(qo, 02). Let us consider the s-eye Y’
that contains ¢. Since v, 5, on (P) = & (8)+ P — prm (0.5, s) from lemma
9.22, we deduce that (7,1, o, s (P)) pepy (x) = (Vrim.or (P)) pepy (x)- We have
proved that §(¢’,s") = ¢’ and in particular ¢’ € kergs(Y’). By considering
P e Py(X)\{0} let us remark that v}, , (P) = & m(s) + P — prm(04, s)
is not empty. That means ¢’ € Q. Moreover, as for any ¢’ € kers(Y”’) there
exists a path ¢” LN ¢ and Py # 0 we get Py # (). Thus kery(Y') C Q'
From the previous paragraph, we get pr.m (02, 8) — pr.m(01,s) € M. Now, just
remark that py.., (02, ) — pr.m (01, $) = v and we have proved that v € M. O

The following proposition 14.9 provides a simple algorithm for computing
in polynomial time a (r,m)-sign vector s € S, ,,, such that [Z; ., s N (& m (W) +
V)]V # [0]V from a FDVA that represents a (r, m, w)-cyclic Presburger defin-
able set X in basis 7.

Proposition 14.9. Let X C Z™ be a (r,m,w)-cyclic Presburger-definable set
represented by a FDVA A in basis r, and let V' be an affine component of
sa—ff(X). We have [Zym.s O (Erm(w) + V)]V # [0]V for any (r,m)-sign vector
s € Spm such that s € [Fy)(q) where q is a principal state in a terminal
component T such that Vo(T) = V.

Proof. Let us consider a terminal component T' of A, a principal state g € T
and a (r,m)-sign vector s € [Fp|(¢q). Let Y be the s-eye that contains g.
As T is terminal we deduce that kery(Y) C T. From proposition 13.15, we
deduce that saff(X.*) = aq(G) + Ve (T). From X c Zrm,s N Xy, we
deduce that V' C sa—ff)(an)S N X,). As ¢ is reachable, there exists a path
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g0 — ¢ and we get X, = Yo X) As vin o (Zrmns N X) = Zpm,s N Xy,
we have proved that V C sa—f)f(ZT,Ws N X) thanks to the covering lemma
9.9. Let A be an affine component of saff(Z, ,, s N X) such that V' C A.
From V C A C sa—ff(X) and as V is an affine component of sﬁ'(X), we
deduce that V = A Moreover, as Zym.s N X is (r,m,w)-cyclic we deduce
that & (w) € A. Hence A = &, (w) + V. From the dense component lemma
12.1, we get saff(Z, ., s N X N A) = A. In particular A C saff(Z, ,,, s N A) and
we have proved that [Z, ;s N (&m(w) + V)]V #[0]Y. O

A couple (go,G) and a set Q' satisfying proposition 14.8 is obtained by
a quotient of a FDVA A that represents X in basis r by the equivalence
relation ~Y defined over the principal states of A by ¢1 ~Y ¢o if and only
if X, ~" Xg,]V. Remark that ~" is a polynomial time equivalence relation
since q; ~V go if and only V is not included in saff (X4, AXg,), and this
last condition can be decided in polynomial because a FDVA that represents
the Presburger-definable set X, AX,, is computable in quadratic time and
the semi-affine hull direction of this set is computable in polynomial time
thanks to theorem 14.6. The following propositions 14.10 and 14.11 provides
immediately the following corollary 14.12.

Proposition 14.10. Iﬁf} X be a Presburger-definable set and let V' be an

affine component of saff(X). Given a pair (o1,02) of words in X, . we

have the equality (72}, 0, (P))pepy(x) = (ihoa (P)) pey (x) if and only if
Lo (X) Y ko (X,

/YTmol Wrmog

Proof. Consider a pair (o1,02) of words in X7 . From lemma 13.8 we de-

duce that [, 0, (X)]V = Upesy, (x) (Drime, PNV 0V (Cvp(X) + V) for

any i € {1,2}. As (Cy,p(X))pep, (x) is a polyhedral V-partition, we get

[FYT‘ m (71( )AFYT‘ m,o2 (X)]V = U}ZETV(X)([’Y;,}?L,Ul ( )A’Yr m,o (P)]VQV(GVP(X)_F
V1)) Remark that if (7,4 5, (P))pepy (x) = (Vrim.on(P)) Pepy (x) then we

have [v, 5, o, (X) A%, 1 0, (P)]Y = [0] and conversely if [y, 5, 5, (X) Ay, o2 (X )Y =
MY, by intersectlng the following equality by Cy p(X) + V*, we get [0]V
rm,or (P) A% 0 (P)]Y 0V (Cy p(X) + VE):

\4

Mot %m0 (XY = | (Brhos (PYAT o, (P)]V 0V (v p(X)+VH)
PePy(X)

From lemma 12.2 we get *y;}wl( )A%m HP)=0. O

Proposition E}.ll Let X be a Presburger-definable set and V' be an affine
component of saff(X). Given a wordo € X}, we have (v, 1. -(P)) pep, (x) =
(@) pepy (x) if and only if v, 1 o (X) ~V 0.
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X)]V - UPE?V(X)([’Y’I‘W O'(P)]va
e?v(X) = (0)pepy(x) then
)Y

= [0V, by intersecting
the equality [y}, ,(X)]" = Upep, (x ([%,m, PV 0V (Cv,p(X) + V1)) by
Cy.p(X)+ VL, we get [0]V = [Yrm.o(P NV NV (Cyp(X)+ V1), From lemma

12.2 we get v, 4 ,(P)=0. O

Proof. From lemma 13.8 we deduce that [y,}, ,(
(Cv,p(X) + V1)) Remark that if (v} (P))p

o (X)]Y = [0]Y and conversely if [y, },

(X
(

Corollary 14.12. Let X be a (r,m,w)-cyclic Presburger-definable set rep-
resented by a FDVA A in basis v, and let V be an affine component of
SE}T(X). We can compute in polynomial time a couple (qo,G) such that qo
is a principal state of a FDVG G such that §(qo,01) = 6(qo,02) if and only
i Vrim,or (P)) Pery (x) = (Vrim,os (P)) Pepy (x) for any 01,02 € 27, and we
can compute in polynomial time the set Q' of principal states reachable for [G]
from o such that (%71, o (P)) pepy (x) 7 (0) pepy (x) if and only if ¢’ € Q' for
any path qo = ¢' with o € Xrm

Let us consider a (r,m,w)-cyclic Presburger definable set X represented
by a FDVA A in basis r. The following proposition 14.13 provides an algorithm
for computing in polynomial time an integer n; € {1,...,|A|} such that there
exists zp € N\{0} satisfying n1 = z¢.]Z™ N V/invy (X)|. Naturally the integer
ny is not necessary relatively prime with r. However, let us remark that ng =
h2°(n1) is also computable in polynomial time (by an Euclid’s algorithm) and
it is also in {1,...,n1} C {1,...,]A|}. Moreover, as invy(X) is relatively
prime with r (recall that X is cyclic), we deduce that |Z™ N V/invy (X)|
divides ng. That means we have provided a polynomial time algorithm for
computing an integer ng € {1,...,]A|} that satisfies proposition 14.8. Now
let us remark that an integer n € {1,...,ng} satisfying proposition 14.8 can
be easily computed in polynomial time. In fact, since ng is relatively prime
with r, there exists an integer n € {1,...,ng} such that ™ € 1 + ng.Z. By
enumerating the integers in {1,...,n9} we compute in polynomial an integer
n satisfying proposition 14.8.

Proposition 14.13. Let X be a cyclic Presburger-definable set and let V' be
an affine component of sa—ff(X). There exists an integer zo € N\{0} such that
for any (qo, G) and Q' satisfying the same conditions as the one provided in
proposition 14.8, and for any (r,m)-sign vector s € Sy, satisfying [Zy m,s N
(&rm(w) + V)V £ [0]Y, we have the following equality:

|Z™ NV /invy (X)| = Z_o( Z | kers(Y)])
Y s-eye of [G]

kers (Y)CQ'

Proof. Let us recall that A is the V-affine space A = & n(w) + V. As
UPefPV(X) P is a non empty set included in Z™ N A, there exists a vector
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ap in Z™NA. As r and |Z"™ NV /invy (X)| are relatively prime, there exists an
integer z; € N\{0} such that r** € 1+|Z™NV/invy (X)|.N. As P —qy is a rel-
atively prime semi-V-pattern included in V' and p, (€5, €0,m) = €om € V,
lemma 9.22 proves that v, 7 (P —ao) = P — ao for any P € Py(X). In
particular, there exists a minimal integer zo in N\{0} such that there exists
a vector vo € Z™ NV satisfying v, 70, (P —ap) = P —ap+ vy for any
P € Py(X). Let us denote by I the set of indexes i € {1,...,m} such that
e;.m & V+. Let us consider s € S,.,, such that [AN (& (w) + V)]V £ [0]Y.
Let Qs be the union of the s-kernel kery(Y) where Y is an s-eye of G such
that kers(Y) C Q.

We are going to prove that there exists a one-to-one function from @,
to {0,...,20 — 1} x By by remarking that for any z,2’ € {0,...,2z0 — 1}
and for any v,v" € Bg such that (&, (s) + 77 m.eq.. (£ — a0+ v)) pep, (x) and

(§T7m(s)+7;fn/7eo,m (P—ao+v"))pep, (x) are equal, we have v = v’ and z = 2’
Thanks to this one-to-one function we will obtain |Qs| = 2.|Z™ NV /invy (X)|
and concluded the proof of the proposition.

Let us prove that for any state ¢ € Q, there exists z € {0,...,20—1} and
v € By such that Py = &, () + ¥y e, (P — a0 + ) for any P € Py (X).
Let Y be the s-eye such that ¢ € kers(Y) C @Q'. As ¢ is reachable, there

exists a path of the form gy %> ¢q. As ¢ € kery(Y), there exists n € N\{0}

such that ¢ = g. By replacing n by an integer enough larger in n.(N\{0}),
we can assume that there exists o, € N and z € {0,...,29 — 1} such that
n=a+z+ .z and |0y, + € 21.N. Let ¢/ = 6(q,5%). As (0) pep, (x) is
not in kery(Y'), we deduce that there exists P € Py (X) such that Py # 0.
Moreover, as Py is (r,m, s™)-cyclic and non-empty, from destruction lemma
13.14, we get & m(s) € saff(Py). From Py = v, . 54« (P), covering lemma
9.9 proves that saff(P,) C F;,iha.sa (saff(P)) and P C A, we deduce that
&rm(8) € Iy o so(A). Therefore py.,(0.5%,s) € A. Moreover as |0.5%|, €
1+ z1.N, we deduce from lemma 9.22 that Py = & ,,,(s) + P — prm(0, s). Let
v =ag — prm(0, ). As ap and p, ., (0, s) are both in A, we deduce that v' €
Z™NV. Remark that P, = *y;,(,;iJgB'ZO)({T,m(s)—l—P—ao—l—v’) and we have proved
that P, = §T7m(s)—i—%_,,({f;fzo)(P—ao—i—v’) for any P € Py (X). Let us consider
an integer v € N such that u.r € 14 |Z™ N V/invy (X)|.N. An immediate
induction over 3 € N provides v, 2% (P —ag+v') = P — ag + v where v is

,M,€0,m
the vector in By satisfying v € u%-%0.v/ 4 (u(F=1-20 4 ... 40-20) yy + invy (X).
Hence Py = &m(8) + Yrim.eq. (P — a+v) for any P € Py (X).

Now, let us prove that for any z € {0,...,z0 — 1} and any v € By, there
exists a state ¢ € Qs such that Py = &§.m(s) + Yy ;e (£ — ao + v) for any
P € Py(X). From lemma 14.7 we deduce that there exists a vector vg € V
such that vo[i] < 0 if s[{] = r — 1 and vo[i] > 0 if s[i] = 0 for any i € I.
By replacing vg by a vector in (N\{0}).vg, we can assume that vy € invy (X)
and (a — v+ vo)[i] > 0 if si] = 0 and (@ — v + vo)[i] < 0 1if s[i] = r—1
for any i € I. As [Z,m.s N A]Y # [0]V, there exists a vector a in Z,.,, s N A.
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Remark that for any ¢ € {1,...,m}, if i € I the sign of (ag — v + vo)[]
is s[i] and if i € I, as e;,, € V1, we have (ap — v + vo)[i] = apli] = ali]
and form a € Z,,, s, we also deduce that the sign of (ag — v + vo)[i] is
s[i]. Hence a — v 4+ vo € Z; ;. That implies there exists a word o € X7
such that p;..,(0,8) = a — v + vg. By replacing o by a word in 0.s*, we can
assume that |o|,, € z1.N. From p, n,(0,s) € A and |o|,, € 21.N, lemma 9.22
shows that v, ), (P) = &.m(s) + P — prm(0,5) = & m(s) + P — ag + v + vo.
From P + vy = P, we deduce that ;) ,(P) = &.m(s) + P — ag + v. Hence
7;,17170_32 (P) =& m(s) +%—,71n,e0,m (P—ap+v). Let ¢ = §(qo,0.5*) and let Y be
the s-eye that contains ¢. As vr_yﬁwzl (P,) = P, for any P € Py (X), we deduce
that ¢ € kers(Y). Moreover, as there exists P € Py (X)\{0} we deduce that

P, # (. Remark that for any ¢’ € kery(Y) there exists a path ¢ 2~ ¢ and
P, # 0, we deduce that P, # (). Hence kery(Y) C Q'. Therefore ¢ € Q5. O

Theorem 14.14. Given a cyclic Presburger-definable set X C Z™ repre-

sented by a FDVA A in basis v, and given an affine component V' of sa—f)f(X)
and given a full rank set of indices I of V', the I-representation of invy (X)
is computable in polynomial time. Moreover |Z™ NV /invy (X)| is bounded by
the number of principal states of A.

14.3 Boundary of a Presburger-definable FDVA

Let X be a Presburger-definable set and V' be an affine component of saft (X).
The V-boundary boundy (X) of X is defined by the following equality:

boundy (X) = U boundy (Cy,p(X))
PePy (X)

In this section, we prove that boundy (X)\(U;-n:l{Vﬂej:m ) is computable in
polynomial time from a FDVA that represents X.

The set boundy (X) plays an important role as proved by the following
proposition 14.15 (see also figure 14.2).
Proposition 14.15. Let X be a Presburger-definable set and let V' be an

affine component of sa—ff(X). For any H € boundy(X), there exist two dif-
ferent semi-V -patterns P< # P> in Py(X), an open convex V -polyhedron
Cu satisfying [Cu N H<|V £ [01V, [Ca N H>]Y # [0V and such that:

(XN(Cxr+VH) = [P<n(CynH)+VHVUY [PPn(CynH>)+VH)Y

Moreover, if X is (r,m,w)-cyclic then one of these two sets is (r, m)-detectable
m X:

(PN (&m(w) + HS+ V)Y U(P7 N (&rm(w) + HZ + V1))
(PN (&m(w) + HS + V)Y U (P70 (&rm(w) + H” + V1))
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Fig. 14.2. On top left a semi-Q?-pattern P<, on top right a semi-Q?-pattern P>, on
bottom left an open convex Q2-polyhedron Cx and a Q*-hyperplane H, on bottom
right the set (P<NCy NH<)U (P"NCr NH”).

Proof. Let H € boundy (X) and let us prove that there exist two different
semi-V-patterns P< # P~ in Py (X), an open convex V-polyhedron Cp sat-
isfying [Cg N H<]V # [0]Y, [Cx 0 H>]Y # [0]V and such that [X N (Cyx +
VO = [P<n((CanH<)+VHIVUY[P>N((CgnNH>)+ V)]V, From decom-
position theorem 12.4, we have [X]V = UPGTV(X)([P]V N(Cyp(X)+V4h).
Let H € boundy(X) and let H' = boundy (X)\{H}. By definition of
boundy (X), there exists Py € Py (X) such that H € boundy (Cy, p,(X)).
Hence, there exist an open convex V-polyhedron C and # € {<, >} such that
[CNHSY £[0)Y, [CnH>Y #[0]V and Cy,p (X) NV [C]Y = [C N H#0)V.
From lemma 11.10, we deduce that there exists #' € {<,>}’" such that
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[CNCy e NHSIY £ [0V, [CNCyu NH>]V # [0]V. Let us denote by Cp the
open convex V-polyhedron Cy = C' N Cy, . Since H' U {H} = boundy (X)
we deduce that Cy p(X) N[Oy N H#]V is either equal to [0]" or equal
to [Cy.4 N H#]V for any P € Py (X) and for any # € {<,>}. By defi-
nition of the sequence (Cy,p(X))pep, (x) (a kind of partition of [V]V) and
since [Cy N H#]V # [0V, there exists a unique P# € Py (X) such that
ev)p#(X) nY [CH N H#]V = [CH n H#]V. Since evypO(X) nv [CH]V =
[Cu N H#]V we deduce that Cy p,(X) NV [Cy N H#)Y = [Cyx N H#0)V
and Cy p (X) NV [Cyg N H#1])Y = [0]V where #1 € {<,>}\{#0}. Hence
P#0 = Py and P#* # P,. That means P< # P> and we have proved that
(XN (Cu+ V)Y =[(P<N((CunH<)+ V) U(PZN((CuNH>)+ V)Y
with P< #£ P> in Py (X).

Now, assume that X is (r, m,w)-cyclic, let A be the V-affine space A =
E&m(w) + V. Let H € boundy (X), let P< and P~ be two different semi-
V-patterns in Py (X), let Cy be an open convex V-polyhedron such that
[CunHS]Y £[0V, [ChunH>]Y #[0]" and such that (X N (Cy + V)]V =
[P<N((CegnH<)+VHVUY PPN (CyNnH>)+ V]V, and let us prove
that one of these two sets is (r, m)-detectable in X:

(PN (Erm(w) + HS + V) U (P70 (& m(w) + H> + V1))

(P= 0 (&rm(w) + H= + V) U (P70 (&rm(w) + H” + V)

Let X' = X N A. Corollary 13.11 shows that Z™ N A is (r, m)-detectable
in X. By replacing Cy by CTq), we can assume that C'y = CTH) Let X' =
X N A. Corollary 13.11 shows that Z™ N A is (r, m)-detectable in X and in
particular X’ is (r, m)-detectable in X. Since X is (r, m,w)-cyclic and P is
(r,m)-detectable in X from corollary 13.9, we deduce that any P € Py (X) is
(r, m,w)-cyclic. From lemma 9.20, we deduce that any P € Py (X) is relatively
prime with r and included in A.

Let us prove that by modifying C'gr, we can assume that X'\ (&, ,,, (w)+H)N
(&r.m (W) +Cr+ V™) = (PN(&rm (w)+CrNH <+ V) U(PZ N(&rm () +Cr
H> + V). Let Z = (X'\(&m(w) + V)N (&m(w) + Cy + VE)A(P< N
(Erm(w) + Ca N HS + V) U (P> N (& m(w) + Cyg N H> + V1)), From
(XN(Cr+VH))Y = [(P<N(CunH<)+VINU(P>N(CgnH>)+VE)]Y, we
deduce that [Z]V = [0]V. Since X', P< and P~ are included in A, we deduce
that saff(Z) C A. In particular sﬁ'(Z) C V. Since [Z]Y = [0]V, we deduce
that V' is not included in sa—fE(Z). Assume by contradiction that H C sa—fE(Z).
There exists an affine component W of saff (X) such that H C W. Since H is
a V-hyperplane, either W = H or W = V. The last case is not possible since
V is not included in SE)E(Z). Hence W = H is an affine component of SE%(Z).
Since saff(Z) = & m(w) + SE)T(Z) we deduce that &, (w) + H is an affine
component of saff (7). From the dense component lemma 12.1, we deduce that
saff(Z N (§rm(w) + H)) = &om(w)+ H. As ZN (& (w) + H) = 0, we deduce
a contradiction. Hence, there exists a finite set Hy of V-hyperplane such that
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970) = Hy, H ¢ Hy and such that EF(Z) - UHUEHO Hy. Thanks to lemma
11.10, we deduce that there exists # € {<, >}7% such that [CyNCy,xNH>] #
[0]Y and [Cy N Cy,u N H<] # [0]V. Hence, by replacing Cy by C N Cy, 4,
since Z N Cy,x = (), we can assume without loss of generality that Z = 0.
Thus X'\ (& (W) + V)N (Erm(w) +Ch +VE) = (P<N (& m(w)+Cr NH< +
V) U (P> N (&rm(w) +Cyg N H> +V4)).

Assume first that Z™ N (& (w) + V) is (r, m)-detectable in X and let us
show that X" = (P<N (& m(w) + HS+ V) U(P> N (& (w) + H> + V1))
is (r,m)-detectable in X. Let us consider a pair (o1,02) of words in X,
such that v} o (X) = 7,5, 5,(X). Let us consider z € 4, ,, (X”). Then
Vrsmoy (€) € (PN (Erm(w) + HS +VE) U (P70 (&m(w) + H> + V7))
By definition of v, there exists an integer & € N enough larger such that
Yrm,or (T+kv) isin X'N(& m(w)+Cy+V+) and such that 4y m o, (z+kv) €
&om(w) + Cg + V4L, Since X' N (&rm(w) +Cr +VE) = XN\ (&rm(w) + H)N
(&rm(w) + Cy + V1), we deduce that v, .0, (¢ + kv) € X'\ (& (w) + H).
Since X’ and Z™ N (& (w) + H) are both (r, m)-detectable in X, we deduce
that Ve m.o, (z + k.v) € X'\ (& m(w) + H). Moreover, as v, m.q, (¢ + k.v)(z) €
(&m(w) + Cg + V1), we have proved that vy m o, (7 + kv) € X'\ (& m(w) +
H)N (& m(w)+Ch + V). Since this last set is equal to XN (&, (w) +Crr +
VL) we get Yo m.op (7 + k.v) € X”. By definition of v, we get Vim0, (z) € X"
Therefore X" is (r,m)-detectable in X.

We deduce that if Z™ N (§.m(w) + H) is (r,m)-detectable in X, since
P<N (& m(w)+ H) and P> N (& (w) + H) are both (r, m)-detectable in X
as the intersection of (r, m)-detectable sets, the following two sets are (r, m)-
detectable in X:

(P< 0 (Erm(w) + HS + V) U (P70 (& (w) + HZ + V1))

(P= 0 (&rm(w) + H= + V) U (P70 (&rm(w) + H” + V7))
Now, assume that Z™ N (§.m(w) + H) is not (r, m)-detectable in X
Let us first show that there exists a pair (oy,03) of words such that
Yeimos (X) = Vrm oo (X Doy (Grm(w) + V) and Iy o (§m(w) + V) are
equal, Z™"NI L (& m(w)+H) is not empty, and such that I} (& (w)+

T,m,o1 T,m,o1

H+V+)and 17 o (6m(w) + H 4+ V1) have an empty intersection. Since

r,m,o2
Z™ N (& m(w)+ H) is not (r, m)-detectable in X, there exists a pair (o1, 02) of
words in X, such that 5,1, (X) =7, ,,(X) and such that 5}, (Z™nN

T,Mm,oq T,m,o1

(&rm(w) + H)) and 7L (Z™ N (&.m(w) + H)) are disjoint. Remark that

r,m,oo
Yo L™ O (Epm(w)+H)) = Z™OI7), 5. (6 (w)+ H) for any i € {1,2}. By

T,Mm,0;

replacing (01, 02) by (02,01), we can assume that Z™ N4 (&m(w) + H)

r,m,o1

is not empty. Since Z™ N (& (w) + V) is (r, m)-detectable in X, we deduce
that Z™ N IL o (&em(w) + V) and Z™ N TL (& m(w) + V) are equal.

T,M,01 T,m,02

Moreover, as Z™ N IL (& m(w) 4+ H) is non empty and H C V, we deduce

T,m,o1

that the sets Z™ NI L | (&om(w)+V) and Z™NI0L o (€m(w)+ V) are non

T,m,o1 T,m,o2

empty. Taking the semi-affine hull of these sets, we get 17} , (&mm(w)+V) =
I oo (Grm(w)+ V). Assume by contradiction that I} . (&pm (w)+H+VE)
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and I} (&.m(w) + H + V1) have a non empty intersection and let z

r,m,oo
be a vector in this intersection. From = € I} , (&m(w) + H + V*) we
deduce that there exists vi € V* such that @ — v € I}, (&m(w) +

H) CFrr}zal(ng( )+V) FI“OIH Frf}ma'l(gﬂm( )+V) Tma’2(€rm( )
V), we deduce that x —v € I L (& m(w) + V). Moreover, since x €

T,Mm,02

I Em(w) + H+ V), we get & —v € I, (§m(w) + H). There-
fore I} (&m(w) + H) and 7Y | (&.m(w) + H) are equal and we get a

r,m,o1 r,m,02
contradiction.
Since I, o, (&rm(w) + H+VE) and I7) o (&m(w )—|—H—|—VL) have an

empty intersection, there exists # € {<,>} such that I}  (&-m(w) + H +
V) C o (rm(w) + HF + V).

Let us consider the (r,m,w)-cyclic Presburger definable set Xj; = X' N
(&.m(w) + H) and the semi- H-pattern P} = P# 0 (&, (w) + H), and let us

prove the following equality:
Vrmal(XHm(ng( )+CHQH)) Wrmol(P#m(ng( )+CHQH))
Remark that ~,% o (X'\(&m(w) + H)) NI L L (&em(w) +Cg N H + V)

T,Mm,oq

lS equal tO Vrma'g( )\ Tma'g(g’l‘m( )+H+VL)HFT71101(§T7W(M)+CHm
H+ V). Since I (&m(w )—i—H—i—VJ-) and I} (&m(w) + H + V)

r,Mm,o1 r,m,o2
have an empty intersection, and v, }, , (X') =~} ,.(X’), we deduce that

Vrimaos (X ’\(érm( )+ Cy NH+VI)NIL L (Em(w) + Cg N H + V)
is equal to v,k o (X N (& m(w) + Cy N H + V=+)). On the other hand,
since X'\(€rm(w) + H + V4 0 (€rm(w) + Vir + V) = Uprege sy (PF 0
(6rm(w) + C 0V HF 4 V4))), we get 47,0, (X\(Erm(w) + H + V1)
(é“rm( AV +VINNTL o Grm (W) H+VE) = Uprege sy (o, (PF)N

I oy Gom(w) + C N HF VYN L L (6rm(w) + H + V). Remark

r,m,o1

that I'7L o (Eem(w) + H# + VL) and 177} (me( )—i—H—i—VJ-) have

r,m,o2 r,m,o1

an empty intersection if #’ is not equal to # and I Tm oo (&rm(w) + Cg N

H* + V) NI o (Grm(w) + H+ V) = T o (Gam(w) + Cr + V) N
Lo (G (W) FHAVE). As Ty o (§ram(w)+V) = rmaz(érm( w)+V) and

Cr = Cu, we deduce that I} (& (w) + Cy —I— V) =00 o (Grm(w) +

rm 02
Cu + VL). Moreover, since 7,}, . (P#) = 47} (P#), we have proved
that v, o, (X\(Erm (W) + H+ V) N L5 o (§rm(w) + Cr N H + V) =
Vrmon (P# N (&rm(w)+Cx N H+V1)). Combining the two equalities proved
in this paragraph, we are done.

Let us prove that Cy N H is a non H-degenerate H-polyhedron. The proof
is obtained thanks to lemma 11.6. Since [Cy N H#]V # [(]V, there exists a
vector vy € H# N Cy. Now just remark that there exists k<, k~ in Q4 \{0}
such that v = k«.ve +ks.vs isin H. In particular v € HNCpg. Thus HNCy
is non- H-degenerate.

Next, let us prove that [ X} N (&m(w) + Cy N H)H = [Pf; N (& (w) +
Cu N H)H. Since v, 1, (Z™ N (& m(w) + H)) is non empty, there ex-
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ists a (7, m)-decomposition (w, s) such that p,m,(w,s) is in this set. By re-
placing w by a word in w.s*, since invy (P#) is relatively prime with 7,
we can assume that rl7t%lm ¢ 1 41Z™ N V/invy (P#).Z. From lemma
9.22 we get Vg o0(P#) = &m(w) + P# — prom(o1.w,s). In particular,
if [X4]7 = [0]7, then [y} 5 (X)) = [0]" and from the equality

’Yrr]h 01( }-I N (€T7m(w) =+ CH N H)) - FYT,m,a'l (PI:,—% N (gTﬁm(w) + OH N H))
we deduce that [y} 5, w(Pf N (&rm(w) + Cy 0 H))H = [0]7. Since Cy N
H is non H-degenerate, we get [Pﬁ]H = [0]* and we have proved that
(X1 O (Erm(w) + Cur 0 H)E = [P0 (&m(w) + Cur N H)JH. So, we can
assume that [X5]7 # [0]. In this case H is an affine component of the
(r, m,w)-cyclic Presburger definable set XJ;. In particular invy (X7},) is rela-
tively prime with r and by replacing w by a word in w.s* we can assume that
rlovwln € 1412m N H/invy (X)|.Z. Since pr.p (0w, s) € Z™ 0 (&pm(w) + H),
from lemma 9.22 we deduce that v}, ;. \(P) = &.m(s) + P — prm(o1.w, s).

From [Xj]7 = Uge?H(X;,)([P]H NH Cy p(Xy) + HY), we deduce that

oo K1 = Upep s ox) (Do aons (P 0 Cot p(X )+ H). From
the equality [X}; N (&nm(w) + Cr N H)E = [Ph 0 (& (w) + Cy 0 H)H
decomposition theorem 12.4 shows that there exists P € Py (X};) such that
[CyNH]" CH €y p(X};) and such that %molw(P) ! (P}). Since

/YT m 01 w
'Yrrln o1 w(P) = gr,m( )+ P — Pr,m(al-was) and 'Yrm o1 wl H) = §T,m(5) +
Pﬁ prm(01.w,s) we get P = P#. Thus [ X} N (& m(w) + Cy 0 H)H =
[P;_"}E N (&-m(w) + Cyg N H)|H and we are done.

Let us consider the set E = (P<N (& m(w)+H<+VI)U(P#N (& m(w)+
H+VH))U (P> N (& m(w) + HZ 4+ V4)) and remark that these set is equal
to one of the following two sets and it is such that [Z] = [0} where Z =
(X'AE) N (&rm(w) + Crr + V).

(P< 0 (Erm(w) + HS + V) U (P70 (& (w) + H= + V1))

(P= 0 (&rm(w) + H= + V) U (P70 (&rm(w) + H” + V)
Let us prove that F is (r, m)-detectable in X. Consider a pair (w1, w2) of words
in Xf, such that ~, m oy (X) =7k 0, (X). Since X' is (r,m)-detectable in X,
we deduce that Y wl(X’) = *ywln o (X'). From Z = (X'AE) N (&m(w) +
Cu + V™), we deduce that Z" = (v, 3w, (B) Ay, (E)) N (C’ + V) where
C" is the open convex V-polyhedron such that "+ V+ = I | (&.m(w) +
Cr+ V)N, (Erm (W) +Cr + V) and Z' = (v, 5, 0, (B) Ay, 2 (E)n
(C"+ V). Since [Z]H = [0, from covering lemma 9.9, we get [Z/] = [(]H.
Moreover, as [O’ 1V = [Cx]V, we deduce that C’ is non V-degenerate and such
that [C'NH<]Y and [C’"NH>]" are both non equal to [#]V. Let us remark that
Vrmaoy (B)AY b 0, (B) is a semi- H-pattern and C' N H is a non- H-degenerate
H-polyhedron from lemma 11.11. Since [Z']7 = [0, we deduce from lemma
12.2 that v} o (E) = v, p 0 (E). Thus E is (r, m)-detectable. We are done.
O
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Recall that a semi-V-pattern P detectable in a (r, m,w)-cyclic set X are
relatively prime with r. The following proposition will become useful in the
last section in order to check that some sets that must be detectable in X if
X is Presburger-definable are effectively detectable in X.

Proposition 14.16. Let A be a FDVA, let Py = B1+ M, P, = Bo+ M be two
semi-V -patterns where By, By are two finite subsets of Z™, and M is a V-
vector lattices included in Z™ relatively prime with r, let H be a V -hyperplane,
let ag € Q™ and let (#1,#2) € {(<,2),(<,>)}. Assume that there exists
a final function F; such that P; is represented by Afi. We can decide in
polynomial time if there exists a final function F such that the following set
is represented by AT :

(PyN(ag+H* + V) U (Pan(ag + H?2 + V1))

Proof. From proposition 4.6 we deduce in polynomial time a set U of pairs
(04, 0p) of words in X such that |0 |+ m.Z = |op|+m.Z for any (04,0,) € U
and such that a set X’ C Z™ is represented by a FDVA of the form A” if
and only if v} o (X') = v, p 5, (X') for any (04,03) € U. Let X' be the set
X' =(Pin(ap+H# +VE) U (PN (ag + H#2 +V+)). Since 7,1, . (Pr) =
Vrm.oy (i) for any i € {1,2}, for proving the proposition, it is sufficient to
show that given a pair (o4,04) of words such that |o,| + m.Z = |op| + m.Z

and 7,0 o (P) = Y0, (Ps) for any i, we can decide in polynomial time
if Yy mon (X)) = 70 5, (X7). In polynomial time, we can compute a vector

a € Z™NV such that H# = {z € V; (o, ) #0} for any # € {<, <, =,>,>}.
Let z € {0,...,m — 1} such that |o,] + m.Z = z + m.Z = |op| + m.Z, let
a; be the vector in Z™ such that (a,77,,0(z)) = (o, z) for any z € Q™,
and let V. be the vector space V, = I'. 7 (V). Proposition 9.18 proves that
we can compute in polynomial time two finite subsets B} and B} of Z™ such

that v, %, (P) = Bl + ~ el (M). Since M is relatively prime with r, we

T,M,0q r,m,0

deduce that 7;7‘7‘;\0(M) is equal to M, = 7;;)0(]\/[), Note that %:rlnm (P) =
Bl + M.,. Let ¢, = et (a,ap) and ¢, = Pl {a,ap). Observe that
€ I}, (ag + H* + V+) if and only if I} o, (¥) € ao + H# + V if

and only if (o, I m,e, () # (v, ag) if and only if (o, ) #c,. We deduce the
following equalities (the equality with o}, is obtained by symmetry):

%_,51,%()(/) = {,T € Bi + M; <azu$> #lca} U {LL‘ € Bé + M; (az,x> #2011}
vr_’#)gb(X’) ={z € B} + M,; {a.,x) #1cp} U{x € By + M,; {a,,x) #a2cp}

If o = ¢ then 7 o (X') = 7} 5, (X). Otherwise, by symmetry, we can

assume that ¢, < ¢;. In this case, the set v}  (X")Av; 1, (X') is equal to
the following set:

{z € (B} + M.)A(B; + M.); ca(—#2) {0z, @) #1060}
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Let us consider the set B equal to the union of the set of vectors b € B; such
that there does not exist by € By such that b— by € M, and the set of vectors
b € Bs such that there does not exist by € Bj satisfying b — b, € M,. Observe
that B is computable in polynomial time and (B +M,)A(B)+M,) = B+ M.
Thus we have reduced our problem to decide if there exists b € B such that
the following set is non empty where ¢} = ¢, — (@, b), ¢4 = ¢ — {a,b), and

(#1, #5) = (—#2, #1):
{‘T € M.; C/l#/l <az,x> #/20/2}

From an Hermite representation of M, we deduce in linear time a Z-basis vy,
..., Ug of M. Note that the set {{a,,z); = € M,} is equal to E'Z:l Z.{ay,v;).
Thus, considering the lattice generated by {{a.,v;); 1 <i < d}, we compute
in polynomial time a rational number p > 0 such that {{a,,x); x € M,} is
equal to Z.u. We deduce that {z € M,; ci#) (az,z) #5¢5} is non empty if
and only if there exists an integer z € Z such that % ’12#'2% This property
property is decidable in linear time. We are done. 0O

14.3.1 A polynomial time algorithm

As for any pair of serialized encoded FDVA (A;,As), we can compute in
quadratic time a serialized encoded FDVA A that represents X; AX, where
X, is the set represented by A;, the following proposition 14.17 shows that
our computation problem can be effectively done in polynomial time thanks
to the semi-affine hull direction computation.

Proposition 14.17. Let X be a Presburger-definable set represented by a

FDVA A and let V' be an affine component of sa—ff(X). Consider I4(V), the
set of pairs of states (q1,q2) € T x T where T is a terminal component such
that Vg (T) =V and such that ¢ ~V qo. We have the following equality:

boundy (X)\(|J{V el }) =comp( | ) saff(X, AX,,))
Jj=1 (q1,92)€14(V)

Proof. Let J be the set of indices in {1,...,m} such that V' N ej%m is a
V-hyperplane. As boundy (X) contains only V-hyperplanes, we deduce that
boundy (X)\(Uj=, {V N ej,,}) and boundy (X)\ (U, {V N e;,,}) are equal.
We denote by Ho this class. The semi-affine space S = (Jycq, H satisfies
comp(S) = Ho. Consider the semi-affine space S = U, 1.)er.(v) &E)E(qu AXy,).
We have to prove that S = S".

Let us first prove the inclusion S C S. Let (¢1,¢2) € I14(V) and let

—

W = saff (X, AX,,). Naturally, if W = ), we immediately have W C S. So
we can assume that W # (). Let us consider an affine component Ag of W.

From theorem 13.17 there exists a1, as € Q" satisfying the following equal-
ity (where ¢ € {1,2}) and such that —1 < @;[j] < 0 for any (i,5) € {1,2} x J:
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X = | U Pun(a+Cvg+Vv?h)
PG?\/(X) #GSV,P(X)

We denote by v; the vector v; = ITy(a;) for ¢ € {1,2}. Remark that
P,, = P,, for any P € Py since q; ~" g2. We denote by Py, 4, this semi-V-
pattern.

Let us prove that there exists H € boundy (X), # € {<,>} and a V-
affine space A such that Ay C sﬁ(Zm NAN(((vy + H?)A(ve + H#)) + V1)),
The set X4, AX,, is included into the finite union of sets Py, 4, N (((v1 +
Cy.4)A(va + Cyvy)) + VL) over P € Py(X) and # € Sy.p(X). As Cy y =
ﬂHeboundV(X) H#1 we deduce that X, AX,, is included into the finite
union of sets Py, 4, N (((v1 + H?)A(vy + H#)) + V1) over P € Py (X),
H € boundy (X) and # € {<,>}. From insecable lemma 9.2, we deduce
that there exists P € Py (X), H € boundy (X) and # € {<,>} such that
Ay C &g)f(th% N (((v1 + H#)A(vy + H#)) + V1)), As Py, 4, is a semi-V-
pattern, it is included into a finite union of sets of the form Z"™ N A where A
is a V-affine space. From insecal&lemma 9.2 we deduce that there exists a
V-affine space A such that Ag C saff(Z™NAN(((vy +H#) A(ve+H7))+V4)).

Let us show that H ¢ {Vﬂej:m; Jj € J}. As Ag # 0, it is sufficient to show
that otherwise, the set Z™ N AN (((vy + H*)A(ve + H#)) + V1) is empty.
Remark that this set is included in (Z™ N (a; + H# + V1) A(Z™N (a1 + H? +
V). IEH=V ﬂej%m where j € J, there exists € € {—1,1} such that H# =
{x € V; e.x[j]#0}. Remark that a;+ H#* +V+ = {z € Q™; e.(z[j]—a:[j])#0}.
As a1[j] and as[j] are two rational numbers in {z € Q; —1 < z < 0}. We
deduce that Z™ N (a; + H# + V*+) and Z™ N (az + H* + V1) are equal.
Therefore (Z™ N (a1 + H# + V) A(Z™ N (a; + H* + V1)) is empty. We have
proved that H ¢ {V N ej%m; jeJ}.

Let us prove that A9 C H. Consider a € Z™ NV \{eg ,} such that H# =
{z € V; {(a,z) #0}. Let K = {k € Z; k < max{|(a,v1)],|{a,v2)|}} and
remark that for any z € Z™ N (((v1 + H#)A(vo + H?)) + V1), we have
(a,2) € K. Hence Z™ N AN (((v1 + H#)A(va + H?)) + V+) is included
into J,cx{r € 4; (o, 7) = k}. From insecable lemma 9.2, we deduce that
Ay CH.

We have proved that Ag C S for any affine component Ay of W. Therefore
W C 5. We deduce that S C S.

Now, let us prove the converse inclusion S C S’. Consider a V-hyperplane
Hy € Hy = boundV(X)\(UjeJ(V N ej%m)). Let H = boundy (X)\{Hop}. We
denote by ap € V\{eom} a vector such that HI® = {z € V; (ap, ) #00
for any #o € {<,>}. Given # € {<,>}?Cand #, € {<,>}, we denote by
(#,#0) the sequence in {<,>}Powdv(X) pnaturally defined. Remark that for
any sequence # € {<,>}"" and for any #¢ € {<, >} such that [Cy, g x)]v #
[0]v, there exists a unique Py 4, € Py (X) such that (#, #0) € Sv,p, 4, -

Let us prove that there exists # € {<, >}’ such that [Cy 4 «)]v and
[Cv,(#,>)]v are both not equal to [0]y, and such that Py o # Py~. By

1,92
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contradiction, if for any # € {<,>}"* such that [Cy,(x <)]v and [Cy,(x)]v
are both not equal to [@]y, we have Py o = Py, decomposition theorem
12.4 shows that boundy (X) C 3 which is impossible. Hence, there exists at
least one sequence # € {<,>}’C such that [Cyx N Hy |y and [Cy,x N Hy v
are both not equal to [}y and such that Py « # Py >.

From the previous paragraph, we deduce that the semi-V-pattern Py =
Py APy~ is not empty. Moreover, as Py « and Py are both (r,m)-
detectable in X, we deduce that Py is also (r,m)-detectable in X and for
any reachable state ¢ € Q, the set (Py), is well defined.

Let us prove that there exists a terminal component T such that V(T') =
V and such that (P <)q # (Pg,>)q for any state ¢ € T. As Py is not empty,
there exists a (r,m)-decomposition (09, s) € p; ,(Po). By replacing o by a
word in gg.s*, we can assume that there exists a loop labelled by a word in
st on the state g, = 0(qo,00). In particular invy ((Fy)g,) is relatively prime
with 7 and &, (s) € (Fy)g,- From destruction lemma 13.14, we deduce that
Py C &rm(s)+2mNV for any P € Py (X). As (Fo),; is non empty, there exists
#o € {<, >} such that (Pg #,)q, # 0. From proposition 14.11, we deduce that

V is included in Ef(Xq ). As X C I (X)), covering lemma 9.9 shows

0 r,m,o0

that V' is an affine component of SE)T(X%). Proposition 14.5 applied to X,/
shows that there exists a terminal component T' reachable from ¢f, such that
Vo (T) = V. Consider a state ¢ € T and let us consider a path ¢} = ¢. From
proposition 14.11, we deduce that there exists P € Py (X) such that P, # 0.
Therefore 7, ), , (Py) M. From Py C &.,n(s) + Z™ NV, we deduce that
Yrm.oy (Erm(s) + Z™ N V). From the dense pattern corollary 9.23 we deduce
that 7.}, ,, (Po)q) # 0. That means (Py <)q # (Py,>)q for any g € T.

As there exists a loop on each state ¢ of T, we deduce that P, is relatively
prime with r for any P € Py (X) and for any ¢ € T'. Hence, there exists an
integer n relatively prime with r such that invy (P;) C n.(Z™ N'V) for any
P € Py(X) and for any g € T.

From an immediate induction and lemma 11.10, we deduce that there
exists a sharing of J into J = J. UJs such that [Cv . NCNH] ]y # [0]y for
any #o € {<,>} where C' = (;c; {z € V; z[j] <0};c; {2z € Vs 2j] >
0}. In particular there exists a vector vy, € Cy,x NCNHJ for each #¢ € {<
,>}. By replacing vy, by a vector in (N\{0}).v4,, we can also assume that
Vg, EN(Z™NV).

Let us show that there exists a (r,m)-sign vector s € S, ,, and a state
q € T such that % € (Ps), and such that s[j] = r — 1 for any j € J< and
such that s[j] = 0 for any j € J~. Consider a state ¢’ € T. As (Py), is not
empty, there exists a vector x is this set. As vy, € Z™ NV and (Fy)y is a
semi-V-pattern, we deduce that z; = = + k.n.vy, is in (Py)y for any k € Z.
As vy, j] < 0 for any j € Jo and vg,[j] > 0 for any j € J, we deduce that
there exists k € N enough larger such that z[j] < 0 for any j € J. and such
that x[j] > 0 for any j € J-. Let us consider a (r,m)-decomposition (o, s) of
x and remark that s[j] = r — 1 for any j € J< and s[j] = 0 for any j € J~.
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Moreover, % € (Py), where ¢ = 6(qp,0). As (Po)q # 0, proposition 14.11
proves that X, # (). As T is a terminal component and g is reachable from T,
we deduce that g € T'.

Consider a (r, m)-decomposition (o4,, 54,) of 7= +v4, for each #¢ € {<
,>}. By replacing o4, by a word in O40-S,» as n is relatively prime with r,
we can assume that 717#0l € 1+ n.N for any #, € {<,>}. We denote by w,
the word wy, = ol .

Let us show that s« = s = s5. For any j € {1,...,m}\J, as V ﬂej:m
is not a V-hyperplane, we deduce that e;,, € V*. That means v[j] = 0
for any v € V. In particular (1% + vg,)[j] = $25[j] and we deduce that
s<[j] = s[j] = s>[j]. For any j € J., as s[j] =7 — 1 and v, [j] < 0, we get
$4,[4] = r—1 = s[j]. Symmetrically, for any j € J-, we get s4,[j] = 0 = s[j].
Therefore s = s = s~.

Let us prove that vr_’#)w#o (P;) = P, for any P € Py(X) and for any
#o0 € {<,>}.Let P € Py (X). Remark that Vr 11,045, (x) € T+ Yrm,op, (e0,m)+
n.Z™ for any x € Z™. Hence Y m uwy, () € 4+ n2Z™ for any z € Z™.
As M, p is a n-mask, we deduce that *y;,lmw#o (Mg, p) = My p. Moreover,
from % (Po)g we deduce that % € A;. Hence A; = %= + V. So

—Yr,m,o, (€0,m)) + V. Recall that prm(0g,,s) =

Ik (Ag) = 117wl (32
+ vy, and remark that p..m(040,5) = Vrm,ou, (€0,m) + rlowol 2 We

ML O —r
s

1—r 1—r

get Frjnlma#o (Ag) = 1= —r~lo#oloy, +V = A, An immediate induction
show that Iy, ., (Ag) = Aq. As Py = Mg p N Ag, we get v, 0, (Py) =
7;,17171”#0 (M, p) N Frfrhyw#o (Ay) = My,p N A, = P,. We have proved that

%—)71,171“#0 (P,) = P, for any P € Py (X) and for any #¢ € {<,>}.

Let us prove that 6(g, wy, ) C T for any #o € {<,>}. From the previous
paragraph, we deduce that for any k € N, the set vr_’,’f%w#o (Po)g) = (Po)g is
not empty. From proposition 14.11, we deduce that 7;,’;@#0 (X,) is also non
empty. As T is a terminal component, we deduce that d6(q, w%o) eT.

As T is a finite set, there exists a state gz, € T such that there exists a

"#0 k0
Waio

path ¢ —— g%, and a loop g, B, q#, where 74, € N and kg, € N\{0}.

From theorem 13.17, we deduce that there exists a vector a € Q™ such
that:

X, = U (P,0(a+Cyy + V1)
Pe j“/()()
#%/ S égv:p(}Y)

AS Yy, (Pg) = Py for any P € Py (X) and for any #o € {<, >} we deduce
the following equality for any #o € {<,>} and for any k € r4, + N.kyg,:

Xopy = U (Pg N (Frfr}z,w;;o (a) + Cvypr + V1))

& E& T
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As P,_ = P, for any P € Py(X), we deduce that g« ~" ¢~. Hence

(4<,q>) € La(V).
Let us prove that X, N(3% +Cv,gNCNHy) = Py, N(12%5+CvenCN
Hy). Let us consider a vector z € (== + Cvy,%» N C N Hy). By developing the

1—7r
: —1 : —1 _ s Vo
expression anyw;o (a), we deduce that limy_, anyw;o (a) = = TRl T

As vy, € Cyx NCNHJ and W‘_l € Q4+\{0}, we deduce that there

exists k € 14, + N.kyg, enough larger such that x € F;i%w;o (a) + Cv,(#,40) N

C N Hy + V*. Therefore X, N {z} = Pg, N {z} and we have proved that
Xgpo N (15 + Cvig NCNHy) = Py, N (13 + Cv.p N C N H).

We deduce that (Pp), N (7% + Ho) N (= +Cvx NCNHy) C Xqc AX, .
Since [Cy,4x NC N H )y and [Cy,x N C N Hy ]y are both not equal to [0]v,
lemma 11.11 shows that C'y,xNC'NHj is a non Hy-degenerate Hy-polyhedron.
Moreover, since (Py)q N (725 + Ho) is a non-empty semi-Ho-pattern, from
lemma 12.2, we deduce that &E)f((Po)q N(t= +Ho) N (2 +CvxnCN

Hy)) = Hy. Hence Hy C &E)E(XRAX%). As (g<,q>) € I4(V), we also get

SE%(X(I< AX,. ) C 5. We deduce that Hy C S’. We have proved that S C S’.
O

From the previous proposition 14.17, theorem 14.6 and theorem 13.4, we
deduce the following main theorem of this paper.

Theorem 14.18. Let X be a Presburger-definable set represented by a se-

rialized encoded FDVA, and let V' be an affine component of SE}T(X). The
boundary boundy (X)\(U;’Ll{v Nej,,}) is computable in polynomial time.

14.3.2 An example

Let us consider the set X = {z € N?; z[1] < 2.2[2]} given in figure 14.3.

The minimal FDVA A, 5(X) that represents X is given in figure 14.4. We
denote by g1 = {z € N%; z[1] < 2.2[2] — 1}, g0 = {z € N?%; z[1] < 2.2[2]}
and ¢1 = {z € N?; z[1] < 2.2[2] + 1} the states of this FDVA.

Remark that T = {q_1,qo,q1} is the unique terminal component. More-
over, the algorithm that computes the vector space associated to an untran-
sient component provides Vg(T) = Q2. Remark that from proposition 14.5, we
get sa—f)f(X) = Vr(T) = Q2. That means V = Q? is the only affine component
of saff(X).

Let us prove that &E)E(Xqi AX,,) = H for any i # j. In figure 14.5, we have
represented the FDVA Cartesian products of the FDVA A,, and the FDVA
Aqg; that recognize the sets X, AX, where i,j € {—1,0,1}. These FDVA
(when ¢ # j) have only one terminal component T" = {(X,, AX,, ), (Xq ,AXy,)}

and we have Vg (T") = H. Therefore sa—ff(Xqi AX,,) = H for any i # j.
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V.Oei,,

Fig. 14.3. On the left the Presburger-definable set X = {z € N?; (z[1] < 2.z[2)).
On the right boundy (X) where V = Q% and H = {z € V; z[1] = 2.z[2]}.

{(0,0)}

(0,0),(1,1) A

(0,1),(1,1) ©.1)

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Qe N?%; z[1] < 2.2[2] +)
()

q1

(0,0),(1,0)

|

|

|

|

|

|

|

|

|

|

|

|
0,0),(1,0 \ 0,1),(1,1
(0,0),(1,0) (0.0} (0,1),(1,1)

Fig. 14.4. The minimal FDVA Az »({z € N%; z[1] < 2.2[2]})

Symmetrically, we get sﬁ(Xinqu) = H for any i # j. We deduce
. . g
that L4 (V) = {(ai,q;); i # j} and Uy, 4.)er, vy s2ff(Xq, AXg,) = H. From
proposition 14.17, we get boundy (X)\{V Net,,,V Nes,,} = {H}.
Now, just remark that the previous computation can be done in polyno-

mial time from serialized encoded FDVA. Remark also that on this example
boundy (X) = {H,V Net,,}.
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—————— + {(0,0)}

(0,0) (0,0),(1,0) (0,1),(1,1) (1,1)

{(0,0)} - ------

(0,0)

(0,0),(1,0) (0,0),(1,1) (0,1),(1,1)

Fig. 14.5. The Cartesian product A’ of A4, and A, that represents the symmetrical
difference X4, AX4, where X is represented by the FDVA A given in figure 14.4.
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The polynomial time algorithm

In this section we provide a polynomial time algorithm for deciding if the set
represented by a FDVA is Presburger-definable and in this case we provide in
polynomial time a Presburger formula that defines the same set.

The algorithm is based on the fact that even if the set X represented by a
FDVA A is not Presburger-definable, the algorithms developed in the previous
sections can be applied in order to extract from A sets of the form PN H#
where P is a semi-V-pattern relatively prime with r included in a V-affine
space and H is a V-hyperplane, and if X is Presburger definable then these
sets are (r,m)-detectable in X and X is equal to a boolean combination of
these sets.

In the remaining of this section we assume that A is a positive (r, m, w)-
cyclic FDVA that represents a set Xg € N in basis r and dimension m.
Naturally these conditions are not restrictive thanks to the cyclic reduction
provided by proposition 7.4 and thanks to the positive reduction given by
proposition 7.5.

Since a positive final function F is such that [F|(q) € {{eo.m}, 0}, without
ambiguity such a function can be denoted as the set of principal states ¢ € @
such that [F|(¢) = {eo,m }. In the sequel, a positive final function F is always
denoted as a subset of Q.

The following proposition shows that given a set X’ C N™ that can be
represented by a FDVA of the form A’ where F is an unknown final function,
the computation of a positive final function F’ such that X’ is represented by
AP’ can be reduced the membership problem for X”.

Proposition 15.1. Let A be a FDVA. We denote by Y the set of ey ym-eye Y
such that Y is reachable for [G] from the initial state. For any eye Y € Y,
let us consider a word oy € X, such that §(qo,0y) € kere,, (V). Any set
X' CN™ such that there exists a final function F satisfying X' is represented
by AT is represented by AF" where F' is the union of eyes Y €Y such that
pr,m(UYa eO,m) € X'
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Proof. Let X be the set represented by AF" and let us prove that X = X'
Consider x € X. Let (0, e9,m) be a (r, m)-decomposition of x. There exists an
eye Y € Y such that 0(qo,0) € Y. Since 6(qo, 0y ) € kere,,, (Y'), by replacing o
by a word in o.eg ,,,, we can assume without loss of generality that ¢ (qo,0) =
0(qo, oy ). Since there exists a final function F' such that X’ is represented by
AP we deduce that v, 1, (X') =78 o (X'). From py.m(0y,€0,m) € X' and
the previous equality, we get pr.m (0, €0.m) € X'. Therefore x € X’ and we have
proved the inclusion X C X’. For the converse inclusion, let z € X'. Consider
a (r,m)-decomposition (o, eg,,) of x and let Y € Y such that 6(¢gp,0) € Y.
By replacing o by a word in o.ej ,,, since 0(qo, 0y) € kers(Y'), we can assume
that 0(qo,0) = (g0, 0y)- AS Y o (X') = Ym0y (X') and prm(0,€0,m) €
X', we get prm(oy,eom) € X'. We have proved that 6(go,0y) € F’'. Thus
0(qo,0) € F’' and we have proved that z € X. We have proved the other
inclusion X’ C X. O

Observe that we can decide in linear time if X is empty. Thus, we can
assume that X, is non-empty (otherwise we decide that X, is Presburger-
definable and defined by the formula false). Theorem 14.6 proves that a
non-empty semi-vector space S such that saff(Xo) = & ,(w) + S if X is
Presburger-definable is computable in polynomial time.

Let us fix an affine component V' of S and let Ty be the finite union of
terminal components 7" € T4 such that Vg (T) = V. By construction of the
semi-affine space S, for any affine component V' of S, there exists at least one
terminal component T such that Vg (T) = V.

Observe that if X is Presburger-definable then Z™ N (§m(w) + V) is
non empty from the dense component lemma 12.1. Since this property can
be decided in polynomial time by proposition 8.15, we can assume that this
set is non-empty (otherwise we decide that Xy is not Presburger-definable)
and from this same proposition we compute in polynomial time a vector ay €
Z™ N (&rym(w) + V).

Theorem 14.14 proves that we can compute in polynomial time a V-vector
lattice M included in Z™ such that if Xy is Presburger-definable then M =
invy (Xp) is relatively prime with r and |Z™ NV/invy (Xp)| is bounded by the
number of principal states of A. Theorem 8.10 proves that we can compute
in polynomial time the characteristic sequence nq, ..., ng of M in Z™ NV
and a Z-basis v1, .., vg of Z™ NV such that ny.vy, ..., ng.vg is a Z-basis of
M. Observe that |Z™ NV/M| = ny...nq. We can assume that ny...ng is
relatively prime with r and it is bounded by the number of principal states
of A (otherwise we decide that Xy is not Presburger-definable). Let B be
the finite set B = {ap + Z?:l kivi; 0 <k <niA...AN0 < kg < ng}.
Observe that the cardinal of B is equal to ny ...ng. Thus B is computable in
polynomial time. Moreover, by definition of invy (Xy) = M, we deduce that if
Xy is Presburger-definable, for any semi-V-pattern P € Py (Xj), there exists
a subset B’ C B such that P = B’ + M.
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Theorem 13.12 shows that we can compute in polynomial time a partition
By, B, ..., B, of B such that a semi-V-pattern P of the form P = B’ + M
where B’ C B is represented by a FDVA of the form A% if and only if there
exists J C {1,...,n} such that B" = J;.; B;. Let i > 1. Observe that there

exists a final function F such that N™ N (B; + M) is represented by A%". Since
we can decide in polynomial time if a vector x is in NN (B;+ M ), proposition
15.1 proves that we can compute in polynomial time a positive final function
Q; such that N™ N (B; + M) is represented by A®:.

Note that Z; = XoN (B; + M) = Xo N (N™ N (B; + M)) is represented
by the FDVA Af"MQ Theorem 14.6 proves that a semi-vector space S; such
that saff(Zy) = & m(w) + S; if Xo is Presburger-definable is computable in
polynomial time. Let us consider the set I of i € {1,...,n} such that V C §,.

Let us show that if X is Presburger-definable, then any state g € Q; is co-
reachable from Ty . Consider a state g € (;, there exists a word o € X7 such
that 6(qo, o) = q and p, (0, €0.m) € Bi+M. In particular p, ., (0, €0.m) € ao+
V. Considering a semi-V-pattern P € Py (X)\{0} and recall that since P is
(r,m)-detectable in X (from corollary 13.9), the semi-V-pattern P is relatively
prime with 7 and included into the V-affine space ag + V' (from lemma 9.20).
The dense pattern corollary 9.23 proves that ;) ,(P) # 0. Proposition 14.4
proves that if X is Presburger-definable, then Ty is co-reachable from g¢.
Therefore, we have proved that any state ¢ € @Q; is co-reachable from Ty
if Xy is Presburger-definable. Since this property is decidable in polynomial
time, we can assume that it is verified (otherwise we decide that Xy is not
Presburger-definable).

Now, let us prove that if X is Presburger-definable then Fy N Ty C
U,c; Qi- Consider ¢ € Fy N Ty. There exists a path go Z ¢ with o € Xrme
Since ¢ € Fy, we get prm(0,e0.m) € Xo. Theorem 13.17 proves that there
exists P € Py (Xo)\{0} such that p,.,(0,e0,,m) € P. Since there exists a
J € {1,...,n} such that P = (J,c; B; + M, we deduce that there exists
j €A{1,...,n} such that p, n,(0,e0,m) € Bj + M. Theorem 13.17 proves that

in this case SE%(ZJ') = V. Thus j € J and q € |J,;c; Qi and we have proved
that Fo NTy C U?Zl Q@;. Since this property is decidable in polynomial time,
we can assume that it is true (otherwise we decide that X is not Presburger-
definable).

If Xg is Presburger-definable then Z; is Presburger-definable and if i € T
then [Z;]V = V and in this case Py (X()\{0} = {Bi+M} since for any semi-V -
pattern P € Py (Xo), there exists J C {1,...,n} such that P =J,., B; + M
(recall that corollary 13.9 proves that any semi-V-pattern P € Py (Xyp) is
(r,m)-detectable in X). Theorem 14.18 provides a polynomial time algorithm
for computing a finite set H; of vector spaces such that if X is Presburger-
definable then boundy (Z;)\U;"{V Nej,,} = H;. We can assume that 3;
is a set of V-hyperplanes (otherwise we decide that X is not Presburger-
definable). Proposition 14.15 shows that if X is Presburger-definable then
for any H € H;, there exists #; g € {>,>} such that (B; + M) N (& m(w) +
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H#i# + V1) is represented by a FDVA of the form Af. Since we can decide
this property in polynomial time thanks to proposition 14.16, we can assume
that such a relation #; y exists. As we can decide in polynomial time if a
vector x is in N N (B; + M) N (& (w) + H## + VL), proposition 15.1
proves that we can compute in polynomial time a positive final function Q; g
such that N™ N (B; + M) N (&, (w) + H# 5 4 V1) is represented by AQ#.

Now observe that if X is Presburger-definable, lemma 13.8 proves that
there exists a boolean combination Z/ of the set N N (B; + M) and the
sets N™ 0 (B; + M) N (& (w) + H#5 + VL) such that [XoAZ]]Y = [0]V.
Since any state in @); is co-reachable from Ty, if such a boolean combination
exists, there exists a boolean combination @) of the set Q; and the sets Q; g
where H € H; such that Q, N Ty = Fy N Ty. In particular Fo N Ty is a
boolean combination of the set @); N1y and the sets Q; g N Ty . Since this
last property is decidable in polynomial time by the lemma 2.1 we can assume
that such a boolean combination exists (otherwise we decide that X is not
Presburger-definable). This same lemma 2.1 also proves that we can compute
in polynomial time a boolean formula t; such that ¢ € Fy N Ty is defined
by ¥i(q € QiNTy,(q¢ € Qi NTv)Hes,). Observe that the set Q) defined
by ¢ € Q} if ¥;(q € Qi, (¢ € Qim)Hes,) is computable in polynomial time.
Moreover, the set Z! represented by AQi is defined by the Presburger-formula
¢

¢i(x) == (x € NN (B; + M)) Ai(true, (x € ag + H*# + V) geae,)

Now, let us consider the Presburger formula ¢’ := \/,_; ¢; and the positive
final function Q" = J,c; @;. Remark that the set Z’ = (J,o; Z;] is represented
by the FDVA AQ" and it is defined by the Presburger formula ¢'.

Note that X; = XAZ' is the set represented by the FDVA A where
Iy = FyAF' and X, is Presburger-definable if and only if X; is Presburger-
definable. Moreover, by construction of F’, any state ¢ € F’ is co-reachable
from Ty and F' N'Ty = Fy NTy. That means the set of strongly-connected
components of A reachable from the initial state and co-reachable from a
final state is strictly included in the strongly connected components of A
satisfying this same property.

Thus, by repeating the previous constructions we obtain a finite sequence
Xo, X1,..., Xi, where k is bounded by the number of strongly connected com-
ponents of A, and a sequence ¢q, ..., ¢ of Presburger-formulas ¢; defining
X;_1AX; such that X = ). Note that Xy is therefore Presburger-definable
since we have the following equality:

Xo = (XoAX1)A - A(X,_1 AX})

Moreover, from ¢1, ..., ¢ we get a Presburger-formula ¢ that defines X.
We have proved the following theorem.

Theorem 15.2. Let X C Z™ be the setl represented by a FDVA A in basis r
and in dimension m. We can decide in polynomial time if X is Presburger-
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definable. Moreover, in this case, we can compute in polynomial time a
Presburger-formula ¢ that defines X.
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