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— Solvers need parameters. How to select them? Is changing parameters as strong as changing solvers? _ . .
— When new solvers are “better” than older ones? New ideas may hide noise effects on parameters!

— We took 10 magic values of MINISAT and built 126 solvers, each 1-parameter away from the original one. . . . . . .
— Side-effect over parameters are simulated by adding only 10% noise each time a constant is requested.

~ Observations
— Released MINISAT is well-tuned. Taking 2 versions improves performances, but more than 3 don'’t. -~ Observations
— Satelite is not always important (best of 2 contains a core version with fast restarts). — Noisy MINISAT behaves like a real different solver. Hard to say if one is better than another.

— Is MINISAT hard limit 74 or 857 What performances are awaited for a “better” solver than MINISAT? .
- Conclusion

— When observing this kind of plot, nothing must be drawn from it, relatively to new ideas. This figure may only
report a noisy side-effect of any data-structure.

— Conclusion

— High discrepency is observed when changing restart policies. Fast restart is efficient with MINISAT core.

— Small changes can really change solvers. Ideas for multicore processors?
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