
An Operational Method Toward Efficient
Walk Control Policies for Humanoid Robots

Ludovic Hofer and Quentin Rouxel
LaBRI, 321 Cours de la Libération

33405 Talence CEDEX, France

Abstract

Optimizing policies for real-time control of humanoid
robots is a difficult task due to the continuous and
stochastic nature of the state and action spaces. In this
paper, we propose a learning procedure to train a predic-
tive motion model and RFPI, a solver for continuous-
state and action MDP. We use the predictive model
as a transition model to train policies for a robot soc-
cer. Our method requires no external hardware, a small
amount of human work and manages to outperform the
expert policy used by our team Rhoban winning the last
2016 edition of the Robocup in kid-size soccer league.
Moreover, the proposed method is able to adapt to non-
holonomic robots more efficiently than the expert ap-
proach. Our results are confirmed by both simulations
and real robot experiments.

1 Introduction
In this paper we propose a learning procedure to optimize
the motion control of a small humanoid robot. The robot
moves on a soccer field and tries to reach a desired kick po-
sition and orientation without colliding with the ball. This
skill plays a major part in the RoboCup robotic soccer com-
petition, since reaching the ball faster than the opponent is
one of the key to victory. This problem can be seen as a Con-
tinuous State and Action Markov Decision Process (CSA-
MDP for short). The computation of a good policy in this
CSA-MDP is difficult for several reasons. First, the deter-
ministic model of the walk motion does not fit reality due to
the high amount of noise and the unpredictable contact with
the ground. Second, both the state space (positions and speed
of the robot) and the action space (acceleration) are contin-
uous. Third, the computational resources available on-board
are limited. Fourth, the reward perceived is discontinuous.

Despite the mechanical and control uncertainties of this
kind of small low-cost humanoid robots, approaches have
been proposed to learn the deterministic part of the walk-
ing model using motion capture system (Schmitz, Missura,
and Behnke 2011) and (Rouxel et al. 2016). Building such a
predictive model allows running realistic simulations which
can then be used to evaluate the performance of different
policies.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Several approaches based on policy gradient have been
proposed in the last decade to learn policies for CSA-MDP
on robots. Some of these algorithms have been able to learn
control policies to hit a baseball with an anthropomorphic
arm (Peters and Schaal 2008), while other approaches dis-
play an impressive sample efficiency (Deisenroth and Ras-
mussen 2011). Both approaches have been tested on high
quality robots exhibiting repeatable dynamics. Moreover,
they are based on an access to partial derivatives of the re-
ward function with respect to the policy parameters. In one
hand, These kind of constraints are difficult to satisfy, par-
ticularly for accessibility problems where the reward is bi-
nary. On the other hand, expert policies with hand-tuned pa-
rameters tend to achieve satisfying results on low-accuracy
robots (Behnke 2006).

A few years ago, Symbolic Dynamic Programming has
been proposed to find exact solutions to CSA-MDP (San-
ner, Delgado, and de Barros 2012). This algorithm, based
on eXtended Algebraic Decision Diagrams requires a sym-
bolic model of both the transition function and the reward
function. It also relies on several assumptions concerning
the shape of these functions and is suited for a very short
horizon. While this result is a major breakthrough it is not
applicable for our target problem.

Algorithms based on local planning achieves outstand-
ing control on high dimensional problems (Weinstein and
Littman 2013). However, the computational cost of online
planning is a burden for real-time applications. This issue
is particularly crucial for embedded applications where the
computational power is often constrained.

This paper presents our method to solve the motion con-
trol problem and focuses on three contributions.

1. We provide a method to train a predictive model of the
motion of the robot which does not require external hard-
ware nor vision processing.

2. Once the predictive model is trained, we compute motion
control policy of the robot using our own generic purpose
CSA-MDP solver.

3. We present very encouraging experimental results, based
on simulation as well as real world experiments. The pol-
icy computed with our method strongly outperforms those
of the expert policy we used to win the Robocup last year.

The training of the predictive model is based on param-

eters optimization in the same way as (Ivanjko, Komsic,
and Petrovic 2007) did on wheeled robots. It is arguably
more convenient to perform than the approach proposed
in (Rouxel et al. 2016), because it does not require external
hardware nor vision processing. We present a comparison
of the motion prediction performance for different size of
training sets using cross-validation.

The main benefit of the proposed approach compared to
visual methods is the very low computing power require-
ment. The same simple correction model should be suitable
for visual odometry even if the authors are unaware of typ-
ical errors (false positive) introduced by vision processing
which may call for specific adaptations. Moreover, the play-
ground lacks of visual features required for visual odometry.

The computation of the policy is performed offline and
then played online by the robot, using very few compu-
tational resources. It is based on a generic purpose solver
for CSA-MDPs. The solver optimizes the motion control
through an access to a black-box model of the transition
and the reward function. Both value functions and policies
are approximated using regression forests (Breiman 1996).
This type of representation allows retrieving values at a low-
computational cost, making it well suited for robotic appli-
cations.

This paper is organized as follows: Section 2 defines the
notations used. Section 3 presents the robotic platform and
the navigation problem in details. Section 4 introduces our
motion predictive model and the method used to learn its pa-
rameters. We propose our solver of CSA-MDP in Section 5
and present our results in Section 6. Finally, we summarize
the contributions brought by our research in Section 7.

2 Background
2.1 Continuous State and Action

Markov-Decision Process
A CSA-MDP is a 5-tuple 〈S,A,R, T, γ〉, where S is a space
of states, A is a space of actions, R is a reward function
where R(s, a, s′) denotes the expected reward when taking
action a in state s and arriving in s′, T is a transition function
where T (s, a, s′) denotes the probability of reaching s′ from
s using a and γ ∈ [0, 1[is a discount factor.

A policy is a mapping π : S → A where π(s) denotes the
action choice in state s. A value function V : S → R is a
function which maps states to expected rewards.

2.2 Regression Forests
A regression tree is an approximate representation of a func-
tion f : X → Y where X ⊆ Rk and Y ⊆ R. It has a de-
cision tree structure where every non-leaf node is a function
mapping X to its children and every leaf is a basic func-
tion φ : X → Y . Several algorithms exist to extract re-
gression trees from training set, for a complete introduction,
refer to (Loh 2011). Predicting the output y ∈ Y from an
entry x ∈ X requires finding the leaf corresponding to x
and then computing φ(x), with φ the basic function found
at the leaf corresponding to x. While some algorithms use
oblique split (Li, Lue, and Chen 2000), we only used orthog-
onal splits (splits of the form xi ≤ v). A regression forest is

a set of regression trees. It has been exhibited in (Breiman
1996) that averaging multiple trees to represent the function
leads to a more accurate prediction. The algorithm used to
grow the regression forests in our algorithm is based on the
Extremely Randomized Trees, introduced in (Ernst, Geurts,
and Wehenkel 2005). More details on the use of regression
forests for CSA-MDP can be found in (Hofer and Gimbert
2016).

2.3 Robot Egocentric Frame
In this paper, the position and orientation of the robot is de-
fined by the robot egocentric frame. This frame is centered
on the robot’s trunk (see Fig. 2). The Z axis is vertical. The
X axis is oriented toward the front of robot (forward direc-
tion). The Y axis is oriented to the left of the robot (lateral
direction).

3 Problem Description
3.1 Humanoid Robotic Platform

Figure 1: Sigmaban robotic platform.

All our experiments are run using Sigmaban, a small hu-
manoid robot designed, built and developed by the Rhoban
Team at the University of Bordeaux. The robot is 60 cm
height, weights 4.2 Kg and has 20 degrees of freedom: 6
per leg, 3 per arm and two in the neck. Each joint is actuated
by the commercial servo-motors Dynamixel1 (MX-64, MX-
28). Its conception is mainly directed toward the participa-
tion to the RoboCup competition in the Kid-Size Humanoid
League2.

The general morphology is constrained by humanoid-like
ranges on some geometric features such as total height, leg-
arm ratio, neck length and also the position of the center of
mass. In addition, only “human-like” sensors are allowed.
Infra-red cameras, laser sensors, lidars, ultrasonic sensors or

1Dynamixel servo-motors: http://www.robotis.com/
xe/dynamixel_en

2RoboCup Humanoid League rules are available at: https:
//www.robocuphumanoid.org/materials/rules/

magnetometers are forbidden in order to put emphasis on
the perception analysis and filtering. The robot only has a
visible light camera, an accelerometer, a gyroscope, two foot
pressure sensors and position encoders located at each joint
measuring the absolute angular state.

The foot pressure sensors are made of strain gauges at-
tached to each cleat under the robot’s feet. They detect the
contact with the ground but also measure the vertical cen-
ter of pressure. These low-cost sensors are designed by the
Rhoban team and have been presented in (Rouxel et al.
2015). Precisely detecting the actual supporting foot during
the navigation is essential to compute an accurate odometry
estimation of the robot’s displacements.

During soccer games, the robot is fully autonomous. A
lithium-polymer battery powers the direct current motors,
the control electronics and the main processor. A small em-
bedded x86 computer runs the robot’s main program. It
reads motors, sensors and camera inputs, analyses and com-
putes the current internal and external state and issues to the
servo-motors the next target position at about 100 Hz.

The main drawbacks of this type of small and low-cost hu-
manoid robots are their mechanical and control inaccuracies.
For example during a robotic soccer game, the robots often
experience numerous falls and collisions. The mechanical
parts get bended on a regular basis, the deformation reach-
ing up to a few degrees. During the 2016 competition, a 5
degrees bending on the neck was measured, greatly affect-
ing the camera-based distance computation accuracy.

Another source of dynamical uncertainty is the backlash
added by each servo-motor and increasing with the gearbox
wear. A typical backlash on a new gearbox is about 0.2 de-
gree, whereas a 0.8 degree backlash was measured on the
ankle, knee and hip of the leg of the robot. Also, during
the robot’s displacement on the artificial grass, a slide of the
supporting foot can be observed. Finally, the default servo-
motor controller is purely reactive and thus always exhibits
an important dynamical tracking error depending on the tar-
get motion.

3.2 Walk Engine
The walk engine3 used by the Sigmaban robot and presented
in (Rouxel et al. 2015) is omni-directional and controls the
target position of the 12 leg joints. The walk is externally
driven by three values: the forward and lateral length of the
next step and its angular rotation. These walk orders are is-
sues at each complete walk cycle (two steps).

The engine is based on a set of parametrized polynomial
splines in Cartesian space of the foot trajectories with re-
spect to the robot’s trunk. A stabilisation procedure detects
strong perturbations by looking for unexpected weight mea-
sures from the foot pressure sensors. In case of perturba-
tions, the walk timing is altered in order to keep the robot
balanced.

Even with bounds presented at Table 1 and Table 2, some
combinations of large speed and acceleration of walk orders

3Rhoban IKWalk implementation: https://github.com/
Rhoban/IKWalk

can make the robot unstable. These events trigger the stabi-
lization procedure which tries to recover from the perturba-
tions but at the expense of high noise in the robot’s displace-
ment.

3.3 Holonomic Approach
During robotic soccer games, several skills such as recov-
ering from falls or kicking the ball are required, but most
of the time is spent in the approach phase. During the ap-
proach, the robot has an estimate of both the ball position
and its own position on the field. It is then able to choose a
desired aim for its next kick. The main problem is to con-
trol the orders sent to the walk engine in order to reach the
desired position as fast as possible.

The walk predictive model and the observations gathered
by the robots are stochastic. Due to the lack of predictability
of the robot’s motions, it is impossible to use standard meth-
ods for planning in continuous domains. Moreover, since the
decisions have to be taken online, the choice of the orders
should not require heavy computations.

Sudden variations of the parameters provided to the walk
engine can result in instability and fall of the robot. There-
fore, we decided to control the acceleration of the robot and
not the walk orders directly. The name, limits and units of
the state space can be found at Table 1 and those of the ac-
tion space at Table 2. We do not consider the ball speed in
the state space for two reasons. First, it is very hard to get an
appropriate estimate of the ball speed because the camera is
moving with the robot and the position observations are al-
ready very noisy. Second, the ball is static most of the time,
because robots spend a large proportion of their time trying
to reach the ball.

Table 1: State space of Approach
Name Units min max
Ball distance m 0 1
Ball direction rad −π π
Kick direction rad −π π
Forward speed m

step -0.02 0.04
Lateral speed m

step -0.02 0.02
Angular speed rad

step -0.2 0.2

Table 2: Action space of Approach
Name Units min max
Forward acceleration m

step2 -0.02 0.02
Lateral acceleration m

step2 -0.01 0.01
Angular acceleration rad

step2 -0.15 0.15

At every step, the robot is given a reward which depends
on the area it is located in:

Kick : The distance to the ball along the X-axis has to be
between 0.15 m and 0.3 m. The absolute position of the
ball along the Y -axis has to be lower than 0.06 m. The
absolute angle between the robot direction and the kick

target has to be lower than 10 degrees. Inside this area,
the robot receives a reward of 0.

Collision : The position of the ball along the X-axis has to
be between -0.20 m and 0.15 m. The absolute position of
the ball along Y -axis has to be lower than 0.25 m. Inside
this area, the robot receives a reward of -3.

Failure : The distance to the ball has to be higher than 1 m.
In this case, we consider that the robot has failed the ex-
periment, the state is terminal and the reward is -100.

Normal : For every state that does not belong to any of the
previous cases. Inside this area, the robot receives a re-
ward of -1 (i.e. unit cost).

At every step, the next state is computed using the mo-
tion predictive model described in Section 4. To reflect the
stochastic aspect of the walk we also introduce an uniform
noise on the step displacement after each cycle. Noise along
X-axis and Y -axis is drawn between -0.02 m and 0.02 m.
The noise on orientation is drawn between -5 degrees and 5
degrees. We will further refer to the problem of Holonomic
Approach by the abbreviation HA.

3.4 Expert Approach
The expert approach depicted at Algorithm 1 has 15 param-
eters originally tuned by hand. They configure the several
state transition thresholds and the orders sent to the walk en-
gine controlled by simple proportional controllers. This pol-
icy was designed by the Rhoban team and used to won the
2016 RoboCup Kid-Size soccer competition. We will further
refer to this policy as Winner2016.

3.5 Almost Non-Holonomic Approach
While some humanoid robots are able to move very quickly
laterally, other robots are mainly capable of moving forward,
backward and rotate. For these robots, policies that rely on
lateral motion are particularly slow. In order to test the flex-
ibility of the policies, we designed a second version of the
problem in which we divided the limits for the lateral speed
and acceleration by 5, since those robots are not moving lat-
erally, they also exhibit less lateral noise, therefore we di-
vided by two the lateral noise with respect to HA. We will
further refer to this problem as the Almost Non-Holonomic
Approach, ANHA for short.

3.6 Initial State
For HA and ANHA, the initial distance to the ball was sam-
pled from an uniform distribution between 0.4 m and 0.95 m.
The initial direction of the ball and the kick direction were
sampled from an uniform distribution in [−π, π]. The ini-
tial velocity of the robot is always 0 (for both, Cartesian and
angular velocities).

4 Motion Predictive Model Calibration
As previously mentioned, one of the major disadvantages of
this type of robot is their important mechanical and control
inaccuracies. A large discrepancy can be observed between

Algorithm 1 Overview of the expert navigation algorithm
1: state = Far
2: while not in kick range do
3: ball = getRelativeBallPosition()
4: orientation = getRelativeTargetOrientation()
5: if state == Far then
6: Make forward step to go to the ball
7: Make turn step to align with the ball
8: if ball.distance is close enough then
9: state = Rotate

10: end if
11: else if state == Rotate then
12: Make forward step to stay at fixed ball distance
13: Make lateral step to turn around the ball
14: Make turn step to stay aligned with the ball
15: if ball.angle and orientation are aligned then
16: state = Near
17: end if
18: else if state == Near then
19: Make small forward step to reach kick distance
20: Make lateral step to keep the ball centered ahead
21: Make turn step to keep the ball aligned
22: if |ball.y| lateral position is too far then
23: state = Rotate
24: end if
25: end if
26: if ball.distance is too far then
27: state = Far
28: end if
29: end while

the ideal – integrated walk control inputs – and actual phys-
ical displacement of the robot. Despite this error, the deter-
ministic part of the robot real behaviour can still be captured.

The online odometry and offline motion model have been
previously studied in (Rouxel et al. 2016). The odometry
evaluates during the robot’s motion its own relative displace-
ment by analyzing the sensors readings. On the contrary,
the motion model tries to predict the future robot self dis-
placements given the sequence of orders possibly sent to the
walk engine. In this past work, an external motion capture
setup was used to learn both the odometry estimation (with-
out vision) and the motion prediction using a non linear, non
parametric regression method (Locally Weighted Projection
Regression).

However in the context of robotic competitions, deploy-
ing a full motion capture setup on the soccer field is too
cumbersome. In the following section, a calibration method
based on black-box optimization is presented. The same ap-
proach has been introduced by (Ivanjko, Komsic, and Petro-
vic 2007) on wheeled mobile robots. A simple motion pre-
diction model is computed on a humanoid robot without any
external hardware neither vision processing but a tape mea-
sure. Although this procedure is less accurate, the resulting
precision still fits our needs and can be more easily applied
on the field.

4.1 Calibration Through Parameters
Optimization

Without a proper motion capture setup or other external de-
vice, the actual robot’s displacement at each step can not be
recorded. To generate learning data, the following procedure
is used:
• Minimum and maximum bounds are set according with

the problem on both raw walk orders (velocity) and delta
walk orders (acceleration).

• The robot is placed at a known starting position and ori-
entation.

• During 15 seconds, random orders are sent at each step
to the walk engine. The orders are drawn from a ran-
dom walk (Brownian motion) where accelerations are
uniformly distributed inside allowed ranges.

• Final position is manually measured with respect to start-
ing position. Since final orientation is difficult to accu-
rately measure, it is only recorded for 12 possible orien-
tations (more or less 30 degrees).

This process is then repeated to gather enough data.

Lateral displacement

Forward displacement

Turn rotation

X

Y

X
Y

Position at support foot swap t

Position at support foot swap t+1

Figure 2: Robot displacement calculations at each walk cy-
cle

The goal is to build the following corrective function
computing a more accurate self relative displacement ac-
cording to Fig. 2 between two walk cycles:

∆(x, y, θ)walk orders, k 7−→ ∆(x, y, θ)corrected, k

In this work, only simple linear models are considered and
compared:

[
∆xcorrected
∆ycorrected
∆θcorrected

]
=

[
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3

] 1
∆xk
∆yk
∆θk

 (1)

The model parameters are the a0,0...a2,3 coefficients. To
calibrate the model, the problem is treated as a black-box
optimization problem. Parameters are optimized in order to
minimize a fitness function scoring the error between actual
final position and predicted position.

More precisely, the fitness function takes as input a set of
parameters to be scored and a set of learning walking se-
quences. For each sequence, the robot’s position and orien-
tation is integrated at each step based on logged walk orders
ideal displacements but corrected through the linear trans-
formation of Equation 1. The resulting score is a weighted
average between the Root Mean Squared Error (RMSE) on
the final position and the RMSE on the final orientation –
with a tolerance of more or less 30 degrees to account for
the measurement uncertainty.

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm originally presented in (Hansen and
Ostermeier 2001) and implemented in C++4 is used to find
the model parameters minimizing the fitness function. Since
the model and the fitness function are simple, the optimiza-
tion process is completed in a few seconds.

4.2 Calibration Results
Three different linear models are compared:

• Proportional model with 3 parameters.
In Equation 1, only a0,1, a1,2, a2,3 are non zero.

• Simple linear model with 6 parameters.
In Equation 1, only a0,0, a1,0, a2,0, a0,1, a1,2, a2,3 are non
zero.

• Full linear model with 12 parameters.
In Equation 1, all a0,0...a2,3are non zero.

The Figure 3 displays the results of the motion prediction
models calibration process. A total of 25 random walk se-
quences were recorded. Cross-validation using 5 validation
sequences each were used to compare the linear models and
the number of training sequences used by the optimization
algorithm. The Y axis shows the mean validation RMSE on
the final position and the confidence bounds.

Here, the proportional and simple linear model are per-
forming quite equally. But since the former has more pa-
rameters, its convergence is slower. The found affine offsets
a0,0, a1,0, a2,0 are actually rather small. Indeed, the robot
remains well steady when sending zero walk orders. As ex-
pected, the best fitting model but also the slower to converge
is the full linear model. After 20 learning sequences, the full
corrective model allows to reduce the final mean distance er-
ror from 0.39 m to 0.26 m. To compare, (Rouxel et al. 2016)
goes from 0.68 m distance prediction error without correc-
tion to 0.14 m after learning, for 10 second of walking. Since
the proposed approach does not measure individual step dis-
placements with motion capture, neither use complex regres-
sion method, the improved accuracy is still interesting for
operational use.

Experiments in Section 6 are run with the full linear
model. The 12 parameters are chosen as the average of op-
timized parameters using the 20 sequences learning set. The
Figure 4 is showing the convergence of the parameters with
respect to the size of the learning set.

4The C++ CMA-ES Library: https://github.com/
beniz/libcmaes

Figure 3: Performance of motion predictive models on cross-
validation set

5 Regression Forests Policy Iteration
Regression Forests Policy Iteration, or RFPI for short, is in-
spired by the discrete version of policy iteration. Both the
value function and the policies are represented as regression
forests. A generic and abstract version of the algorithm is
presented at Algorithm 2.

The learning algorithm uses visited states as basis to train
the value functions and the policies. This choice of design
ensures that more data is collected inside the areas of the
state space which are frequently visited. The number of re-
quired runs to update the policy grows linearly along the
number of policy updates. Therefore, the number of policy
and value updates grow proportionally to

√
n, with n the

number of visited states. This property is crucial to assure a
reasonable complexity of the algorithm, even for problems
that require a large set of samples. The value function V is
initialized as a constant approximator with a value of 0. The
initial policy samples actions from an uniform distribution
among the whole action space. The list of visited states can
be empty at the beginning or it can be fed with an external
seed under the form of a list of visited states.

Both value functions and policies are built from samples
through calls to the function FitForest. While details con-
cerning this procedure are outside of the scope of this paper,
an exhaustive review is provided in (Loh 2011). This func-
tion can be used to create piecewise constant models (PWC)
or piecewise linear models (PWL).

The rules used to update the value function are provided at
Algorithm 3. First, the value of every state is approximated
independently, using multi-step simulations with the current
policy π. Then, a regression forest is built based on visited
states and their estimated reward. Although simple, this type

Figure 4: Optimized parameters average of the full linear
model and their confidence interval

of procedure can only be used with policies that have a very
low complexity, because it requires a large number of calls
to the policy. We use piecewise constant models to approxi-
mate the value function, because experiments and literature
suggest that using linear models for the values are very likely
to diverge from the real functions due to successive approx-
imations.

Updating policies is performed through calls to the func-
tion defined at Algorithm 4. The main idea is to optimize ac-
tions with a single step horizon for each of the visited states
independently. Then, the policy is obtained by building re-
gression forests from the created matches from state to best
action. We can safely use piecewise linear models for the
policies since there is no problem of successive approxima-
tions for the policies.

6 Experiments
6.1 Tested Policies
Three different policies were experimented in both simula-
tion and real world.

Winner2016: The policy used by the Rhoban team at
RoboCup 2016 competition, see Section 3.4.

CMA-ES: This policy is the same as Winner2016, but all
the parameters have been optimized using millions of sim-
ulations of the motion predictive model using the black-
box optimization algorithm CMA-ES.

RFPI: This policy is represented as a regression forest. It is
the result of a few hours of offline training on the problem.
It has no information about the problem but a black-box
access to the transition and the reward functions. In order
to make sure that the samples were gathered inside the

Algorithm 2 The CSA-MDP learner algorithm
1: π = getRandomPolicy()
2: V = buildConstantApproximator(0)
3: visitedStates = seedStates
4: policyId = 1
5: runId = 0
6: while timeRemaining() do
7: executeRun(π, visitedStates)
8: runId++
9: if runId == policyId then

10: V = updateValue(π, V , visitedStates)
11: π = updatePolicy(V , visitedStates)
12: runId = 0
13: policyId++
14: end if
15: end while

Algorithm 3 The updateValue function
1: function UPDATEVALUE(π, V , visitedStates)
2: values = {}
3: for all s ∈ visitedStates do
4: val = getAvgValue(s, π, maxSteps, nbRollouts)
5: values.append(val)
6: end for
7: return FitForest(visitedStates, values, PWC)
8: end function

kick area, policies were trained using a seed of 25 trajec-
tories generated by Winner2016.

CMA-ES and RFPI policies were trained through simu-
lations, using a maximum length of 50 steps for all the roll
outs. When required, the initial state was chosen according
to the distribution described at section 3.6. Both were trained
specifically for each problem, HA and ANHA.

6.2 Simulation
All the trained policies were evaluated on both problems,
HA and ANHA. The evaluation is performed by measuring
the average costs on 10’000 trials for each modality. The
initial state is generated randomly according to the distri-
bution described at section 3.6 and the maximal number of
steps in a run was set to 50. The simulation results are pre-
sented in Table 3. All the source code used for simulation
experiments is open-source and developed as a set of ROS
packages freely available5.

Table 3: Average costs for the different policies in simulation
Winner2016 CMA-ES RFPI

HA 31.84 14.90 11.88
ANHA 44.12 36.18 15.97

First of all, note that on the HA, CMA-ES strongly outper-
forms Winner2016. This highlights the interest of building a

5Source code (C++) available at: https://bitbucket.
org/account/user/rhoban/projects/ROS

Algorithm 4 The updatePolicy function
1: function OPTIMIZEACTION(V , s)
2: candidates = getRandom(actionSpace, nbActions)
3: bestScore = −∞
4: bestAction = null
5: for all c ∈ candidates do
6: score = 0
7: for all i ∈ range(nbRollouts) do
8: s′ = sampleSuccessor(s, c)
9: reward = getReward(s, c, s′)

10: score += reward + γV (s′)
11: end for
12: if score > bestScore then
13: bestScore = score
14: bestAction = c
15: end if
16: end for
17: end function
18: function UPDATEPOLICY(V , visitedStates)
19: bestActions = {}
20: for all s ∈ visitedStates do
21: action = optimizeAction(V ,s)
22: bestActions.append(action)
23: end for
24: return FitForest(visitedStates, bestActions, PWL)
25: end function

predictive model and using it to optimize the parameters of
a policy. By using millions of simulations and advanced op-
timization technics, CMA-ES is able to divide by more than
two the average time to reach the ball position. Our algo-
rithm goes even further and reduces the required time by an
additional 20 percent while it has no prior information about
the shape of the policy, except a set of visited states by Win-
ner2016.

As we expected, Winner2016 does not perform well at all
on ANHA. It has a cost of 44.12 in average, while the maxi-
mal cost when avoiding collisions with the ball is 50. Auto-
mated tuning based on CMA-ES reduces the average cost by
around 20 percent. RFPI exhibits a strong flexibility, since it
divides by more than two the expected value with respect to
the CMA-ES policy. Moreover, RFPI achieves similar per-
formances on ANHA as CMA-ES policy on HA, while the
task is much harder.

6.3 Real World
Experimental Conditions During this experiment, the
robot is placed on artificial grass. An official white ball is
used as navigation target and the target orientation is set to-
ward the goal posts. A specific vision pipeline has been im-
plemented to detect and track the ball at 25 Hz. The Carte-
sian position of the ball with respect to the robot location
is obtained by using the model of both the camera and the
robot’s kinematic. Finally, the position of the ball is filtered
through a low pass filter.

The recognition and the discrimination between the white
ball and the white and round goal posts is a difficult task of-

ten leading to false positives. To ease the experiment, the lo-
calisation module used during robotic competitions has been
disabled. The initial kick target orientation is provided man-
ually and is then tracked by integration of the inertial mea-
surement unit.

Experimental Method Winner2016, CMA-ES policies
and RFPI policies are all tested in real soccer conditions for
both HA and ANHA. For each test, a total of 12 approaches
are run, totalizing 72 different approaches. The Cartesian
product of the following initial states is performed:
• The ball is put either at 1 m or 0.5 m.
• The ball is put either in front of the robot, on its left, on

its right.
• The initial kick target is either 0◦or 180◦.

For each run, the time required for the robot to stabilize
inside the kicking area is recorded.

Results Average time for all the trajectories depending on
the problem type and the policy used are shown in Table 4.
Even if the quantity of data collected is too small to have an
accurate evaluation of the difference of performance among
policies, the general trend is similar to the one obtained
in simulation. The method tuned by CMA-ES outperforms
Winner2016 and RFPI outperforms both.

Table 4: Average time in seconds before kicking the ball
Winner2016 CMA-ES RFPI

HA 19.98 13.72 11.45
ANHA 48.14 25.69 18.81

A representation of several trajectories perceived by the
robot is given at Fig. 5. All these trajectories are directly ex-
tracted from the internal representation of the robot6. Here,
the arrows represent the robot pose at each walk cycle. They
all depict the same initial situation, solved for both HA and
ANHA, with each of the proposed policies. It can be seen
that although the robot started at a distance of 1.0 m of the
ball, it initially believes that the distance is around 1.3 m.
This type of error is the result of an accumulation of er-
rors in the measurements of the joints, combined to some
of the parts bending due to the frequent falls of the robot.
The adaptability of the proposed method with respect to the
robot constraints can easily be seen by comparing the two
trajectories observed for the RFPI policy.

7 Conclusion
This article introduces an operational method to establish a
motion predictive model and a solver for CSA-MDP named
RFPI. The proposed approach has several advantages over
existing methods: no external hardware is required, no ex-
pert knowledge on the problem is necessary and it adapts au-
tomatically to different types of locomotion. Unexpectedly,
no adaptation was required to apply the policies learned in
simulation on the robot, an unusual case in robotics.

6A video showing these trajectories on Sigmaban robot is avail-
able at: https://youtu.be/PNA-rpNKfsY

Figure 5: Examples of real world trajectories

When the robot detects a balance issue, it uses a stabiliza-
tion procedure which costs a small amount of time and leads
to additional noise. Sudden variations in the walk orders and
combinations of large values for the orders are more likely
to result in instability. One of the main sources of discrepan-
cies between simulation and real world experiments is likely
to be the simple noise model used which considers that noise
is uncorrelated with speed and acceleration. Further refine-
ments of our method should include a calibration procedure
for the noise model. If required, additional state dimensions
could be used to represent the ball speed or the position of
obstacles and robots.

Acknowledgements
The authors acknowledge partial support from ANR project
STOCH-MC (ANR-13-BS02-0011-01).

References
Behnke, S. 2006. Online trajectory generation for omnidi-
rectional biped walking. Proceedings - IEEE International
Conference on Robotics and Automation 2006(May):1597–
1603.
Breiman, L. 1996. Bagging predictors. Machine Learning
24(2):123–140.

Deisenroth, M. P., and Rasmussen, C. E. 2011. PILCO: A
Model-Based and Data-Efficient Approach to Policy Search.
Icml 465–472.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-Based
Batch Mode Reinforcement Learning. Journal of Machine
Learning Research 6(1):503–556.
Hansen, N., and Ostermeier, A. 2001. Completely deran-
domized self-adaptation in evolution strategies. Evolution-
ary computation 9(2):159–195.
Hofer, L., and Gimbert, H. 2016. Online reinforcement
learning for real-time exploration in continuous state and
action markov decision processes. In PlanRob2016, Pro-
ceedings of the 4th Workshop on Planning and Robotics at
ICAPS2016. AAAI.
Ivanjko, E.; Komsic, I.; and Petrovic, I. 2007. Simple off-
line odometry calibration of differential drive mobile robots.
In Proceedings of 16th Int. Workshop on Robotics in Alpe-
Adria-Danube Region-RAAD.
Li, K.-C.; Lue, H.-H.; and Chen, C.-H. 2000. Interac-
tive Tree-Structured Regression via Principal Hessian Di-
rections. Journal of the American Statistical Association
95(450):547–560.
Loh, W.-Y. 2011. Classification and regression trees. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1(1):14–23.
Peters, J., and Schaal, S. 2008. Reinforcement learning
of motor skills with policy gradients. Neural Networks
21(4):682–697.
Rouxel, Q.; Passault, G.; Hofer, L.; N’Guyen, S.; and Ly,
O. 2015. Rhoban hardware and software open source con-
tributions for robocup humanoids. In Proceedings of 10th
Workshop on Humanoid Soccer Robots, IEEE-RAS Int. Con-
ference on Humanoid Robots, Seoul, Korea.
Rouxel, Q.; Passault, G.; Hofer, L.; N’Guyen, S.; and Ly, O.
2016. Learning the odometry on a small humanoid robot. In
Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE.
Sanner, S.; Delgado, K. V.; and de Barros, L. N. 2012. Sym-
bolic Dynamic Programming for Discrete and Continuous
State MDPs. In Proceedings of the 26th Conference on Ar-
tificial Intelligence, volume 2.
Schmitz, A.; Missura, M.; and Behnke, S. 2011. Learning
footstep prediction from motion capture. In RoboCup 2010:
Robot Soccer World Cup XIV. Springer. 97–108.
Weinstein, A., and Littman, M. 2013. Open-Loop Planning
in Large-Scale Stochastic Domains. In 27th AAAI Confer-
ence on Artificial Intelligence, volume 1, 1436–1442.

