
Glucose and Syrup in the SAT’16

Gilles Audemard
Univ. Lille-Nord de France

CRIL/CNRS UMR8188
audemard@cril.fr

Laurent Simon
Univ. Bordeaux

LABRI
lsimon@labri.fr

Abstract—Glucose is a CDCL solver heavily based on Minisat,
with a special focus on removing useless clauses as soon as
possible, and an original restart scheme. Syrup is the parallel
version of Glucose, with a lazy clauses exchanges policy. In the
2015 version of these solvers, we proposed a genuine version and
an “adaptative” version of each of these solvers. The adaptative
versions use a set of particular parameters and techniques to
adress some outliers benchmarks that can be found in typical
competitions sets.

I. INTRODUCTION

Since 2009, Glucose enters SAT competitions/races [1],
[2]... Glucose is based on minisat [3] and depends heavily on
the concept of Literal Block Distance, a measure that is able to
estimate the quality of learnt clauses [4]. Indeed, learnt clauses
removal, restarts, small modifications of the VSIDS heuristic
are based on the concept of LBD. The core engine of Glucose
(and Syrup) is 7 years old.

This year Glucose continue to adapt its strategy depending
the kind of instances solved. Furthermore, we also propose a
new phase saving strategy that focus on conflicting variables
when restarting.

II. ADAPTATIVE SOLVER

Selected benchmarks of the SAT competition come from
many distinct domains. For example, in 2014, industrial
benchmarks can be assigned in (at least) nine families like
argumentation, io, crypto, diagnosis... It seems unrealistic to
design one strategy that will be efficient on all the benchmarks.
For instance, Glucose is known to perform better on UNSAT
than on SAT instances. On the other side, it is known that long
runs (without restarts) are efficient in case of some families of
SAT instances.

A. Adaptation in Glucose

A number of recent solvers includes, directly or not,
automatic adaptations to benchmarks. In our approach, we used
our set of experimental data to classify some strategies adapted
to outliers benchmarks. We took 2632 benchmarks from all the
competition, and selected only 1164 interesting ones (bench-
marks that needed at least one minute to be solved). We ran
a set of Glucose “hacks” on this set of problems and tried
to detect some simple measures that identified families of
problems. We tried to consider only some “semantic” measure
instead of syntactic measures on the initial formula. Glucose
is run during 10,000 conflicts with its default parameters, then
we may switch to some particular behavior if our indicators

say so. We searched for simplicity. We identifed 4 outliers
signatures.

• The number of decisions divided by the number of
conflicts. This allows us to identify 123 problems over
the 1164, containing bivium, hitag, gss, homer, ctl and
longmult series of problems. If this number is low, we
switch the reduction learnt clauses strategy by using
the one proposed by Chanseok Oh [5].

• The number of conflicts without decision (when a
conflict is directly reached after a conflict analysis). If
this number is low, this is typically a nossum crypto
problem. We identified 66 problems from the 1164
ones like that. For these problems, we used a Luby
restart policy, and a much less agressive var decay.
In the contrary, if this number is important, then we
use the Chanseok Oh policy [5] to reduce the learnt
clause database, a much less agressive var decay, and
a limited randomization on the first descent after each
restart [6]. In this last case, we typically identified
vmpc problems.

• The number of “pure” glue clauses (glue clauses of
size > 2). A large number is a typical signature of
SAT dat problems (we identified 31 of them with that,
over the 1164). In this case, we observed that a much
more aggressive var decay may pay.

We observed an important increasing of Glucose perfor-
mances on the last competitions by using this. In the SAT
competition 2014, among the 300 instances of the application
category, glucose adjust its parameters on 58 instances and
benefits are clears.

III. PLAYING WITH THE PHASE

Phase saving is an essential component of a SAT solver.
We refine this notion by saving in a different data-structure
the phase of propagated variables that effectively participate
to conflict. Then, on restart, until the next conflict, we use
this polarity. The main goal is to reach a conflict as soon as
possible. Combined with the online modifications of Glucose,
this tecnhique reveals efficient [7].

IV. SPECIFICITIES OF THE PARALLEL VERSION

We use the 24 cores available this year. Adaptive versions
of Glucose is enabled on half of cores.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

40



V. INCREMENTAL TRACK

Glucose also entered the incremental part of the SAT-Race.
In this case, it uses dedicated data-structures and techniques
introduced in [8]. Unfortunately, in the incremental track, the
rules were not in favor of our specialized data structure. It
was not possible to know the initial variables and the variables
added for the search (commonly called the “assumptions”, for
example variables added to simulate clauses removals). Thus,
all the strategies proposed in [8] are useless here.

VI. ALGORITHM AND IMPLEMENTATION DETAILS

Glucose uses a special data structure for binary clauses, and
a very limited self-subsumption reduction with binary clauses,
when the learnt clause is of interesting LBD.

REFERENCES

[1] G. Audemard and L. Simon, “Glucose: a solver that predicts learnt
clauses quality,” SAT Competition, pp. 7–8, 2009.

[2] ——, “Glucose 2.3 in the sat 2013 competition,” Proceedings of SAT
Competition, pp. 42–43, 2013.

[3] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003, pp.
502–518.

[4] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in IJCAI, 2009.

[5] C. Oh, “gluh: Modified version of gluclose 2.1,” SAT COMPETITION
2013, p. 48, 2013.

[6] J. Chen, “A bit-encoding phase selection strategy for satisfiability
solvers,” in Theory and Applications of Models of Computation - 11th
Annual Conference, TAMC 2014, Chennai, India, April 11-13, 2014.
Proceedings, 2014, pp. 158–167.

[7] G. Audemard and L. Simon, “Extreme Cases in SAT,” in 19th In-
ternational Conference on Theory and Applications of Satisfiability
Testing(SAT’13), 2013, p. To appear.

[8] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving glucose for
incremental sat solving with assumptions: Application to mus extrac-
tion,” in 16th International Conference on Theory and Applications of
Satisfiability Testing(SAT’13), 2013, pp. 309–317.

41


