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Abstract. Despite the important effort in developing fast and power-
ful SAT solvers, many aspects of their behaviors remains largely unex-
plained. We analyze the properties of learnt clauses derived by a typical
Conflict Driven Clause Learning algorithm (CDCL) and study how they
are linked to their ancestors, in the dependency graph generated by the
resolution steps during conflict analysis and clauses minimizations. We
show that all these graphs share a common structure: they are non k-
degenerated with surprising large values, which mean they contain a very
dense subgraph, the K-Core. We unveil the existence of large K-Cores,
even on parallelized SAT solvers with clauses exchanges. We show that
the analysis of the K-Core allows a good prediction of which literals will
occur in future learnt clauses, until the very end of the computation.
Moreover, we show that the analysis of the graph allows to identify a set
of learnt clauses that will be necessary for deriving the final contradic-
tion. At last, we demonstrate that the analysis of the dependency graph
is possible with a reasonable cost in any CDCL.

1 Introduction

Since the introduction of the Conflict-Driven Clause Learning (CDCL) frame-
work [14, 15], the SAT technology has entered a new era. Solvers are now relying
on lookback techniques rather than lookahead ones, which make the analysis of
current methods harder. At the age of the Davis Putnam Logemann Loveland
(DPLL) procedure [4, 11], typically before the 2000’s, the need for studying the
behavior of algorithms was indeed less crucial. DPLL was a typical system-
atic backtrack search algorithm, relying on strong (costly and lookahead-based)
heuristics for decisions: solvers were often spending most of their time at each
node of the search tree computing their heuristics values to make careful deci-
sions. As a consequence, the architecture of these solvers was mostly understood
by the mathematical definition of the heuristics allowed to infer some general
results on the size of the search tree [12], at least on random instances. On more
structured problems, heuristics gave a very strong intuition explaining why the
algorithm was working efficiently (e.g. branch on most frequent and balanced
variables in shortest clauses, . . . ).
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Within a few years, thanks to the introduction of the CDCL framework, the
picture had considerably changed. The systematic backtrack search of the orig-
inal DPLL is now ensured by the learning mechanism in CDCL, but aggressive
clauses database cleanings [2, 7], very reactive heuristics and very fast restarts [8]
makes the final procedure very complex to analysis. More importantly, the state
of the search in a CDCL is not static anymore (i.e. based on some counters ana-
lyzing the current formula at a point of the search tree). The state of the search
is now based on the entire past of the solver. In addition, each component of so
called “Modern” SAT solvers are tightly connected together and any intrusive
change in any of them may have considerable side effects on other components.
It is thus very difficult to study these solvers, and we argue that we need to
consider them as complex systems, needing an important experimental study in
order to understand their strengths and weaknesses.

This work can be viewed as extending a few previous works [1, 9] that tried to
connect theoretical measures with observed behavior of SAT solvers. However, no
previous work has focused on some structural properties of generated proofs. In
[1], they used a modified version of satz [11] to study the evolution of the space
needed by the solver on a set of random and industrial problems. In another
work [9], it was proposed to build a particular set of formulas (pebbling puzzles)
to study the relationship between the minimal proofs for the initial formula
and the behavior of CDCL solvers. The shape of proofs produced by CDCL
solvers was also previously identified as a possible bottleneck for their efficient
parallelization [10]. In some sense, we follow the same kind of idea in this paper
but we focus on demonstrating a very particular structure of the proofs produced
by sequential and parallel solvers. Our study is inspired by the work of [19] that
already proposed to study the proofs, post-mortem, but by extending this work
and focusing our study on the existence (and importance for the search) of a
very dense subgraph (the K-Core) in all the proofs produced by CDCL SAT
solvers.

Our hypothesis is that the existence of a K-Core strongly forces the search of
the SAT solver, which implies that the study of K-Cores of dependency graphs
is a necessary step towards a better understanding of SAT solvers. Our paper is
thus an experimental paper, the aim of which is to report the existence – and the
importance – of a dense subgraph in the dependency graph generated by SAT
solvers and not (yet) to improve the performances1 We organized our work as
follows: after a few preliminaries presenting the essential notions of SAT solvers
and K-Cores in graphs, we demonstrate the presence of K-Cores in dependency
graphs produced by CDCL SAT solvers. Then, we show that the analysis of the
dependency graph allows to make good predictions of the usefulness of learnt
clauses. Then, we extend our findings in two directions. Firstly, we show that
our results can be generalized to parallel proof. Secondly, we show that the
analysis of the dependency graph can be done in any CDCL SAT solver with no
additional memory required and at very small cost.

1 For the reviewing process, figures are in colors. We plan to make two versions of the
paper if accepted, with a black and white version of the figures for the proceedings.
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2 Preliminaries

We assume the reader familiar with SAT but let us just recall here the global
schema of CDCL solvers [3, 15, 7]: a branch is a sequence of decisions (taken ac-
cordingly to the VSIDS heuristic), followed by unit propagations, repeated until
a conflict is reached. Each decision literal is assigned at a distinct, increasing,
decision level, with all propagated literals assigned at the same decision level.
Each time a conflict is reached, a series of resolution steps, performed during
conflict analysis, allows the solver to extract a new clause to learn. This clause
is then added to the clause database and a backjumping is triggered, forcing
the last learnt clause to be unit and then propagated. Solvers also incorpo-
rate other important components such as preprocessing [5], restarts and learnt
clause database reduction policies. It was shown in [2] that the strategy based
on Literal Block Distance (LBD) was a good way of scoring clauses. The LBD
is computed during conflict analysis: it simply measures the number of distinct
decisions levels occurring in the learnt clause.

Parallel SAT solvers are roughly independent SAT engines (duplicating all
their clauses) that can exchange clauses after each conflicts following some poli-
tics. Classically, binary clauses and clauses of small LBD are exchanged between
solvers, even if more sophisticated techniques have been proposed.

2.1 Dependency graph induced by the proof

The idea behind our study relies on the earlier work of [19], by extending it in
many ways. We base our study on the same notion of dependency graph produced
by a CDCL solver (we took Glucose as a reference, which the author of [19] gave
us). Each conflict generates a new node in the graph (nodes in the dependency
graph either match an original or a learnt clause, and for simplicity we may refer
to a node or a clause for the same object in the following), and an (oriented)
edge is added from each learnt clause to all its ancestors: all the clauses viewed
during conflict analysis or clause minimization, oriented from the learnt clause
to its ancestor.

If the notion of Dependency Graph (DG) holds for SAT and UNSAT formu-
las, we focus in this article on UNSAT formulas only (except in section 6), for
which the DG can be considered as an UNSAT (resolution) proof. Such a proof
is thus here a direct acyclic graphs (DAG), with a subset of original clauses as
leaves, learnt clauses as internal nodes and the empty clause at the top. We
added the ability of Glucose to produce a DG. For this, we had to consider the
special case of unary clauses. In Glucose and Minisat, unary clauses are simu-
lated by adding a virtual decision at level 0, forcing the assignment of the literal
occurring in the unit-clause. Here, we had to keep unit clauses in memory too,
in order to keep track of them during conflict analysis.

Learnt clauses are totally ordered by the number of conflicts they were pro-
duced at. In addition, for each clause, once the total DG is generated, we compute
a set of features. First of all, its usefulness. We call useful a clause necessary of
the proof, and useless if it’s not. Useful clauses are in other words the clauses
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connected with the top clause. Do notice that, with this definition of usefulness,
we do not consider useful a clause that would have been crucial for propagat-
ing a literal during the search, if no resolution was done on this literal during
any conflict analysis. The generalization of DGs to parallel SAT solvers proofs
is easy, by simply considering clauses exchanged by SAT solvers as unique, to
keep track of the origin of each clause (parallel proofs will be considered only in
section 5).

In graph theory, a k-degenerate graph is an undirected graph in which every
subgraph has a vertex of degree at most k. Similarly, a k-core of a graph G is an
undirected subgraph of G in which all vertexes have degree at least k [17]. Thus,
a k-core can be seen as a certificate for the non k-degeneracy of the graph. We
are here interested only in the maximal k-core of graphs, such that the graph is
not k-degenerate but (k+1)-degenerate. We will use the notation K-core for the
maximal k-core of the graph. As these notions are defined over directed graphs,
we will simply consider DG as an undirected graph for computing them. We also
defined the notion of coreness of a graph as the value of the largest k such that
the graph is not k-degenerate.

2.2 Selection of UNSAT problems

Modern SAT solvers can run for millions of conflicts, each one involving hundreds
of resolution steps. They may thus quickly produce very large graphs preventing
any costly analysis. In this article, we will consider two sets of problems. One
suitable for in-depth analysis (described below), and one demonstrating that
our findings on relatively small problems holds on larger classical problems (all
problems from the last 5 competitions, from 2013 to 2017, see section 6).

For the first part of our analysis, as aforementioned, we needed a set of not
too hard, not too easy problems. For simplicity, we took the same approach as
[19] and selected the same set of 60 problems from past competitions, selecting
as many distinct series of problems as possible. The strategy to select the 60
UNSAT problems was to choose at least two benchmarks per family of problems
that needed less than one million conflicts to be solved on the original formula
(non shuffled, after preprocessing). In the same family, “harder” benchmarks
were selected first (thus trying to limit the number of too easy problems). Once
the benchmarks were selected, the SatElite preprocessing [6] was used on each of
them. When mentioned, we also considered shuffled versions of these problems
(random reordering of clauses order, literals positions in clauses and random
renaming of literals). Without any other precisions, median values are considered
when reporting statistics over shuffled problems. We used 50 shuffled instance
per original problem. We used the exact same list of problems than in [19]. The
interested reader can refer to this previous work for more details on the list of
benchmarks.

Experiments were conducted on a cluster of Xeon E7-4870 processors from
the Mesocentre Aquitain de Calcul Intensif with at least one hour CPU time
(more CPU time will be allocated for simulating parallel solvers in the later).
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Fig. 1: Violin plots showing basic statistics on Dependency graph over the 60 problems.
Dashed line is the mean value, middle line the median (over 50 shuffled instances). From
left to right: Number of initial variables and clauses. Second line: number of internal
nodes (or conflicts) and sum of learnt clause sizes. In light gray (more padded to the
right) the total number and in darker gray the useful ones. Last line: percentage of
useful learnt clauses and useful original clauses. All numbers are median values over
shuffled and original problems.

2.3 Basic Dependency Graph properties

Some important properties about DG were already identified in [19]. It was for
instance observed that, on average, only 50% of learnt clauses were useful. More-
over, only 21% of clauses that were unit-propagated were seen in any conflict
analysis. Given the fact that, in order to be used again in another conflict analy-
sis, a clause must be unit-propagated again (due to the backjumping mechanism
that unset all literals seen during last analysis), only a little more than 10% of
unit propagations are used to derive a useful clause. If we approximate the time
taken by a CDCL by the time taken by its unit-propagation engine (which is a
reasonable assumption), we can thus observe that 90% of the time taken by a
CDCL is ”useless” (or only useful to update branching heuristics, ...). Under-
standing the characteristics of the Dependency Graph may be thus crucial to
improve CDCL performances. Figure 1 shows some of the main characteristics
of the formulas and the DG graphs we studied. It confirms the above conclu-
sions made in [19]. We can also check that the formulas are indeed well chosen:
they have different sizes and the median effort to solve them is around 500,000
conflicts, with a maximum of a few millions ones.

3 Characterization of K-Cores

To give a first intuition of the high density of DG generated by SAT solvers,
we represent figure 2 a graphical representation of a very easy problem (less
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Fig. 2: Force-Directed layout of the Dependency Graph for the benchmark
een-pico-prop-05. The color shows the coreness of the node.
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Fig. 3: Characteristics of K-Cores in the set of 60 problems. In the middle, darker plots
are original problems, lighter shuffled problems. A log scale has been used to represent
the wide range of obtained values. On left and right, we show the distribution of median
values over shuffled instances.
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Fig. 4: (Left). Evolution of the K-Core characteristics after 20,000 conflicts and at the
middle of the run (in terms of conflicts). (Right) Distance of the clauses w.r.t. the
K-Core. Original and 50 shuffled versions of the 60 problems are considered. A very
large fraction of the learnt clauses are often very close to the K-Core.

than 100,000 conflicts). Do notice the rotation of the graph around a very dense
center: the K-Core. Figure 3 shows the K-Core values (the coreness of the graph)
and the sizes of the corresponding subgraph on the set of 60 problems, including
shuffled ones. Let us first focus on the two violin plots. We can see (left) that the
K-Cores can be very large. The median is larger than 500 and some problems can
have K-Core values of a few thousands. On the right, we can see that the dense
subgraphs can be quite large too, containing typically more than 2,000 clauses.
Now, if we focus on the scatter plot, it is striking to see how many problems are
very close the y = x line. Those problem have a K-Core size that is very close
to the K-Core value, showing almost a clique of clauses as a K-Core.

3.1 Evolution of K-Cores along the computation

Let us now study how the K-Core evolves along the computation. Figure 4 shows
its characteristics at two points of the search w.r.t its final values. For this, we
computed the K-Core values considering (1) only the first 20,000 conflicts and (2)
only the first half of the conflicts. The first set of points (after 20,000) conflicts
shows that the computed values can be very far from the final values. However,
it is very encouraging to notice that, at half of the run, the values are really
close to the final values, showing that a study of the K-Core at this point of the
computation may probably provide good informations about the final K-Core.

One of the main hypothesis in this work is that the K-Core is strongly forcing
the search of the SAT solver into a close search space. To illustrate this, let us
discuss now the results shown figure 4-right. The figure reports the CDF of the
distance of a certain percentage of learnt clauses to the K-Core, in terms of
resolutions. Clauses in the K-Core are at distance 0. A learnt clause obtained
by resolution with at least a clause of distance n is at most at distance n + 1.
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Fig. 5: The two top violin plots represents the percentages of useful clauses (left) and
learnt clauses (right). The 4 others violin plots summarize the sizes of the clauses in
the K-Core, split between original and learnt clauses. Darker gray violins (padded at
the left) are the same values on the whole original problem (instead of original clauses
in K-Core in light gray). A log scale has been used for reporting sizes of learnt clauses
in the K-Core. All numbers are median values over 50 shuffled and original problems
over our set of 60 problems.

Similarly, a clause used in conflict analysis to produce at least a clause of distance
n is, also, at most at distance n+1 (we thus consider distances on the undirected
DG). On figure 4-right, each curve correspond to a CDF plot. The CDF for P%
shows how many problems (x) have at least P% of its learnt clauses at distance
smaller than y. We considered here all the problems (original and learnt). We
can see that, in the very large majority of the cases, at least half of the learnt
clauses are at distance 5 or less. It is also striking to notice that, on our selection
of problems, half of the problems have 99% of the learnt clauses at distance 5
or less. A distance of 15 resolutions seems also to be a very good bound in the
majority of the cases. Most of the learnt clauses are very close to the K-Core in
terms of resolutions.

3.2 K-Cores Structure

Let us now say a few words on the structure of the K-Core by reading the figure 5.
First of all, let us point out that it is composed by original and learnt clauses,
with a majority of learnt clauses, but with more than 30% of original clauses
(see the median and mean values of the top-right violin plot). More surprisingly,
despite its central role in the creation of all the learnt clauses (see section above),
it is not entirely composed of useful clauses (see top-left violin plot): only around
75% of its clauses are used to derive the final contradiction. Let us now focus on
the sizes of clauses in K-Core (see the 4 bottom plots of figure 5). By construction,
original clauses are often limited in size (SAT encodings may prevent very large
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clauses to be built, and it is common to have a very large majority of binary
clauses), but also contain a few large clauses. However, it is striking to see how
short original clauses are in the K-Core (the median of the clauses are binary
or ternary clauses only). This is emphasized with the comparison of the same
statistics values, but not restricted to original K-Core clauses: the plot in darker
gray shows these values computed on all the original clauses of each problem.
We can thus see that original K-Core clauses are indeed short, compared to
the formula. As opposite, we had to use a log scale to represent the very large
discrepancy in the size of K-Core learnt clauses. Here, clauses larger than 100
are frequent.

Two conclusions can be drawn from this experiment. Firstly, it is interesting
to notice that some clauses of the K-Core, despite its central role in the learning
mechanism, are useless. This is potentially an interesting point for improving
SAT solver performances: identifying these clauses could potentially help the
solver not generating useless clauses. Secondly, the fact that the K-Core con-
tains very large clauses casts also a new light on detecting important clauses.
We also observed that K-Core clauses are not necessarily clauses of small LBD
(experiment not reported here), and thus there is a high chance that they could
be removed during the clause database reduction. In order to explain this ap-
parent paradox, we make the hypothesis that these clauses stay because of an
implementation trick in the clause database reduction: in Glucose, only clauses
of small LBD are kept but things are a little bit more complicated. In fact, the
clause database reduction is generally triggered right after a regular backjump
after a conflict analysis, but not after a restart. During the reduction, clauses
that are currently unit-propagated are not removed. Thus, very large clauses
that are very likely to be unit-propagated are also likely to be kept, which is
probably the case of K-Core clauses.

4 On predictions based on Dependency Graph analysis

The existence of large K-Cores is something that is not uncommon in real-life
graphs, in which its analysis can even be used to detect, for instance in social
graphs, to efficiently detect the most important nodes [18], i.e. nodes that have
the most influence on other nodes. We tried a few measures and report here two
interesting results we obtained. The first one tries to identify which clauses will
be useful. The second measure tries to identify literals that will occur frequently
in learnt clauses until the very end of the computation. In both experiments, we
report the analysis of the DG after 20,000 conflicts and at half-run, by simply
removing from DG all the nodes and edges added after the limit.

4.1 Predicting useful clauses

In this experiment, we used a flow algorithm on the DG, without considering the
K-Core. We initialize all root nodes (clauses without descendants) with a con-
stant weight and propagate the weight of each node to its ancestors by dividing
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Fig. 6: (Left): Fraction of clauses that have been predicted as useful and that are useful.
”All clauses” includes 10,000 clauses that can be original or learnt. ”Learnt clauses”
restricts the computation to only learnt clausesd. A prediction is made after 20,000
conflicts, at half-run, and at the end of the run. Reported values are median over
original and 50 shuffled problems. (Right): Other parameters for the same experiment.
Top-10000 curves are also represented on the left figure.

the weight equally between them (following a topological order). For each node,
the idea is to measure the clauses that occurs in the maximal number of paths
to a root node (the graph can have many root nodes before the end).

The results we obtained are summarized figure 6 (left and right). Figure 6-left
shows the results of our prediction by ranking 10,000 clauses according to the
above flow values. Of course the darker curves (finished rune) give good results,
even if they must not be considered has having any practical interest (it is easy
at the end to detect useful clauses with no errors by another method). However,
we can see that a simple flow algorithm, with no knowledge of which root node
is the contradiction, can already identify useful clauses with a good precision.

The second observation follows the bottom light gray curve (at 20,000 con-
flicts), which clearly gives very bad results for identifying useful learnt clauses.
This is in fact not surprising given the fact that we try to identify 10,000 good
learnt clauses after only 20,000 conflicts. Here, our technique is possibly not
better than a random guess. However, if we try to predict 10,000 useful clauses
including original ones, we see that we correctly guess 80% of the 10,000 clauses,
probably because we mostly bet on original clauses. This is already encouraging:
we can identify useful original clauses at the very beginning of the computation.
We can imagine, for instance, a search procedure that focuses on working on
these clauses in priority. More importantly, we can see that, at half of the com-
putation, results are very good: on half of the problems, we correctly guess at
least 90% of useful learnt clauses over 10,000 guesses. This is even better when
considering original clauses too.

Let us now focus on figure 6-right. In this figure, we try to identify 100, 1000
or 10,000 clauses. What this figure shows is that, if detecting 10,000 clauses can
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somehow give bad results, we can identify, with a great confidence, 100 learnt
clauses that will be useful in the future, even after only 20,000 conflicts. At half-
run the prediction is even better (see the dotted CDF line). We have around
95% good classification for 100 learnt clauses.

Let us temperate our findings. In fact, despite the importance of being able
to detect a useful clause early in the computation (for instance for splitting the
search space), it did not allowed us to improve Glucose yet. This is probably due
to the fact that useful clauses may still have be deleted with no harm. It is for
instance possible that only a descendant of the clause is needed for the remaining
computation, and thus our attempts to protect this clauses for further deletion
did not helped. We are however still hopping that this kind of detection could
help solvers to work on only part of the initial formula.

4.2 Detecting future learnt clauses

In the above study, we were not able to detect which clauses will be important
for the future of the search. In the following experiment, we try to guess which
variables will occur in the last learnt clauses, just before deriving the final con-
tradiction. For this, we propose to study the variables occurring in the K-Core
at half of the computation. One first idea could be to consider all K-Core’s vari-
ables, but, as we can see on the top-right violin plot figure 7, some problems
can have large K-Cores, containing all their variables. We thus propose to sim-
ply consider only the most frequent variables in the K-Core (the 5, 10 and 20
most frequent variables, respectively). The middle-right violin plot shows how
frequent the top-5 variables are (median larger than 800) in K-Cores.

Let us now comment the left part of Figure 7. These plots report the percent-
age of top variables we observe in the very last learnt clauses of the computation.
The top plot shows the percentage of the top-5 variables that occurs in the last
20 clauses, w.r.t the total number of literals in the last 20 clauses (some clauses
can be very long, see the bottom-right plot). We can see that, on average, 1%
of the literals in the last 20 learnt clauses are from the top-5 variables in the
K-Core. Numbers are of course better if we consider the top-10 and top-20 vari-
ables (on the violin plots below, we also plots the above distribution plots to
emphasize the differences in the prediction with 5, 10 and 20 variables). We al-
ready observe a pretty good prediction, given the very large number of variables
of our problems (median at 8,000 variables, see figure 1). We can also report our
predictions by the lens of the table, right side of the same figure. We can see that
for 27 problems over the 60 ones, at least one of the top-5 variables we identified
occurred at least once in the last 20 clauses. At least a variable from the top-20
occurs in the 20 last learnt clauses, for 49 problems over the 60 (median values
on all original and shuffled problems)

We did not have enough space to report another interesting experiment we
also performed, but we noticed that, generally, the top variables are assigned by
learning a unit clause only at the very end of the computation.
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Fig. 7: (Left) Results of our prediction for literals occurring in the last learnt clauses.
(Right) Over 60 problems, how many problems have at least one of the top-Y variables
(rows) in the last X learnt clauses (columns)

5 Analysis of Parallel Proofs

As we mentioned it in the first sections of this paper, sequential CDCL solvers
are not well understood. The question is even more critical for parallel SAT
solvers. They are generally a portfolio of SAT solvers exchanging clauses, based
on some criterion (size, LBD are the most common ones). Clauses are thus
shared amongst threads but no study have ever been conducted on the impact
of parallelizing search over the final proof. Here, we study how the proof evolves
w.r.t. the number of threads. For this, we simulated a parallel SAT solver on the
top of our Glucose solver, hacked to handle dependency graphs. In our simulation,
each simulated thread successively generates a clause by conflict analysis and
offer to share it. Before each conflict, each thread can thus pick any last learnt
clause by the other threads. In our setting, we imported clauses that had size
strictly smaller than 8 and LBD strictly smaller than 4. We keep track of the
origin of each imported clause. In the DG, imported clauses are not duplicated.

Let us now describe figure 8. On the two topmost sub-figures, each plot is a
violin plot reporting a value for 1, 2, 4, 8, 12, 16, 20 and 24 cores, based on runs
on the original problems only. We can firstly verify that parallelizing does not
change the property of the proof: we have large K-Cores with a high coreness
value. It can be observed that the K-Core seems to increase in comparison to
the sequential version. Another finding is the evolution of the depth of the proof
(initial clauses are of depth 0). Clearly enough, the depth is smaller as the number
of cores increases. On the second sub-figure, we can see that, as opposite, the
size of the proof tends to increase: proofs are shallower but larger as the number
of threads increases. It is also interesting to measure how much effort is wasted
when going parallel. ”Useless learnts” reports the number of learnt clauses that
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Fig. 8: (Two top figures) Characteristics of K-Cores when using from 1 to 24 threads.
Changes in medians are kept track for each violin plot. Experiments are done on the
60 original problems, not shuffled. (Bottom) Cumulative plot of sorted origin of clauses
in a 24-threads parallel solver over the 60 original problems
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Fig. 9: Characteristics of K-Cores computed with vivification on the remaining learnt
clauses after 110,000 conflicts, for all the problems from competitions 2013 to 2017.

do not occur in the proof. Clearly enough, the more we add threads, the more we
produce useless clauses. This is emphasized by the ”Efficiency” plot, that report
the percentage of useful learnt clauses over the total number of learnt clauses.
This clearly confirm the loss of efficiency in parallel solvers.

At last, we study, thanks to the bottom sub-figure of figure 8, the composition
of the K-Cores in terms of clause origins (which thread produced the clause) with
24 cores. For each run, we measured the percentage of clauses from each thread
in the final K-Core, and sorted it. Then, on the figure, we represent each curve
in a cumulative way, normalized to 1.0. The result is in fact simple to read.
Most of the problems have a K-Core composed by clauses from all the threads.
Some threads have a stronger presence in the Kcore, but not really significantly,
except for one thread, especially on a small set of problems (most of the curves
are almost ”parallel” except for a few curves at the top of the plot: a perfect
parallel curve to the curve below means that all threads are equally represented
in the K-Core). Our conclusion is that, somehow surprisingly, the K-Core is
composed of all the cores, despite the strong bottleneck in clauses exchanges.
Even in a parallel setting, the presence of a K-Core strongly guide the search.

6 Fast Dependency Graph Analysis

Until know, we used a modified version of Glucose that kept track of all the
dependencies (even for removed clauses). The memory consumption of our tech-
nique is thus not suitable for improving any CDCL performances: it is simply too
costly to maintain all the informations. The goal of this short section is to show
that is is possible to analyze a simplified version of the DG in a regular CDCL
with almost no cost. The idea is to built the DG just once, by using vivification
on all the learnt clauses in memory at the time we want to build the DG [16, 13]
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(of course, a lot of learnt clauses have been removed). This step, performed once
in our setting after 110,000 conflicts, allows us to find reasons for each learnt
clauses in memory (this is the same method that is somehow used when rebuild-
ing DRAT proofs [20]). Of course we cannot find the original dependencies but,
as we can see figure 9 we were able to find very similar results as previously re-
ported (large coreness of the DG), despite the partial information we have about
the current proof (limited to the set of current learnt clauses). Let us point out
here that we were able to compute this values for all the problems from the 5
last SAT competitions (2013-2017 included). Do notice also that we included in
this experiment SAT and UNSAT problems, as well as problems which timed
out after the computation of the K-Core. This last experiment clearly demon-
strates that the presence of K-Cores is a strong and general characteristics of
DG, for SAT and UNSAT problems (do notice also that, on many problems, we
also observed a K-Core size of the coreness value, showing a number of problems
with large cliques in their DG).

7 Conclusion

Our experimental report points out a hidden structure behind the learning mech-
anism of CDCL SAT solvers. We demonstrated that all the proof graphs gen-
erated by SAT solvers share a common important characteristics: dependency
graphs are non-degenerated with high values. This shows that there is a very
dense subgraph that seem to play an important role in the search. In order to
emphasize this role, we demonstrated that, by analyzing the dependency graph
at half of the run, we were already capable of identifying a set of learnt clauses
that will be necessary for deriving the final contradiction, with high confidence.
The analysis of the K-Core also allowed us to identify a very small set of vari-
ables that will occur in the very last learnt clauses. We also demonstrated that
most of the learnt clauses are very close to the K-Core in terms of resolution
steps. We demonstrated that, even in parallel, a K-Core composed by clauses
of all the threads is also dominating the proof. Additionally, parallel proofs are
generally larger, even if they are shallower.

At last, we shown that the analysis of the dependency graph can be done in
any CDCL solver at minimal cost. It is sufficient to analyze the current set of
learnt clauses to build a dependency graph that also exhibit a strong K-Core.
This last experiment also demonstrates that the existence of K-Cores also holds
for SAT and UNSAT problems. We hope that our work will cast new research
directions on the reasons why SAT solvers are so efficient. We hypothesis that
one of the reasons for their efficiency is their ability to produce and handle proofs
with these properties. In some sense, this proves that CDCL proofs are really
far away from tree-like resolutions (non-degenerate graphs are clearly far from
trees). We also think that our analysis will allow to efficiently reduce the proof
sizes generated by SAT solvers. A short proof for UNSAT can be essential in
many applications.
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