
Depth-Based Visual Servoing Using Low-Accurate Arm

Ludovic Hofer∗, Michio Tanaka†, Hakaru Tamukoh†, Amir Ali Forough Nassiraei†, Takashi Morie†
∗LaBRI, University of Bordeaux, ludovic.hofer@labri.fr

†Kyushu Institute of technology, {tamukoh,nassiraei,morie}@brain.kyutech.ac.jp

Abstract—This paper proposes a visual-servoing method ded-
icated to grasping of daily-life objects. In order to obtain an
affordable solution, we use a low-accurate robotic arm. Our
method corrects errors by using an RGB-D sensor. It is based
on SURF invariant features which allows us to perform object
recognition at a high frame rate. We define regions of interest
based on depth segmentation, and we use them to speed-up the
recognition and to improve reliability. The system has been tested
on a real-world scenario. In spite of the lack of accuracy of all the
components and the uncontrolled environment, it grasps objects
successfully on more than 95% of the trials.

I. INTRODUCTION

Visual servoing refers to robot control based on visual
information. Computer vision is used to analyze the visual
data acquired by the robots. The data are provided by one or
several cameras, which can be placed directly on the robot
manipulator (eye-in-hand), on a mobile robot or somewhere
fixed in the workspace. Grasping objects with a robot in a
daily environment is a complex task that service robots have to
perform. The grasping problem refers to choosing an optimal
final state for the manipulator and the forces to apply with its
fingers.

The focus of this article is about the robustness of visual
servoing based on depth information toward a low-accurate
robotic arm. In particular, the choice of the final state of the
gripper is simplified by considering only cylindrical objects
and grasping them perpendicularly to the revolution axis of
the cylinder.

In this paper, we present an entire grasping system. In
contrast to the system used in [1], our goal is to grasp an
object used in the daily life such as a bottle. While our method
can be extended to support other situations, we make the
following assumptions in our experiments: the object is mostly
cylindrical, its size is known and the background is not dark.
The system is designed to be embedded on service robots.
Therefore, the sensor is placed above the basis of the arm, on
the same mobile platform. Since affordability is a crucial point
when designing service robots, the system has been tested with
a low-accurate robotic arm. While in article such as [2] and [3]
simulation or industrial robots are used to test the algorithms,
these methods of evaluation do not fit the purpose of this paper.

The experiments of this system were performed using a 7
DOF (Degrees Of Freedom) robotic arm, the iARM manufac-
tured by Exact Dynamics. This robotic arm is designed to be
used by disabled people who control it using their own vision
to move it to a target position. Therefore, it was designed
to be controlled by a vision-based control loop and not only
with a target position. When controlled in position, it presents
an accuracy of about 3 cm. It is important to note that the

Fig. 1: The robot used for the experiments

error has a low repeatability, and therefore it is not possible to
learn a deterministic model for the error. The RGB-D sensor
used was an Asus Xtion PRO LIVE and its orientation was
controlled by servomotors from Dynamixel. Figure 1 shows the
robot used and the possible moves of the pan-tilt. In this paper,
the model of the robot is constructed based on the distances
between its different parts such as the arm basis, the camera
and the servomotors.

Visual servoing using eye-in-hand cameras has been proven
very successful [4], [5], [6], [7], [8] even on moving targets.
However, most robotic arms come with no vision system,
and the integration of an eye-in-hand camera is problematic,
especially if the arm has to go through narrow spaces or
if there is a collision risk. Moreover, cable of the camera
being disconnected was responsible for 13 failures out of
198 grasping trials in [8]. In our approach, we use a camera
installed on a pan-tilt mount in order to avoid such problems.
While we propose a tracking approach based on identifying
the fingers of the grippers, other alternatives based on depth
images exist such as [9], in which neither pose estimation nor
feature extraction are required.

The main information used by our algorithm is noisy depth
measurement results provided by the RGB-D sensor. Our
approach does not aim toward optimal control, but toward
real-time control. Actually, it has been proven in [10] that
optimal control is difficult in presence of noise in the depth
measurement. Moreover, optimal control is suited for indus-
trial environments while this paper focuses on service robots.
We use the color information to extract and match SURF

features [11] while in [4], SIFT features [12] are used. The
architecture of a mobile manipulator using SURF features to
estimate the pose of objects is presented in [13]. We use depth-
based segmentation to obtain different regions of interest, thus
allowing us to run the local features matching on a subset.
This allows us to reduce the computation time and improve
the accuracy of the position estimation [14].

We measure the robustness of the system against errors in
the model by artificially adding errors in it. According to the
results provided in [10], it shows that real-time control is an
appropriate solution.

This paper makes four contributions:
1) An algorithm to detect regions of interest in depth

images provided by RGB-D sensor.
2) A solution to keep a high frame rate while using a large

set of SURF features [11] for object recognition in real
time.

3) A method of real-time tracking of the gripper based on
regions of interest.

4) An experiment showing the accuracy improvement when
visual servoing is used.

The reliability of the proposed system has been confirmed
by experimental results, as well as its robustness against errors
in the model. Therefore, the designed system gives satisfying
results, even when using low-accurate robotic arms.

This paper is organized as follows: Section II discusses the
related work in the areas of vision-based grasping and object
recognition. The detection method of regions of interest for
object detection is proposed in Section III. The probabilistic
database of references is presented in Section IV. In Section V,
we discuss the filter proposed to estimate the position of the
object. Section VI describes the system proposed to track the
position of the gripper in real-time. The experimental scenario
and an overview of the results are presented in Section VII.
Finally, a conclusion is given in Section VIII.

II. RELATED RESEARCH FOR OBJECT RECOGNITION

Object recognition paradigm has radically evolved since the
apparition of the SIFT algorithm [12]. While object recogni-
tion was previously based on template matching, it is now
essentially based on invariant features. However extracting
and matching SIFT features was time consuming. Several
new types of features have been proposed by the computer
vision community. The SURF algorithm [11] outperforms
SIFT in both quality and time consumption. The use of binary
descriptors has been brought by BRISK [15]. Although it is
less robust to changes of factors, it needs dramatically less
computational resources than SURF. A fast approximation
method for the matching problem has been developed as a part
of the library presented in [16]. Finding a homography from
the set of matches is usually done by using RANSAC [17].
Reducing the area of the image to a region of interest contain-
ing the object improves the quality of the results and decrease
the computation time [14].

A real-time plane segmentation using RGB-D sensors is
detailed in [18]. Although it detects only plane objects, it

presents an interest for image segmentation since the computed
information could be used in addition to color information to
improve color-based segmentation. A scene interpreter based
only on depth information is described in [19]. It uses an
accurate depth sensor and does not indicate the computation
time required but it shows a very high accuracy.

Different approaches to the grasping problem have been
proposed in the robotics community. In [2], objects are divided
into three categories: known (model of the object is available),
familiar (previous experience over similar objects are avail-
able) and unknown (there is no knowledge about the object
available). The problem of using previous grasping experience
to increase the success rate is discussed in [2]. A method for
the grasping of unknown objects is presented in [3]. Reaching
the grasping point by using a visual based control loop is
discussed in [1], this article uses markers on the gripper to
compute its orientation more easily. The arm we use has an
accuracy of about 3 cm. This is presumably much less accurate
than the robotic arms used in [2] and [3].

III. DETECTING REGIONS OF INTEREST

The system starts by detecting regions of interest (ROI)
based on the depth image captured by the RGB-D sensor. The
advantage of using a depth-based sensor over a stereo-camera
is that it allows to detect objects independently of their color
difference from the background.

To perform efficient segmentation, two different kinds of
edges need to be detected.
• Sudden changes in depth, when the object hides a farther

background. It corresponds to a local peak in the first
derivative.

• Changes of surface orientation, when there is no notice-
able difference of depth between the object and the plane
on which it is lying.

The differences between these two kinds of edges can be
observed in Fig. 2. Units used are mm for millimeters and
p for pixel. The image used is shown in Fig. 2a. The column
of the image which is used as an example is colored in red.
The corresponding depth acquired by the sensor is shown in
Fig. 2b.

Edges are detected both horizontally and vertically, using
approximations of the first and second derivative of the depth
image. The kernels used for derivation are Kh and Kv as
defined in Eq. (1) and Eq. (2). The effects of the values k1 and
k2 are shown in Fig. 2c and Fig. 2d. The values k1 and k2 are
used as k for the first and the second derivations respectively.
Kernels of an odd length and height are used in order to apply
them with a centered anchor. This helps to avoid shift in edge
detection.

Kh(k) = [−1, 01×2k−1, 1] (1)

Kv(k) = [−1, 01×2k−1, 1]T (2)

Using a threshold on the absolute value of the first derivative
allows us to detect sudden depth changes as can be seen

(a) Image (chosen column
highlighted in red)

0 500 1,000

0

50

100

150

200

Depth [mm]

R
ow

[p
]

(b) Depth

0 2 4

0

50

100

150

200

Depth 1st derivate [mm/p]

R
ow

[p
]

k1 = 1

k1 = 3

(c) Depth 1st derivate

0 0.5 1 1.5 2

0

50

100

150

200

Depth 2nd derivative [mm/p2]

R
ow

[p
]

k1 = 1, k2 = 2

k1 = 3, k2 = 6

(d) Depth 2nd derivative

Fig. 2: Example of derivatives estimations for a column of an image

in Fig. 2c at row 40. However, the same process does not
work for the second derivative. In order to detect the edge
around row 150 in Fig. 2d, the threshold required would be
low enough to detect a very thick edge around the sudden
depth changes as in row 40. A mask is used for detecting the
second derivative in order to avoid detecting edges which have
already been detected by the threshold on the first derivative.
This mask is obtained by performing a dilatation (a well-
known morphological process) on the edges already detected.
In order to reduce the number of remaining edges, an erosion
process is performed once the threshold has been applied.

Using the depth image shown in Fig. 3a, horizontal and ver-
tical edges are detected using the first and second derivative.
By gathering them, we obtain the image shown in Fig. 3b.
A dilatation is then performed in order to ensure that the
contours of the object are connected as shown in Fig. 3c. A
set of superpixels is obtained by applying a floodfill algorithm
as shown in Fig. 3d (Floodfill algorithm from the computer
vision library OpenCV is used). A first filter based on the size
of the superpixel is applied to the set of superpixels obtained
by applying the floodfill algorithm in order to remove the
background and noise. Then, by using the depth information
and the position of the pixels, the superpixels properties (i.e
the height and the width of the superpixel) are computed. The
obtained properties for each superpixel are compared with the
expected properties. If it does not match, then the superpixel
is discarded. The remaining superpixels (shown in Fig. 3e)
are the ROI obtained from the depth image. Those regions are
highlighted in red in the corresponding color image as shown
in Fig. 3f.

IV. PROBABILISTIC DATABASE OF REFERENCES

In our system, each reference consists of a set of SURF
features computed in a ROI obtained through the process
described above. A large number of references are used for
every object in order to compensate for the small number of
features detected due to the size of the ROI. The database of
references stores all the references corresponding to an object.

(a) Depth image (b) Detected contours

(c) Contours after dilatation (d) Superpixels

(e) Filtered Superpixels (f) Detected ROI

Fig. 3: Depth segmentation in six images

The main goal of making this database is to allow the use of a
large number of references while keeping a low computation
time in order to ensure real-time processing.

Once the set of ROI has been computed, each of the regions
has to be compared with the references by matching features
of the references and those of the input image. Using all the
references for each frame would lead to a low frame rate,

which is inversely proportional to the number of references in
the database. In order to ensure that the frame rate does not
depend on the number of references, we only use a random
subset of the references with a bounded maximal size. In order
to increase progressively the chances to obtain a match, two
rules are applied. For each reference of the subset, if at least
one of the ROI matches it, then we increase the probability of
selecting. On the other side, if none of the ROI matches the
reference, we decrease the probability of selecting it.

Let n be the number of references of the database,
R = (r1, . . . , rn) be a set of references of the database and
W = (wr1 , . . . , wrn) be a set of weights for the references.
Then, three properties are ensured by the database:
• The probability of obtaining reference r is directly influ-

enced by its weight wr.
•
∑

w∈W
w = 1.

• Let m and M be the minimal and the maxi-
mal weights chosen by the user respectively. Then
∀w ∈W,m ≤ w ≤M . Ensuring this property avoids is-
sues due to floating point approximation when the weight
of a reference would be approximated by 1 or 0. It also
allows to keep a non-zero probability of obtaining each
reference.

An example of picking references from the database is
shown in Fig. 4. Every reference is chosen at most once, even
if two random numbers point to the same reference. Therefore,
when five references are requested, a subset containing four
references might be selected (e.g. in Fig. 4). While this might
be considered as a drawback of this algorithm, it turns out to
be an advantage, because the average number of references in
the random subset is reduced when the weight of a reference
is significantly higher than 1

n . Such a situation happens only
if this reference has been successfully matched with one of
the ROI. By reducing the number of references of the subset
in this situation, the required processing time highly decreases
while the probability for matching only slightly decreases.

The corrected weight for reference zr is computed by
using (3) if matching has been successful and (4) if it has
not. If the reference did not belong to the picked subset, then
zr = wr. Two different gains are defined, Gs and Gf . When
a match has been found, Gs is used. If no matches have been
found, Gf is used. Both gains have to be positive and smaller
than 1. These gains represent the learning rates. Typical values
used in experiments are Gs = 0.3 and Gf = 0.04.

zr = wr +Gs(M − wr) (3)

zr = wr −Gf (wr −m) (4)

After these updates, the sum of all zr might be different from
1. We end up the update by normalization which depends on
δ = 1−

∑
r∈R

zr.

Let us define ur = M − wr as the weight which can be
added to a reference before reaching the maximal value and

vr = wr − m as the weight which can be removed of a
reference before reaching the minimal value. Let us define
U =

∑
r∈R

ur and V =
∑
r∈R

vr as the total weights which can

be added and removed from the references before reaching
global saturation, respectively. Define w′r as the final weight
of a reference after normalization. If δ > 0, then it is computed
according to Eq. (5), else it is computed according to Eq. (6).

w′r = zr +
ur
U
δ (5)

w′r = zr +
vr
V
δ (6)

V. FILTERING THE OBJECT POSITION

Even if the object to grasp is not supposed to move quickly,
it is important to use multiple detection results for determining
the object position. This can lower the false positive rate
and improve the accuracy of the position estimation at the
same time. Since the object detection part has a non-zero
probability of confusing objects, it is necessary to remove the
detected positions which do not fit with the other results. This
is achieved by remembering the last l successful results of the
object detection and removing the j results which bring the
highest error, where l and j are two positive integers. The
results of the object detection are provided with an index
of confidence based on the number of matched features, it
provides an estimate of the quality of the matching. In order
to increase the impact of recent information, a timestamp is
associated with each result.

Each entry of the filter is composed of four different
elements:
• computed position of the object; h
• quality of the detection (index of confidence); q
• associated timestamp; t
• detected axis of the object; a

The state of filter F is described formally by the following
equation:

F = {e1, . . . , el}
= {(h1, q1, t1, a1), . . . , (hl, ql, tl, al)}

(7)

Let bi be the weight of the entry (hi, qi, ti, ai) at time T .
Then, the weight is calculated as follows:

bi =
qi

T − ti
(8)

Therefore, it is easy to see that the weight of an entry is
proportional to its quality and inversely proportional to the
elapsed time since this entry appeared.

Let E(F) be the object position estimated from the state of
the filter, and it is computed accordingly to Eq. (9).

E(F) =

l∑
i=1

hibi

l∑
i=1

bi

(9)

0.00 0.08

1

0.21

2

0.43

3

0.51

4

0.59

5

0.77

6

0.89

7

1.00

8

← Reference limit

← Reference number

← Random number0.12 0.25 0.37 0.56 0.92

Fig. 4: Picking randomly five elements out of the eight references from the database

Let Q(F) be the detection quality obtained from the state
of the filter and α be a constant used as a gain. Then, Q(F)
is computed accordingly to Eq. (10).

Q(F) =

l∑
i=1

‖E(F)− hi‖bi
l∑

i=1

bi

×

l∑
i=1

1
T−ti

α
(10)

In order to remove eventual false positives, we rank all the
entries ei according to the value Q(F \ ei), where F \ ei
represents F without the i-th component ei. Then, we build a
new set F ′ = {e′1, . . . , e′l−j} by removing from F the j entries
which led to the lowest value. Thus, the final filter value and
quality are represented by E(F ′) and Q(F ′), respectively. It
is important to note that F ′ needs to be updated when a new
entry is added.

VI. TRACKING THE GRIPPER POSITION

Gripper tracking is necessary to correct the mechanical
errors when using low-accurate robotic arms. However, it is
still possible to use the estimation of the position according to
the arm controller to improve the efficiency of tracking. We
chose to detect both fingers of the gripper separately.

First, we use the data provided by the arm controller to
compute the bounding boxes which are supposed to contain
the fingers. Then, we increase the size of both bounding boxes
by taking into account the maximal error of the arm ε. The
obtained spaces E1 and E2 are described in Eq. (11). The
projection of those spaces on an image is shown in Fig. 5.

Ei =

G(x, y, z)

∣∣∣∣∣∣∣∣∣
x ∈ [sigw−fw2 − ε, sigw+fw

2 + ε]

y ∈ [−ft2 − ε,
ft
2 + ε]

z ∈ [−fl − ε, ε]

Where:
G(x, y, z) a point in the gripper basis
gw the width of the gripper
fw the width of a finger
ft the thickness of a finger
fl the length of the finger
ε the maximal error accepted
si the side of the object: s1 = −1 and s2 = 1

(11)

Once the spaces E1 and E2 have been computed, it is
possible to use the basis transformation to project them on
the images from the RGB-D sensor. The projection of E1 and

Fig. 5: Projections of the possible arm finger positions on an
image

E2 on the camera image is a polygon. Let xm and ym be the
minimal x and y of the polygon respectively, and xM and yM
be the maximal x and y of the polygon respectively. Then the
regions of interest are defined by the rectangles which have
the four following corners: (xm, ym), (xM , ym), (xM , yM)
and (xm, yM). Only these regions of the image are selected
and both the projections and the spaces E1 and E2 are used
later in the gripper detection process.

The previous step allows us to compute a region of interest
that should contain the finger. Then two main steps are still
requested to obtain the visual position of the finger. Segmen-
tation of the gripper needs to be performed and the position
of the finger has to be computed from the segmentation result.

In order to remove the pixels which do not belong to the
space, we check for every pixel if it belongs to the space.
However, since this requires to compute a basis transform for
every pixel, two steps are performed before it. First points
which do not belong to the projection are removed as shown
in Fig. 6a. Then, color information are used to remove pixels
from the background as shown in Fig. 6b. In our case, only
black pixels are considered. Once all the conditions with a low
computational cost have been checked, the remaining pixels
belonging to the spaces E1 and E2 are checked. If it is not
possible to differentiate the background from the gripper by
using color information, the process is slowed because pixels
belonging to space has to be checked for more pixels.

(a) Projection of the
space on the image

(b) Color matching
pixels

(c) Space check (d) Filtered ROI

Fig. 6: Filtering a region of interest

A debugging image allowing to understand the space check-
ing process is shown in Fig. 6c. Here, the blue, green and red
components of the image are respectively set to the maximal
values if the point matches the Gx, Gy and Gz ranges defined
in Eq. (11) (e.g. Pixels matching the range Gx and Gz but
not Gy are colored in purple which is the addition of blue
and red). Only the pixels colored in white are retained in the
filtered image shown in Fig. 6d.

The image shown in Fig. 6d is a binary one. This allows
us to run a floodfill algorithm to obtain a set of superpixels.
Finally, only the largest superpixel is retained, removing the
noise which might have passed the previous filtering steps. If
the obtained superpixel is large enough, the position of the
finger is calculated as the average of the remaining pixels. If
there is no large enough superpixel, the finger is considered
as undetected.

A Kalman filter is used to estimate the final position of
the gripper. It uses a single position which is computed by
using the results of the finger detections. Since fingers can be
undetected, it is necessary to handle different cases.
• Both fingers detections fail: In this case, it is not possible

to compute the gripper position from the image. A
detection failure result is given to the Kalman filter.

• One finger detection succeeds Let βt be the theoretical
distance from the finger detected to the gripper. By
assuming that the orientation error of the gripper is small,
it is possible to estimate the visual position of the gripper
gv by using the visual position of the finger fv . The
resulting value gv is given to the Kalman filter.

gv ≈ fv + βt (12)

• The two fingers are detected: The estimated position of
the finger is the average of the positions of the two
fingers. If the distance between the two fingers positions

matches the expected distance, this value is given to
the Kalman filter. If the difference between the visual
distance of the two fingers and the theoretical distance is
too large, a detection failure is given to the Kalman filter
instead.

When a failure detection is sent to the Kalman filter,
the values of the associated covariance matrix are increased,
increasing the uncertainty about the gripper position and speed.
While the uncertainty is below a given threshold, the camera
focus on the estimated position and a correction is applied to
the requested position using a simple proportional action. If
the uncertainty is too high, then the gripper stops and waits
for the filter to stabilize.

VII. EXPERIMENTAL RESULTS

We conducted the experiments about the robustness of our
grasping system by running a set of trials. The database used
for these experiments contained 50 RGB-D images for each of
the five objects used and was built by moving objects inside
the grasping area. While several objects were presented in
the database, only one was used for the experiments. Closing
the gripper to grasp the object was achieved by requesting an
finger space slightly lower than the diameter of the object. All
the trials were made on a laptop using a windows operating
system, the processor used was an Intel i3-2310M (2.1 GHz,
Dual-core). We used the C++ implementation of OpenCV 2.4.

The task designed to evaluate the performance was as
follows: the object was placed alone on a table, the robotic
arm was always starting at the same position, gripper initially
opened. When the grasping task was launched, the reference
database for visual detection was loaded, and the score of all
the references were set as equivalent in order to avoid influence
from the previous detections, the only input from the user side
was the name of the object which needs to be grasped. The
evaluation task was to detect the object, grasp it and lift it
15 cm above the original position. Neither the orientation of
the object nor its position with respect to the robot were fixed.
However, the object was placed inside a circle with a diameter
of 20 cm. We assumed six possible results for a grasping task:
four failures and two successes.

Object not detected:
After 30 s, if the object has not been detected by the
vision module, then the object detection is considered
as a failure and the trial is stopped.

Gripper lost:
If the gripper detection system cannot manage to
track the gripper, the system will not be able to bring
the gripper to destination in less than 30 s. In this
case, the gripper is considered as lost and the trial is
stopped.

Grasping failed:
On the way to the destination, the gripper might
collide with another object. The gripper might also
close while it is not on the object. In both cases, the
grasping part is considered as a failure.

Lifting failed:
Sometimes, the gripper closes on the object but not
accurately enough to lift it and the object falls while
trying to lift it. In this case, the lifting is considered
as a failure.

Object touched:
If the object has been lifted with success but there
was a contact between the gripper and the object
before the gripper started to close, then the trial is
considered as a partial success.

Object not touched:
If the object has been lifted with success and there
was no contact between the gripper and the object
before closing the gripper, then the trial is considered
as a success.

Distinction between failures allows to know which part of
the system is the weakest, and distinction between successes
allows us to estimate the accuracy of the system.

Two different approaches were compared:

Non-Visually Guided Grasping (NVGG):
Tracking of the gripper is not activated and the
estimate of the gripper position is directly given by
the controller of the robotic arm.

Visually Guided Grasping (VGG):
This method uses the detection system described
previously to estimate the gripper position.

Both use the object recognition system proposed in this article.
It is shown in TABLE I that without injected error, both

methods succeeded to lift the object in more than 95% of the
trials. The main advantage of using VGG is that the rate of
success without touching the object before closing the gripper
is significantly higher. The frequency of Object not touched
is 70% when using VGG, while it is only 54% when using
NVGG.

This difference of accuracy is highlighted with the results
of another experiment where errors were introduced in the
distance between the arm and the camera. The error vector
which was added to the model had a length of 4 cm, and
was computed randomly at the beginning of each trial. The
results are shown in TABLE II and it illustrates that when the
model of the robot is not accurate, VGG strongly outperforms
NVGG. The frequency of Success is 72% when using VGG
while it is only 48% when using NVGG. Moreover, the
frequency of Object not touched is 54% when using VGG,
while it is only 12% when using NVGG.

The time needed to converge to an accurate estimate of the
position of the object was also recorded and is shown in Fig. 7.
This measure represents the time required before the quality of
the filter grows above the hand-tuned threshold, which ensures
that the estimation of the object position is reliable. In more
than 60% of the cases, the time needed to detect the object and
to estimate its position was within 2 s. It was greater than 4 s
in less than 10% of the cases. However, there are still isolated
cases when the detection takes more than 20 s. This is due to
the fact that the set of references did not cover all the possible

TABLE I: Grasping results by method

Result Count Frequency

N
V

G
G Success 50 100%

Object not touched 21 42%
Object touched 29 57%

V
G

G

Success 49 98%
Object not touched 35 70%
Object touched 14 28%

Failure 1 2%
Object not detected 1 2%

TABLE II: Grasping results by method with 40 mm error in
the model

Result Count Frequency

N
V

G
G

Success 24 48%
Object not touched 6 12%
Object touched 18 36%

Failure 26 52%
Object not detected 3 6%
Grasping failed 11 22%
Lifting failed 12 24%

V
G

G

Success 36 72%
Object not touched 27 54%
Object touched 9 18%

Failure 14 28%
Gripper lost 7 14%
Grasping failed 3 6%
Lifting failed 4 8%

cases. Sometimes the matching between the current state of
the object and the references was hard to establish because
there was not sufficient references.

The matching time for each frame using the probabilistic
database proposed here was compared to the required time
per frame when using all references in Fig. 8. The proposed
method allows to use only a subset of references, ensuring
that the matching time is not proportional to the number of
references. The data were computed from 20 different videos
of 10 s and only the convergence time was examined.

VIII. CONCLUSION

We presented an entire grasping system which shows a high
success rate even when the position of the gripper given by
the model is not accurate. In contrast to other approaches
with high performances, our system offers a possibility of

Fig. 7: Histogram of convergence time

0 50 100
0

20

40

60

80

100

120

Size of the database

M
at

ch
in

g
tim

e
[m
s]

All references
Probabilistic database

Fig. 8: Matching time by method

using very low-accurate robotic arms. Since the cost of service
robots is a crucial issue, we believe that the proposed system
is a major step toward their globalization.

Amongst the further research into this system, we aim to
improve the database of references in order to develop the
ability of learning new objects autonomously. Another step
which needs to be taken in order to provide a grasping system
adapted to daily life environment is collision avoidance when
planning the gripper trajectory.

ACKNOWLEDGMENTS

This work was done during an international internship
supported by the Joint graduate school - Intelligent car and
robotics course in Kitakyushu, Japan. The authors would like
to thank Olivier Ly and Hugo Gimbert from the “Laboratoire
Bordelais de recherche en Informatique” (LaBRI) for their
useful comments and their support.

REFERENCES

[1] R. Horaud, F. Dornaika, and B. Espiau, “Visually guided object grasp-
ing,” IEEE Trans. Robotics and Automation, vol. 14, no. 4, pp. 525–532,
1998.

[2] J. Bohg and D. Kragic, “Grasping familiar objects using shape context,”
in Int. Conf. on Advanced Robotics (ICAR), 2009.

[3] G. Kootstra, M. Popovic, J. A. Jørgensen, K. Kuklinski, K. Miatliuk,
D. Kragic, and N. Krüger, “Enabling grasping of unknown objects
through a synergistic use of edge and surface information,” Int. Journal
of Robotic Research, vol. 31, no. 10, pp. 1190–1213, 2012.

[4] A. Maxim, C. Lazar, A. Burlacu, and C. Copot, “Robotic visual servoing
system based on SIFT features,” in 16th Int. Conf. on System Theory,
Control and Computing (ICSTCC), oct 2012, pp. 1–6.

[5] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic ap-
proaches,” IEEE Robotics Automation Magazine, vol. 13, no. 4, pp. 82–
90, 2006.

[6] W. Hong and J. Slotine, “Experiments in Hand-Eye Coordination Using
Active Vision,” in Fourth International Symposium on Experimental
Robotics (ISER), 1995.

[7] G. Recatala, P. J. Sanz, E. Cervera, and A. P. Del Pobil, “Grasp-based
visual servoing for gripper-to-object positioning,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS 2004), vol. 1, sep 2004,
pp. 118–123 vol.1.

[8] K. M. Tsui, A. Behal, D. Kontak, and H. A. Yanco, “I want that: Human-
in-the-loop control of a wheelchair-mounted robotic arm,” Applied
Bionics and Biomechanics, vol. 8, no. 1, pp. 127–147, 2011.

[9] C. Teulière and E. Marchand, “A Dense and Direct Approach to Visual
Servoing Using Depth Maps,” IEEE Trans. Robotics, vol. 30, no. 5, pp.
1242–1249, oct 2014.

[10] E. Malis, Y. Mezouar, and P. Rives, “Robustness of Image-Based Visual
Servoing With a Calibrated Camera in the Presence of Uncertainties in
the Three-Dimensional Structure,” IEEE Trans. Robotics, vol. 26, no. 1,
pp. 112–120, 2010.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust
Features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[12] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. Seventh IEEE Int. Conf. on Computer Vision (ICCV), vol. 2, 1999,
pp. 1150–1157 vol.2.

[13] K. T. Song and C. H. Chang, “Object pose estimation for grasping based
on robust center point detection,” in Control Conference (ASCC), 2011
8th Asian, 2011, pp. 305–310.

[14] L. T. Anh and J. B. Song, “Robotic grasping based on efficient track-
ing and visual servoing using local feature descriptors,” International
Journal of Precision Engineering and Manufacturing, vol. 13, no. 3,
pp. 387–393, 2012.

[15] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust
invariant scalable keypoints,” in Proceedings of the IEEE International
Conference on Computer Vision, 2011, pp. 2548–2555.

[16] M. Muja and D. Lowe, “Scalable Nearest Neighbour Algorithms for
High Dimensional Data,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. PP, no. 99, p. 1, 2014.

[17] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[18] D. Holz, R. Schnabel, D. Droeschel, J. Stückler, and S. Behnke, “To-
wards semantic scene analysis with time-of-flight cameras,” in Lecture
Notes in Computer Science, vol. 6556 LNAI, 2011, pp. 121–132.

[19] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range Scene
Segmentation and Reconstruction of 3D Point Cloud Maps for Mobile
Manipulation in Domestic Environments,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2009, pp. 1–6.

