
Experimenting with Small Changes in

Conflict-Driven Clause-Learning Algorithms
Gilles Audemard Laurent Simon

Univ d’Artois, CRIL - CNRS, UMR8188, Univ Paris-Sud, LRI - CNRS, UMR8623,
Lens, F-62307 and INRIA-Futurs, Orsay, F-91405

audemard@cril.univ-artois.fr simon@lri.fr

Introduction

– Conflict-Driven Clause Learning:

– are believed to be well-known:

∗ They embed dynamic heuristics [6, 3], learning [7], restarts [4, 1]
and lazy data structures [6].

∗ (efficient) SAT Solvers can be written from scratch in less than
a thousand lines of code.

– are not so well-known:

∗ Who really understand the underlying mechanisms?

∗ No real experimental studies: Progresses have been made with
extensive tests “only”

∗ What is a good learnt clause? When to forget? When to restart?

– Crucial for future progresses:

– In-depth study rather than immediate improvements

– Understanding each component of any CDCL solvers

– Questions adressed here:

– How small changes in Minisat [2] change results?

– Impact of data structures v.s. “good” ideas

Lisa Syndrome Revisited

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

T
im

e
(s

)
to

 s
ol

ve
 a

n
in

st
an

ce

Number of solved instances

"minisat"
"best"

"best6"
"best24"
"best50"

– Principle

– Shuffling instances is admitted to be “bad” for industrial bench-
marks, Is it really true?? How much it is bad?

– We shuffled instances [5] and performed 50 runs by instance

– Observations

– Curves ”best” (resp. ”besti”) plot the result of virtual solvers
which would have the best CPU time on all shuffled runs (resp.
the ith percentile)

– Minisat solves 55 problems, ”best” 69.

– 25% of chances to obtain better results by shuffling instances!

– Conclusion

– Shuffling instance may improve results. Many shuffling shows
that Minisat on original instance is not the best run. Im-
provements may be obtained here.

– Shuffling is not so bad. If it would have been so crucial to keep
original benchmarks, we would have expected worst results.

Parameters effects

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

(s
)

Number of solved instances

Minisat core
Minisat simp
Best option

Best of 2
Best of 3
Best of 4

Best of all

– Principle

– Solvers need parameters. How to select them? Is changing parameters as strong as changing solvers?

– We took 10 magic values of Minisat and built 126 solvers, each 1-parameter away from the original one.

– Observations

– Released Minisat is well-tuned. Taking 2 versions improves performances, but more than 3 don’t.

– Satelite is not always important (best of 2 contains a core version with fast restarts).

– Is Minisat hard limit 74 or 85? What performances are awaited for a “better” solver than Minisat?

– Conclusion

– High discrepency is observed when changing restart policies. Fast restart is efficient with Minisat core.

– Small changes can really change solvers. Ideas for multicore processors?

– Principle

– When new solvers are “better” than older ones? New ideas may hide noise effects on parameters!

– Side-effect over parameters are simulated by adding only 10% noise each time a constant is requested.

– Observations

– Noisy Minisat behaves like a real different solver. Hard to say if one is better than another.

– Conclusion

– When observing this kind of plot, nothing must be drawn from it, relatively to new ideas. This figure may only
report a noisy side-effect of any data-structure.

Indentifying Good Learnt Clauses ?

– Principle

– CDCL solvers are very memory consumming. Bad
clauses must be forgotten.

– Is it possible to detect “good” clauses? It is well
admitted that short clauses are better. Is this sim-
ple assumption already true?

– We deleted at random 50% of short (resp. large)
clauses and compare it with deleting 25% of
clauses.

– Observations

– No differences are observed! Deleting short or
large clauses at random is the same.

– Conclusion

– Large clauses are important for UNSAT proofs (already known).

– Large clauses may have a local – but important – impact on the proof, when it is reduced in the search tree.

– The simple assumption that shorter clauses are better is false. We need a way to identify good clauses, and experimentally validate this.

Conclusion

– Experimenting?

– Experimentation is the traditional companion section of papers.
Competition are organized [5] to “rank” solvers.

– This is more “testing” than “experimenting”.

– Poster Lessons

– A lot of work is still pending to really understand the beahvior of
CDCL solvers.

– Not easy to prove that a solver is “better” than another. What is
“better”? Hard question, even on a fixed set of benchmarks.

– We need to build a real experimental science of CDLC solvers. This
is possible, the SAT area is one of the pioneers in this direction.

References

[1] A. Biere. Adaptive restart strategies for conflict driven SAT solvers. SAT’08.

[2] N. Een and N. Sorensson. An extensible sat-solver. SAT’03.

[3] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. DAM’07.

[4] J. Huang. The effect of restarts on the efficiency of clause learning. IJCAI’07.

[5] D. Le Berre and L. Simon. Essentials of the SAT’03 competition. SAT’03.

[6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. DAC’01.

[7] J. Marques-Silva and K. Sakallah. Grasp - a new search algorithm for satisfiability.
ICCAD’96.

