
Online Reinforcement Learning for Real-Time Exploration in Continuous State
and Action Markov Decision Processes

Hofer Ludovic and Gimbert Hugo
Laboratoire Bordelais de Recherche en Informatique

351 Cours de Libration
33405 Talence

France

Abstract

This paper presents a new method to learn online poli-
cies in continuous state, continuous action, model-free
Markov decision processes, with two properties that
are crucial for practical applications. First, the policies
are implementable with a very low computational cost:
once the policy is computed, the action corresponding to
a given state is obtained in logarithmic time with respect
to the number of samples used. Second, our method is
versatile: it does not rely on any a priori knowledge of
the structure of optimal policies. We build upon the Fit-
ted Q-iteration algorithm which represents the Q-value
as the average of several regression trees. Our algo-
rithm, the Fitted Policy Forest algorithm (FPF), com-
putes a regression forest representing the Q-value and
transforms it into a single tree representing the policy,
while keeping control on the size of the policy using
resampling and leaf merging. We introduce an adapta-
tion of Multi-Resolution Exploration (MRE) which is
particularly suited to FPF. We assess the performance
of FPF on three classical benchmarks for reinforcement
learning: the ”Inverted Pendulum”, the ”Double Integra-
tor” and ”Car on the Hill” and show that FPF equals
or outperforms other algorithms, although these algo-
rithms rely on the use of particular representations of
the policies, especially chosen in order to fit each of the
three problems. Finally, we exhibit that the combination
of FPF and MRE allows to find nearly optimal solutions
in problems where ε-greedy approaches would fail.

1 Introduction
The initial motivation for the research presented in this pa-
per is the optimization of closed-loop control of humanoid
robots, autonomously playing soccer at the annual Robocup
competition 1. We specifically target to learn behaviors on
the Grosban robot, presented in Figure 1. This requires the
computation of policies in Markov decision processes where
1) the state space is continous, 2) the action space is conti-
nous, 3) the transition function is not known. Additionally,
in order to provide real-time closed-loop control, the pol-
icy should allow to retrieve a nearly optimal-action at a low
computational-cost. We consider that the transition function
is not known, because with small and low-cost humanoid

1http://wiki.robocup.org/wiki/Humanoid League

Figure 1: The Grosban robot

robots, the lack of accuracy on sensors and effectors makes
the system behavior difficult to predict.

More generally, the control of physical systems naturally
leads to models with continous-action spaces, since one typ-
ically controls the position and acceleration of an object
or the torque sent to a joint. While policy gradients meth-
ods have been used successfully to learn highly dynami-
cal tasks such as hitting a baseball with an anthropomor-
phic arm (Peters and Schaal 2008), those algorithms are not
suited for learning on low-cost robots, because they need to
provide a motor primitive and to be able to estimate a gradi-
ent of the reward with respect to the motor primitive parame-
ters. While model-based control is difficult to apply on such
robots, hand-tuned open-loop behaviors have proven to be
very effective (Behnke 2006). Therefore, model-free learn-
ing for CSA-MDP appears as a promising approach to learn
such behaviors.

Since the transition and the reward functions are not
known a priori, sampling is necessary. While an efficient ex-



ploitation of the collected samples is required, it is not suf-
ficient. A smart exploration is necessary, because on some
problems, nearly-optimal strategies requires a succession of
actions which is very unlikely to occur when using unifor-
mous random actions. On extreme cases, it might even lead
to situation where no reward is ever seen, because the prob-
ability of reaching a state carrying a reward while follow-
ing a random policy is almost 0. This problem is known as
the combinatory lock problem and appears in discrete case
in (Koenig and Simmons 1996) and in continuous problems
in (Li, Littman, and Mansley 2009).

For control problems where the action set is discrete and
not too large, there are already existing efficient algorithms
to tackle the problem of producing an efficient policy from
the result of previous experiments. Of course, these algo-
rithms can be used in the continous action space case, by dis-
cretization of the action sets. However this naive approach
often leads to computational costs that are too high for prac-
tical applications, as stated in (Weinstein 2014).

The specificity of continuous action space has also been
adressed with specific methods and particularly encouraging
empirical results have been obtained thanks for example to
the Binary Action Search approach (Pazis and Lagoudakis
2009), see also (Busoniu et al. 2010). These methods re-
quire to design functional basis used to represent the Q-
value function, which we prefer to avoid in order to obtain
versatile algorithms.

A recent major-breakthrough in the field of solving CSA-
MDP is Symbolic Dynamic Programming which allows to
find exact solutions by using eXtended Algebraic Deci-
sion Diagrams (Sanner, Delgado, and de Barros 2012), see
also (Zamani, Sanner, and Fang 2012). However, those al-
gorithms requires a model of the MDP and rely on several
assumptions concerning the shape of the transition function
and the reward function. Additionally, those methods are
suited for a very close horizon and are therefore not suited
for our application.

While local planning allows to achieve outstanding con-
trol on high-dimensionnal problems such as humanoid lo-
comotion (Weinstein and Littman 2013), the computational
cost of online planning is a burden for real-time application.
This is particularly relevant in robotics, where processing
units have to be light and small in order to be embedded.
Therefore, we aim at global planning, where the policy is
computed offline and then loaded on the robot.

Our own learning algorithms are based on the Fitted Q It-
eration algorithm (Ernst, Geurts, and Wehenkel 2005) which
represents the Q-value as the average of several regression
trees. We first present a method allowing to extract approx-
imately optimal continuous action from a Q-value forest.
Then we introduce a new algorithm, Fitted Policy Forest
(FPF), which learn an approximation of the policy function
using regression forests. Such a representation of the pol-
icy allows to retrieve a nearly optimal action at a very low
computational cost, therefore allowing to use it on embed-
ded systems.

We use an exploration algorithm based on MRE (Nouri
and Littman 2009), an optimistic algorithm which repre-
sents the knownness of state and action couples using a kd-

tree (Preparata and Shamos 1985). Following the idea of
extremely randomized trees (Geurts, Ernst, and Wehenkel
2006), we introduce randomness in the split, thus allowing
to grow a forest in order to increase the smoothness of the
knownness function. Moreover, by changing the update rule
for theQ-value, we reduce the attracting power of local max-
ima.

The viability of FPF is demonstrated by a perfor-
mance comparison with the results proposed in (Pazis and
Lagoudakis 2009) on three classical benchmark in RL: In-
verted Pendulum Stabilization, Double Integrator and Car
on the Hill. Experimental results show that FPF drastically
reduce the computation time while improving performance.
We further illustrate the gain obtained by using our version
of MRE on the Inverted Pendulum Stabilization problem, we
finally present the results obtained on the Inverted Pendu-
lum Swing-Up, using an underactuated angular joint. This
last experiment is run using Gazebo simulator in place of
the analytical model.

This paper is organized as follows: Section 2 introduces
the notations used for Markov decision processes and regres-
sion forests, Section 3 presents the original version of Fitted
Q-Iteration and other classical methods in batch mode RL
with continuous action space, Section 4 proposes algorithms
to extract informations from regression forest, Section 5 in-
troduces the core of the FPF algorithm. Section 6 presents
the exploration algorithm we used. The efficiency of FPF
and MRE is demonstrated through a series of experiments
on classical RL benchmarks in section 7, the meaning of the
experimental results is discussed in Section 8.

2 Background
2.1 Markov-Decision Process
A Markov-Decision Process, or MDP for short, is a 5-tuple
〈S,A,R, T, γ〉, where S is a set of states, A is a set of ac-
tions, R is a reward function (R(s, a) denotes the expected
reward when taking action a in state s), T is the transition
function (T (s, a, s′) denotes the probability of reaching s′
from s using a) and γ ∈ [0, 1[ is a discount factor.

A Deterministic Policy is a mapping π : S 7→ A, where
π(s) denotes the action choice in state s. Thereafter, by “pol-
icy”, we implicitely refer to deterministic policy. The Q-
value of a couple (s, a) under a policy π with an horizon
H is denoted QπH(s, a) and is defined as the expected cu-
mulative and discounted reward by applying a in state s and
then choosing actions according to π:

QπH(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)QπH−1(s
′, π(s′))

We further abreviateQπ∞ byQπ for short. The greedy policy
with respect to Q is denoted πQ and always selects the ac-
tion with the highestQ-value; i.e. πQ(s) = argmax

a∈A
Q(s, a).

Considering that the action space is bounded to an interval,
such a limit exists, although it is not necessarily unique.

It is known that an optimalQ-value function exists (Puter-
man 1994): Q∗ = max

π
Qπ . The optimal policy π∗ is greedy

with respect to Q∗: π∗ = πQ∗ .
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Figure 2: A simple regression tree

Given a complete and finite MDP, standard algorithms
exists for finding the optimal policy, including value itera-
tion, policy iteration and linear programming. However, if
the transition function or the reward function are unknown,
it is necessary to use samples to learn an approximation of
the Qvalue denoted Q̂. If the state space or the action space
are continuous, it is also necessary to approximate the solu-
tion.

When solving offline a MDP while having no direct ac-
cess to the transition function, it is necessary to use a set
of gathered samples. Samples are defined as 4-tuples of the
form: 〈s, a, r, s′〉 where s is the starting state, a the action
used, r the reward received and s′ the successor state.

2.2 Regression Forests
A regression tree is a representation of the approximation
of a function f : X 7→ Y where X ∈ Rk and Y ∈ R.
It has a decision tree structure where every non-leaf node
is a function mapping X to its children and every leaf is a
basic function φ : X 7→ Y . A simple regression tree with
piecewise constant (PWC) approximation is presented in
Figure 2. Several algorithms exist to extract regression trees
from training set, for a complete introduction, refer to (Loh
2011). Predicting the output y from an entry x requires to
find the leaf corresponding to x and then to compute φ(x),
with φ the basic function found at the leaf corresponding to
x. We will further refer to the value predicted by a tree t
for input x by t(x) for short. While some algorithms uses
oblique split (Li, Lue, and Chen 2000), the algorithms pre-
sented here are only valid for orthogonal splits (splits of the
form xi ≤ v). We will further note LC(n) and UC(n) the
lower and upper children of node n, concerning xi ≤ v and
xi > v respectively.

If we define the space X as a hyperrectangleH, each leaf
will concern a different part of H. We will further refer to
the minimun and maximum value ofH along the dimension
i as Hi,m and Hi,M respectively. We define the size of a

hyperrectangle H by |H| =
dimX∏
i=1

Hi,M − Hi,m. We use

an abusive notation of the norm ‖H‖ in place of ‖Hi,M −
Hi,m‖.

A regression forest is a set of regression trees: F =
{t1, . . . , tM}. It has been exhibited in (Breiman 1996) that
using multipe trees to represent the function leads to a more
accurate prediction. The value predicted by a forest F for an

input x is F (x) =
M∑
k=1

tk(x)
M .

2.3 Kd-trees
Kd-trees are a data structure which allows to store points
of the same size while providing an O(log(n)) ac-
cess (Preparata and Shamos 1985). At each leaf of the tree,
there is one or several points and at each non-leaf node, there
is an orthogonal split. Let X be the space on which the kd-
tree τ is defined, then for every x ∈ X , there exist a single
path from the root of the kd-tree to the leaf in which xwould
fit. This leaf is denoted leaf(τ, x) is defined on the space X .
Each leaf l contains a set of points noted points(l) and con-
cerns an hyperrectangleH = space(l).

3 Previous Work
The use of regression forests to approximate theQ-value of a
continuous MDP has been introduced in (Ernst, Geurts, and
Wehenkel 2005) under the name of Fitted Q Iteration. This
algorithm uses an iterative procedure to build Q̂H , an ap-
proximation of the Q-value function at horizon H . It builds
a regression forest by using Q̂H−1 and a set of 4-tuples using
the rules given at Equations 1 and 2.

x = (s, a) (1)

y = r +max
a∈A

Q̂H−1(s
′, a) (2)

While this procedure yields very satisfying results when
the action space is discrete, the computational complexity
of the max part in equation 2 when using regression forest
makes it become quickly inefficient. Therefore, in (Ernst,
Geurts, and Wehenkel 2005), action spaces are always dis-
cretized to compute this equation, thus leading to an inap-
propriate action set when optimal control requires a fine dis-
cretization.

Binary Action Search, introduced in (Pazis and
Lagoudakis 2009) proposes a generical approach al-
lowing to avoid the computation of the max part in
equation 2. Results presented in (Pazis and Lagoudakis
2009) show that Binary Action Search strongly outperforms
method with a finite number of actions on two problems
with rewards including a cost depending on the square
of the action used: Inverted Pendulum Stabilization and
Double Integrator. On the other hand, binary action search
yields unsatisfying results on Car on the Hill, a problem
with an optimal strategy known to be “bang-bang” (i.e.
optimal strategy is only composed of two actions).

4 Approximation of the Q-value forest
In this part, we propose new methods to extract information
from a regression forest while choosing a trade-off between
accuracy and computational cost. First, we introduce the al-
gorithm we use to grow regression forest. Then we present
an algorithm to project a regression tree on a given subspace.
Finally we propose a method allowing to average a whole re-
gression forest by a single regression tree whose number of
leaf is bounded.



4.1 Extra-Trees
While several methods exists to build regression forests from
a training samples, our implementation is based on Extra-
Trees (Geurts, Ernst, and Wehenkel 2006). This algorithm
produces satisfying approximation at a moderate computa-
tional cost.

The main characteristic of Extra-trees is that k split di-
mensions are chosen randomly, then for each chosen split
dimension the position of the split is picked randomly from
an uniformous distribution from the minimal to the maximal
value of the dimension along the samples to split. Finally,
only the best of the k random splits is used; the criteria used
to rank the splits is the variance gain brought by the split.
The original training set is splitted until one of the terminal
condition is reached. The first terminal condition is that the
number of samples remaining is smaller than nmin, where
nmin is a parameter allowing to control overfitting. There
are two other terminal conditions: if the inputs of the sam-
ples are all identical or if the output value is constant.

4.2 Improving Extra-trees
We provide two improvements to Extra-trees, in order to
remedy two problems. First, due to the terminal conditions,
large trees are grown for parts of the space were the Q-value
is almost constant because if the Q-value is not strictly con-
stant, the only terminal condition is that the number of sam-
ples is lower than nmin. We remedy this problem with the
help of a new parameter Vmin which specifies the minimal
variance between prediction and measure necessary to allow
splitting. A naive implementation of Extra-Trees leads to a
second problem: it may generate nodes with very few sam-
ples, which paves the way to overfitting and is bad for lin-
ear interpolation. Therefore, we changed the choice of the
split values. Instead of choosing it uniformly from the mini-
mum to the maximum of the samples, our algorithm choose
it uniformly between the nmin-th smallest and highest val-
ues, which guarantees that each node of the split tree con-
tains at least nmin samples.

4.3 Projection of a regression tree
Let consider a tree t : S × A 7→ R, we can define the pro-
jection of the tree t on the state s as another tree P(t, s) =
t′ : A 7→ R. Since s is known, t′ does not contain any split
depending on s value and therefore contains only splits re-
lated to the action space. It is easy to create a hyperrectangle
H corresponding to state s.

H(s) =



s1 s1
...

...
sDS

sDs

min(A1) max(A1)
...

...
min(ADA

) max(ADA
)


The pseudo-code for tree projection is shown in Algo-

rithm 1.

Algorithm 1 The tree projection algorithm
1: function PROJECTTREE(t,H)
2: return projectNode(root(t),H)
3: end function
4: function PROJECTNODE(node,H)
5: if isLeaf(node) then
6: return node
7: end if
8: d← splitDim(node)
9: v ← splitVal(node)

10: if v > Hd,M then
11: node← projectTree(LC(node),H)
12: else if v ≤ Hd,m then
13: node← projectTree(UC(node),H)
14: else
15: LC(node)← projectTree(LC(node),H)
16: UC(node)← projectTree(UC(node),H)
17: end if
18: return node
19: end function

4.4 Weighted average of regression trees
Let t1 and t2 be two regressions trees mapping X to Y ,
weight respectively by w1 and w2, we define the weighted
average of the trees as a tree t′ = µ(t1, t2, w1, w2) such as:

∀x ∈ X, t′(x) = t1(x)w1 + t2(x)w2

w1 + w2

A simple scheme for computing t′ would be to root a repli-
cate of t2 at each leaf of t1. However this would lead to
an overgrown tree containing various unreachable nodes. As
example, a split with the predicate x1 ≤ 3 could perfectly
appear on the lower child of another node whose predicate
is x1 ≤ 2.

Therefore, we designed an algorithm which merges the
two trees by walking simultaneously both trees form the root
to the leaves, and performing on-the-fly optimizations. The
algorithm pseudo-code is shown in Algorithm 2. An exam-
ple of input and output of the algorithm is shown in Figure 3.
By this way, we also tend to keep an original aspect of the re-
gression tree which is that the top-most nodes carry the most
important splits (i.e. splits that strongly reduce the variance
of their inner sets of samples).

4.5 Pruning trees
Although our merging procedure helps to reduce the size
of the final trees, the combination of M trees might still
lead to a tree of size O(|t|M ). Therefore we developed a
pruning algorithm which aims at removing the split nodes
which bring the smallest change to the prediction function.
The only nodes that the algorithms is allowed to remove are
nodes that are parent of two leafs. We define the loss L to
the prediction function for a node n concerning a hyperrect-
angleHn as:

L =

∫
x∈Hl

(φ′(x)− φl)dx+

∫
x∈Hu

(φ′(x)− φu)dx (3)
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Figure 3: An example of tree merge

Algorithm 2 The averaging tree algorithm
1: function AVGTREES(t′,t1,t2,w1,w2,H)
2: avgNodes(root(t’),root(t1), root(t2),w1,w2,H)
3: end function
4: function AVGNODES(n′, n1, n2, w1, w2,H)
5: if isLeaf(n1) then
6: if isLeaf(n2) then
7: φn′ =

w1φn1
+w2φn2

w1+w2

8: else
9: avgNodes(n′, n2, n1,w2,w1,H)

10: end if
11: else
12: d← splitDim(n1)
13: v ← splitVal(n1)
14: vm ← Hd,m
15: vM ← Hd,M
16: if vM ≤ v then
17: avgNodes(n′,n2, LC(n1),w2,w1,H)
18: else if vm < v then
19: avgNodes(n′,n2, UC(n1),w2,w1,H)
20: else
21: split(n′)← split(n)
22: Hd,M ← v
23: avgNodes(LC(n′),n2, LC(n1),w2,w1,H)
24: Hd,M ← vM
25: Hd,m ← v
26: avgNodes(UC(n′),n2, UC(n1),w2,w1,H)
27: Hd,m ← vm
28: end if
29: end if
30: end function

Where l and u are the lowerchild and upperchild of n re-
spectively, and:

φ′ =
|Hu|φu + |Hl|φl

|H|
(4)

The prediction function φ′ given by equation 4 is a
weighted average of the prediction functions of both chil-
dren weighted by the size of the space concerned by each
one. This choice reduces the impact of the prediction on a
leaf when merged with a bigger leaf. Our definition of the
loss L in equation 3 also considers the size of the spaces
since we compute the integral. The main interest of this
method is to reduce the average error on the whole tree by
weighting the cost of an error by the size of its space. While
most prunning procedures in litterature are centered about
reducing the risk of overfitting, our algorithm (Algorithm 3)
cares only about reducing the size of the tree, ensuring that
the complexity of the representation does not go above a
given threshold. Since this procedure is not based on the
training set used to grow the forest, it is not necessary to have
an access to the training set in order to prune the tree. When
merging theM trees of a forest, it is crucial to prune the tree
resulting of two merge before applying another merge.

Algorithm 3 The tree pruning algorithm
1: splits = {} . Map from (node,L) to φ,

ordered by L
2: for all n ∈ preLeafs(t) do
3: L = getLoss(n) . See Eq. 3
4: φ = getAverageFunction(n) . See Eq. 4
5: add ((n,L), φ)) to splits
6: end for
7: nbLeafs← countLeafs(t)
8: while nbLeafs > maxLeafs do
9: ((n,L), φ))← popFirst(splits)

10: φn ← φ
11: removeChild(n)
12: if isLastSplit(father(n)) then
13: n← father(n)
14: L = getLoss(n) . See Eq. 3
15: φ = getAverageFunction(n) . See Eq. 4
16: add ((n,L), φ)) to splits
17: end if
18: nbLeafs← nbLeafs− 1
19: end while

5 Approximation of the optimal policy

In this section, we propose three new methods used to
choose optimal action for a given state based on an estima-
tion of the Q-value by a regression forest. While learning of
the policy can be computationally demanding since it is per-
formed offline, it is crucial to obtain descriptions of the poli-
cies that allow very quick computation of the action, given
the current state.



5.1 Learning the continuous policy
In order to compute the best policy given an approximation
of the Q-value Q̂ by a regression forest F , we need to solve
the following equation:

π̂∗(s) = argmax
a∈A

F ((s, a)) (5)

Given s, the most straightforward way to compute π̂∗(s)
consists in merging all the trees of F projected on s into
a single tree t′. Since the size of t′ can grow exponentially
with the number of trees, we compute an approximation of
t′, denoted t̂′ by imposing a limit on the number of leafs us-
ing Algorithm 3. Then it is possible to approximate the best
actions by simply iterating on all the leafs of t̂′ and comput-
ing the maximum of the function φ of the leaf in its interval.
While this solution does not provide the exact policy which
would be induced by F , it provides a roughly good approx-
imation. We refer to this method by Fitted Q-Iteration, FQI
for short.

The FQI is computationally too expensive to be used in
online situation: the computation of a single action requires
exploring a potentially large number of leaves. Therefore,
in order to provide a very quick access to the optimal ac-
tion for a given state, we propose a new scheme. By de-
composing the policy function π : S 7→ A into several
functions πj : S 7→ Aj where j is a dimension of the ac-
tion space, we can easily generate samples and use them to
train regression forests which provide estimates of the pol-
icy for each dimension. We named this process Fitted Pol-
icy Forest and abreviate it by FPF. We use two variants,
one using a piecewise constant model for the nodes, PWC
for short, and another using piecewise linear model for the
nodes, PWL for short. We refer to these two methods by
FPF:PWC and FPF:PWL respectively. Policies resulting of
the FPF algorithm provides a quick access. If such a policy
is composed of M trees with a maximal number of nodes n,
the complexity of getting the action is O(M log(n)). Since
the values used for M does not need to be high to provide
a good approximation (Ernst, Geurts, and Wehenkel 2005),
this complexity makes FPF perfectly suited for real-time ap-
plications where online computational ressources are very
limited, such as robotics.

6 Exploration
While MRE (Nouri and Littman 2009) provide a strong ba-
sis to build exploration algorithm, we found that its perfor-
mance can be strongly improved by bringing three modifi-
cations. First we change the equation used to compute the
knownness, second we use bagging technic to improve the
estimation of the knownness, and third we modify the rule
used for Q-value update.

6.1 Original definition
Multi Resolution Exploration (Nouri and Littman 2009) pro-
pose a generic algorithm allowing to balance the exploration
and the exploitation of the samples. The main idea is to build
a function κ : S × A 7→ [0, 1] which estimate the degree of
knowledge of a couple (s, a) ∈ S×A. During the execution

S = {(s0, a0, r0, s′0), . . . }

T S = {(x0, y0), . . . }

evaluateSamples(S, Q0)

Q̂h

learnForest(T S,PWC)

h < H

evaluateSamples(S, Qh)

Q̂

h = H

FQI

T Sπ = {(s0, a0), . . . }

generateSamples(S, Q̂)

FPF:PWC

learnForest(T Sπ,PWC)

FPF:PWL

learnForest(T Sπ,PWL)

Figure 4: A flowchart of the different methods

of the algorithm, when action a is taken in state s, a point
p = (s1, . . . , sdimS , a1, . . . , adimA) is inserted in a kd-tree,
called knownness-tree. Then, the knownness value accord-
ing to a knownness-tree τ at any point p can be computed by
using the following equation:

κ(p) = min

1,
|P |
ν

1⌊
k
√
nk/ν

⌋
‖H‖∞

 (6)

where ν is the maximal number of points per leaf, k =
dim(S × A), n is the number of points inside the whole
tree, P = points(leaf(τ, p, )) and H = space(leaf(τ, p, )).
A crucial point of this equation is the fact that the known-
ness value depends on three main aspects: the size of the
cell, the number of points inside the cell and the number of
points inside the whole tree. Therefore, if the ratio between
the number of points contained in a cell and its size does not
evolve, its knownness value will decrease.

The insertion of points inside the kd-tree follows this rule:
if adding the point to its corresponding leaf l0 would lead to
a number of points greater than ν, then the leaf is splitted
into two leafs l1 and l2 of the same size, and the dimension
is chosen using a round-robin. Then the points stored in l0
are attributed to l1 and l2 depending on their value.

MRE also changes the update rule by using an optimistic
rule which replace equation (2) by equation (7):

y′ = κ(s, a)y + (1− κ(s, a))Rmax

1− γ
(7)

whereRmax is the maximal reward which can be awarded in
a single step and y is the result obtained by equation (2). This
update can be seen as adding a transition to a fictive state
containing only self-loop and leading to a maximal reward
at every step. This new transition occurs with probability
1− κ(s, a).



6.2 Computation of the knownness value
Initial definition of the knownness is given at Equation (6).
Since this definition does only depend on the biggest dimen-
sion, we have the following. Consider a leaf l0 with a known-
ness τ0, then adding a point can result in creating two new
leafs l1 and l2 with respective knowledge of k1 and k2 with
k0 > k1 and k0 > k2. This leads to the unnatural fact that
adding a point in the middle of other points can decrease the
knowledge of all these points.

We decide to base our knowledge on the ratio between the
density of points inside the leaf and the density of points.
Thus replacing Equation (6) by Equation (8):

κ(p) = min

1,

|points(leaf(τ,p))|
|leaf(τ,p)|

n
|S×A|

 (8)

where n is the total number of points inside the tree. This
definition leads to the fact that at anytime, there is at least
one leaf with a knownness equal to 1. It is also easy to see
that there is at least one leaf with a knownness strictly lower
than 1, except if all the cells have the same density.

6.3 From knownness tree to knownness forest
In order to increase the smoothness of the knownness func-
tion, we decided to aggregate several kd-trees to grow a for-
est, following the core idea of extra-trees (Geurts, Ernst,
and Wehenkel 2006). However, in order to grow different
kd-trees from the same input, the splitting process needs to
be stochastic. Therefore, we implemented another splitting
scheme based on extra-trees.

The new splitting process is as follows: for every dimen-
sion, we choose at uniformous random a split between the
first sample and the last sample. Thus, we ensure that every
leaf contains at least one point. Then we use an heuristic to
choose the best split.

Once a knownness forest is grown, it is easy to compute
the knownness value by averaging the result of all the trees.

6.4 Modification of the Q-value update
The Q-value update rule proposed by MRE improve the
search speed, however it has a major drawback. Since it only
alters the training set used to grow the regression forest, it
can only use the knownness information on state action com-
bination which have been tried. Therefore, even if for a state
s and an action a, κ(s, a) ≈ 0, it might have no influence at
all.

In order to solve this issue, we decided to avoid the modi-
fication of the training set creation, thus using Equation (2).
In place of modifying those samples, we simply update the
regression forest by applying the following modificator on
every leaf of every tree:

v′ = vκ(c) +Rmax(1− κ(c)) (9)

with c the center of the leaf, v the original value and v′ the
new value.

7 Experimental results
We present experimental results under two different learn-
ing setup. First, the results obtained by FPF in a batch re-
inforcement learning, second, the performances obtained by
combining MRE and FPF for online learning.

7.1 Batch reinforcement learning
We used three benchmark problems classical in RL to eval-
uate the perfomances of the FPF algorithms. While all the
methods share the same parameters for computing the Q-
value forest, we tuned specifically parameters concerning
the approximation of the policy using the Q-value forest.
We compared our results with those presented in (Pazis and
Lagoudakis 2009), however we do not have access to their
numerical data, and rely only on the graphical representation
of these datas. Thus, the graphical lines shown for BAS are
approximative and drawn thicker than the other to highlight
the noise in measurement. We present the result separately
for the three benchmarks while discussing results specific
to a problem as well as global results. On all the problems,
performances of FPF:PWL are better or at least equivalent
to those achieved by BAS in (Pazis and Lagoudakis 2009).
This is remarkable, because BAS uses a set of basic func-
tions specifically chosen for each problem, while our method
is generic for all the problems. The computation cost of re-
trieving actions once the policy has been calculated appears
as negligeable and therefore confirms that our approach is
perfectly suited for high-frequency control in embedded sys-
tems.

Inverted pendulum stabilization The inverted pendulum
stabilization problem consists of balancing a pendulum of
unknown length and mass by applying a force on the cart
it is attached to. We use the description of the problem
given in (Pazis and Lagoudakis 2009). The state space is
composed of the angular position of the pendulum θ and
the angular speed of the pendulum θ̇, the action space is
[−50, 50] Newtons, an uniform noise in [−10, 10] Newtons
is added. The goal is to keep the pendulum perpendicular to
the ground and the reward is formulated as following:

R(θ, θ̇, f) = −

(
(2θ/π)2 +

(
θ̇
)2

+

(
f

50

)2
)

except if |θ| > π
2 , in this case the reward is −1000 and the

state is considered as terminal. We set the discount rate γ to
0.95. The transitions of the system follow the nonlinear dy-
namics of the system described in (Wang, Tanaka, and Grif-
fin 1996):

θ̈ =
gsin(θ)− αml

(
θ̇
)2

sin(2θ)
2 − αcos(θ)u

4l
3 − αmlcos2(θ)

where g is the constant of gravity 9.8[m/s2], m = 2.0[kg]
is the mass of the pendulum, M = 8.0[kg] is the mass of the
cart, l = 0.5[m] is the length of the pendulum, α = 1

m+M
and u is the final (noisy) action applied. We used a control
step of 100[ms] and an integration step of 1[ms] (using Eu-
ler Method). The reward used in this description of the prob-
lem ensure that policies leading to a smoothness of motion



Figure 5: Performance on the Inverted Pendulum Stabiliza-
tion problem

and using low forces to balance the inverted pendulum are
rated higher than others.

The training sets were obtained by simulating episodes
using a random policy, and the maximal number of steps for
an episode was set to 3000. The performances of the poli-
cies were evaluated by testing them on episodes of a max-
imal length of 3000 and then computing the cumulative re-
ward. In order to provide an accurate estimate of the perfor-
mance of the algorithms, we computed 50 different policies
for each point displayed in Figure 5 and average their cumu-
lative reward (vertical bars denote 95% confidence interval).
The parameters used to produce the policies are shown in
Table 1.

Learning a policy from the Q-value tree clearly outper-
form a direct use on this problem and PWL approximations
outperform PWC approximations. Results for BAS (Pazis
and Lagoudakis 2009) rank systematically lower than both
FPF methods. The huge difference of learning speed be-
tween FQI and FPF suggests that using regression forest to
learn the policy from the Q-value can lead to drastical im-
provements. On such a problem where the optimal policy
requires a fine choice of action, it is not surprising that using
linear models to represent the policy provide higher results
than constant models.

The best value for nmin, the minimal number of samples
per leaf, is pretty high (17 for PWC and 125 for PWL). Our
understanding of this phenomena is that the Q-value tree
tend to slightly overfit the data, additionally, it uses PWC
approximation. Therefore, using it directly lead to an impor-
tant quantization noise. Using a large value for nmin might
be seen as applying a smoothing, which is considered as nec-
essary for regression trees sampling a stochastic function ac-
cording to (Ernst, Geurts, and Wehenkel 2005). The need for
a large number of samples is increased for FPF:PWL, be-
cause providing an accurate linear interpolation of a noisy
application requires a lot of samples.

Double integrator In order to provide a meaningful com-
parison, we stick to the description of the problem given
in (Pazis and Lagoudakis 2009) where the control step has
been increased from the original version presented in (San-
tamaria, Sutton, and Ram 1997). The double integrator is
a linear dynamics system where the aim of the controller

Table 1: Parameters used for Inverted Pendulum Stabiliza-
tion

Parameter FQI FPF:PWC FPF:PWL
Nb Samples NA 10’000 10’000
Max Leafs 50 50 50
k NA 2 2
nmin NA 17 125
M NA 25 25
Vmin NA 10−4 10−4

Figure 6: Performance on the Double Integrator problem

is to reduce negative quadratic costs. The continuous state
space consist of the position p ∈ [−1, 1] and the velocity
v ∈ [−1, 1] of a car. The goal is to bring the car to an equilib-
rium state at (p, v) = (0, 0) by controlling the acceleration
α ∈ [−1, 1] of the car. There are two constraints: |p| ≤ 1 and
|v| ≤ 1. In case any of the constraint is violated, a penalty of
50 is received and the experiment ends. In all other case, the
cost of a state is p2 + a2. The control step used is 500[ms]
and the integration step is 50[ms], the discount factor was
set to γ = 0.98.

The training sets were obtained by simulating episodes
using a random policy, and the maximal number of steps for
an episode was set to 200. The performances of the policies
were evaluated by testing them on episodes of a maximal
length of 200 and then computing the cumulative reward. In
order to provide an accurate estimate of the performance of
the algorithms, we computed 100 different policies for each
point displayed in Figure 6 and average their results. The
parameters used for learning the policy are shown in Table 2.

On this problem, although none of the proposed meth-
ods reach BAS performance when there are more than 300
learning episodes, FPF:PWL learns quicker than BAS with
a small number of episodes. It is important to note that
while our basic function approximator is constant, a poly-
nome is used for Least-Square Policy Iteration in (Pazis and
Lagoudakis 2009), fitting the fact that the optimal policy is
known to be a linear-quadratic regulator (Santamaria, Sut-
ton, and Ram 1997).

Car on the hill While there has been several definitions
of the Car on the Hill problem, we will stick to the version
proposed in (Ernst, Geurts, and Wehenkel 2005) which was
also used as a benchmark in (Pazis and Lagoudakis 2009).



Table 2: Parameters used for Double Integrator

Parameter FQI FPF:PWC FPF:PWL
Nb Samples NA 10’000 10’000
Max Leafs 40 40 40
k NA 2 2
nmin NA 100 1500
M NA 25 25
Vmin NA 10−4 10−4

In this problem an underactuated car must reach the top of a
hill. The state space is composed of the position p ∈ [−1, 1]
and the speed s ∈ [−3, 3] of the car while the action space
is the acceleration of the car u ∈ [−4, 4]. If the car violate
one of the two constraints: p ≥ −1 and |s| ≤ 3, it receives
a negative reward of −1, if it reaches a state where p > 1
without breaking any constraint, it receive a reward of 1, in
all other states, the reward is set to 0. The car need to move
away from its target first in order to get momentum.

It is well known that the solution to this problem is a bang-
bang strategy, i.e. a nearly optimal strategy exists which
uses only the set of actions {−4, 4}. As stated in (Pazis and
Lagoudakis 2009), this problem is one of the worst case for
reinforcement learning with continuous action space, since
it requires to learn a binary strategy composed of actions
which have not been sampled frequently. It has been shown
in (Ernst, Geurts, and Wehenkel 2005) that introducing more
actions usually reduce the performance of the controller.
Therefore, we do not hope to reach a performance compara-
ble to those achieved with a binary choice. This benchmark
is more aimed to assess the performance of our algorithms,
in one of the worst case.

While the sample of the two previous algorithms are
based on episodes generated at a starting point, the samples
used for the Car on the hill problem are generate by sam-
pling uniformly the state and action spaces. This procedure
is the same which has been used in (Ernst, Geurts, and We-
henkel 2005) and (Pazis and Lagoudakis 2009), because it is
highly improbable that a random policy could manage to get
any positive reward in this problem. Evaluation is performed
by observing the repartition of the number of steps required
to reach the top of the hill from the initial state (−0.5, 0).

We show the histogram of the number of steps required
for each method at Figure 7. For each method, 200 different
strategies were computed and tested. There is no significant
difference in the number of steps required to reach the top of
the hill between the different methods. For each method, at
least 95% of the computed policies led to a number of step
in the interval [20, 25]. Thus we can consider that an FPF
or FQI controller take 20 to 25 steps on average while it is
mentioned in (Pazis and Lagoudakis 2009) that BAS con-
troller requires 20 to 45 steps on average. Over the six hun-
dred of experiments gathered across three different methods,
the maximal number of steps measured was 33. Therefore,
we can consider that our results strongly outperforms BAS
results.

Car on the Hill is the only problem on which we have

Figure 7: Performance on the Car on the Hill problem

not experienced significant difference between FPF and FQI.
Since one of the main advantage of FPF approach is to re-
duce the quantization noise of the FQI method, this result
is logical. Although the number of steps required is not re-
duced by the FPF approach, the online cost is still reduced
by around two orders of magnitude. Therefore, we can af-
firm that FPF is highly preferable to FQI on this problem.

Computational cost As mentioned previously, a quick ac-
cess to the optimal action for a given state is crucial for real-
time applications. We present the average time spent to re-
trieve actions for different methods in Figure 8 and the av-
erage time spent for learning the policies in 9. Experiments
were runned using an AMD Opteron(TM) Processor 6276
running at 2.3 GHz with 16 GB of RAM running on Debian
4.2.6. While the computer running the experiments had 64
processors, each experiment used only a single core.

We can see that using FPF reduces the average time
by more than 2 orders of magnitude. Moreover, FPF:PWL
presents a lower online cost than FPF:PWC, this is perfectly
logical since representing a model using linear approxima-
tion instead of constant approximations requires far less
nodes. While the results are only displayed for the “Double
Integrator” problem due to the lack of space, similar results
were observed for the two other problems.

It is important to note that the cost displayed in Figure 8



Figure 8: Evaluation time by episod for the Double Integra-
tor

Figure 9: Learning time by episod for the Double Integrator

represents an entire episode simulation, thus it contains 200
action access and simulation steps. Therefore, it is safe to
assume that the average time needed to retrieve an action
with FPF:PWC or FPF:PWL is inferior to 50µs. Even if the
CPU used is two orders of magnitude slower than the one
used in the experiment, it is still possible to include an action
access at 200Hz.

The additional offline cost of computing the polices re-
quired by FPF is lower than the cost of computing the Q-
value using FQI when the number of training episode grows,
as presented in Figure 9. Therefore, when it is possible to use
FQI, it should also be possible to use FPF without increasing
too much the offline cost.

7.2 Online reinforcement learning

We evaluated the performance of the combination of MRE
and FPF on two different problems. First, we present the
experimental results on the Inverted Pendulum Stabilization
problem and compare them with the results obtained with
random exploration. Second, we exhibit the results on the
Inverted Pendulum Swing-Up problem. Since online learn-
ing on robots can be expensive in time and resources, we
did not allow for an early phase of parameter tuning and
we used simple rules to set parameters for both problems.
In both problems, the policy is updated at the end of each
episode, in order to ensure that the system is controlled in
real-time. In this section, we denote by trial a whole execu-
tion of the MRE algorithm on the problem.

Figure 10: Reward repartition for online learning on Inverted
Pendulum Stabilization

Inverted pendulum stabilization This problem is exactly
the same as defined in Section 7.1, but it is used in a con-
text of online reinforcement learning. The result presented
in this section represent 10 trials of 100 episodes. Each trial
was used to generate 10 different policies, every policy was
evaluated by 50 episodes of 3000 steps. Thus, the results
concerns a total of 5000 evaluations episodes.

The repartion of reward is presented in Figure 10. The re-
ward obtained by the best and worst policy are shown as thin
vertical lines, while the average reward is represented by a
thick vertical line. Thus, it is easy to see that there is a huge
gap between the best and the worst policy. Over this 5000
episodes, the average reward per run was −171, with a min-
imum of−1207 and a maximal reward of−128. In the batch
mode settings, after the same number of episodes, FPF-PWL
obtained an average reward of−172, with a minimal reward
of −234 and a maximal reward of −139. While the aver-
age reward did not significantly improve, the dispersion of
reward has largely increased and in some cases, thus lead-
ing to better but also worst policy. While this might be per-
ceived as a weakness, generating several policies from the
computed Q-value is computationally cheap. Then, a few
episodes might be used to select the best policy. From the
density of reward presented in Figure 10, it is obvious that
by removing the worst 10% of the policies, the average re-
ward would greatly improve.

Another point to keep in mind is the fact that the param-
eters of FPF have not been optimized for the problem in the
MRE setup, while they have been hand-tuned in the Batch
setup. Therefore, reaching a comparable performance with-
out any parameter tuning is already an improvement.

Inverted pendulum swing-up For this problem, instead
of using a mathematical model, we decided to use the sim-
ulator Gazebo2 and to control it using ROS3. Since these
two tools are widely accepted in the robotic community, we
believe that exhibiting reinforcement learning experiments
based on them can contribute to the democratization of RL
methods in robotics. We developed a simple model com-
posed of a support and a pendulum which are bounded by

2http://gazebosim.org
3http://www.ros.org



an angular joint. The angular joint is controled in torque and
is underactuated, i.e. the available torque is not sufficient
to maintain the pendulum in an horizontal state. The main
parameters are the following: the mass of the pendulum is
5[kg], the length of the pendulum is 1[m], the damping coef-
ficient is 0.1[Nms/rad], the friction coefficient is 0.1[Nm],
the maximal torque is τmax = 15[Nm], the maximal angu-
lar speed is θ̇max = 10[rad/s] and the control frequency is
10[Hz]. The reward function used is the following

r = −

(∥∥∥∥ θπ
∥∥∥∥+ ( τ

τmax

)2
)

(10)

Where θ is the angular position of the pendulum (0 denote
an upward position), and τ represent the torque applied on
the axis. If

∥∥∥θ̇∥∥∥ > θ̇max, a penalty of 50 is applied and the
episode is terminated.

While the system only involves two state dimensions and
one action dimension, it presents two main difficulties: first,
random exploration is unlikely to produce samples where
θ ≈ 0 and θ̇ ≈ 0 which is the target, second, it requires
the use of the whole scale of action, large actions in order
to inject energy in the system and fine action in order to
stabilize the system.

The result presented in this section represent 5 trials of
100 episodes. Each trial was used to generate 10 different
policies, every policy was evaluated by 10 episodes of 100
steps. Thus, there is a total of 500 evaluation episodes.

We present the repartition of the reward in Figure 11. The
average reward is represented by a thick vertical line and the
best and worst policies rewards are shown by thin vertical
lines. Again, we can notice a large difference between the
best and the worst policy. We exhibit the trajectory of the
best and worst evaluation episode in Figure 12. While the
worst episode has a cumulated reward of −101, the worst
policy has an average reward of−51. According to the repar-
tition of the reward, we can expect that very few policies lead
to such unsatisfying results, thus ensuring the reliability of
the learning process if multiple policies are generated from
the gathered samples and a few episodes are used to discard
the worst policy.

8 Discussion
Our results show that using FPF does not only allow to dras-
tically reduce the online computational cost, it also tend to
outperforms FQI and BAS, especially when the transition
function is stochastic as in the Inverted Pendulum Stabiliza-
tion problem.

Although using piecewise linear function to represent the
Q-value often leads to divergence as mentioned in (Ernst,
Geurts, and Wehenkel 2005), the same problem did not ap-
pear on any of the three presented problems. In two of the
three presented benchmarks, FPF:PWL yields significantly
better results than FPF:PWC and on the last problem, re-
sults were similar between the two method. The possibility
of using PWL approximations for the representation of the
policy holds in the fact that the approximation process is per-
formed only once. Another advantage is the fact that on two

Figure 11: Reward repartition for online learning on Inverted
Pendulum Swing-Up

Figure 12: Best and worst episode for Inverted Pendulum
Swing-Up

of the problem, the policy function is continuous. However,
even when the optimal policy is bang-bang (Car on the hill),
using PWL approximation for the policy does not decrease
the general performance.

Our experiments on the combination of MRE and FPF
showed that we can obtain satisfying results without a
parameter-tuning phase. Results also show the strong vari-
ability of the generated policies, thus leading to a natural
strategy of generating multiple policies and selecting the
best in a validation phase.

9 Conclusion
This article introduces Fitted Policy Forest, an algorithm ex-
tracting a policy from a regression forest representing theQ-
value. FPF presents several advantages: it has an extremely
low computational cost to access the optimal action, it does
not require expert knowledge about the problem, it is par-
ticularly successful at solving problems requiring fine ac-
tions in stochastic problems and it can be used with any al-
gorithm producing regression forests. The effectiveness of
our algorithm in a batch setup is demonstrated in three dif-
ferent benchmarks. The use of FPF in online reinforcement
learning is also discussed and assessed by using MRE as an
exploration strategy. Experimental results suggest that ex-
ploration can lead to satisfying results without requiring any
tuning on the parameters. In the future, we also would like
to apply this approach to closed-loop control of Robocup
humanoid robots.
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