
Zigzagging Strategies for Temporal Induction
Guillaume Baud-Berthier

SafeRiver
Montrouge, France

guillaume.baud-berthier@safe-river.com

Laurent Simon
Bordeaux-INP, LaBRI,

CNRS UMR 5800,
University of Bordeaux

France
lsimon@labri.fr

Abstract—Model Checking is at the heart of formal methods
for software and hardware verification. In this area of active
research, Bounded Model Checking (BMC) and k-induction have
reached very impressive results, especially when both methods
are working together. They are based on a common approach
that unrolls the transition relation, but each method serves a
different purpose in practice. BMC is usually used for bugs
findings, while k-induction aims at building inductive invariants.
The ZigZag approach, proposed 15 years ago, takes benefit from
both strategies by successively calling each one of them, while
trying to share a lot of information between calls thanks to the
mechanism of SAT clauses learning.

Despite the practical importance of the ZigZag algorithm, it
was mainly used forwardly until last year. The transition relation
was unrolled by increasing depths only. However, as stated by
the authors of ZigZag themselves, it was possible to consider
the ZigZag approach backwardly. The experimental study of
backward zigzag performances was only proposed one year ago.

In this paper, we propose to extend the idea of the ZigZag
algorithm by allowing to unroll the transitions from the middle.
This has the nice property of allowing the SAT solver to keep
learnt clauses that are both close to the initial state and to the
bad state in the search. Our experimental study however shows
that the best option for ZigZag is still to perform it backward, as
stated in a previous work. However, we also show that our hybrid
approach offers the same performances as forward ZigZag, while
allowing more flexible strategies to be developed in the future,
for example by choosing the right transition to expand.

I. INTRODUCTION

Model Checking (MC) is an important part in the design
process of critical components (hardware and software). For
practical reasons, it is often implemented by a Bounded
Model Checking approach (BMC, [1]), that checks if there
exists a fixed length execution path leading to a system state
contradicting the given specification. This kind of problems
is probably one of the first successful industrial application of
SAT solvers. Yet, due to its bounded aspect, BMC is somehow
oriented towards bugs finding, where bugs in software and
hardware design are expected to be found within a limited
bound. Hence, when the correctness of the system must be
ensured, it may not be obvious to find the maximal length of
the paths to check, or this length can be too large to be used
in practice. Induction-based algorithms such as k-induction [2]
allow to get rid of this sequential depth by building inductive
invariant.

Partially supported by the French Research National Agency with the
SATAS project ANR-15-CE40-0017

Both BMC and k-induction efficiency relies on their un-
derlying SAT solver. These methods may generate huge SAT
formulas, which can exceed several million clauses and vari-
ables, or even require thousands of SAT calls for solving a
single instance. Historically, this kind of problems had a very
important impact on the design of SAT algorithms used in
practice. Conflict-Driven Clause Learning solvers (CDCL, [3],
also called ”modern” SAT solvers) were initially designed to
be able to cope with this kind of very large instances.

In this context, the ZigZag algorithm [4] aims at taking
the best of BMC and k-induction by successively calling
each of them. However until very recently, Zigzagging was
only performed forwardly, by following increasing depths. It
was only demonstrated one year ago that performing Zigzag
backward was a more efficient option [5]. In this paper, we
propose to generalize the Zigzag algorithm by allowing to
unroll transitions from the middle. We show that, despite a
less trivial encoding, our approach obtains similar results than
the forward Zigzag approach, while allowing more options to
be investigated in the future, for instance by carefully choosing
where to unroll the transition.

II. PRELIMINARIES

The satisfiability (SAT) problem addresses the well-known
NP-Complete question, expressed in propositional logic,
whether a given formula is satisfiable, i.e. if there exists an
assignment of the variables that satisfies the formula.

A propositional formula consists of a set of boolean vari-
ables, logical constants: > (true, 1), ⊥ (false, 0), and logical
connectives: ¬ (NOT), ∧ (AND), ∨ (OR). A literal is a
variable or its negation: x, ¬x. A clause is a disjunction
of literals, e.g. x ∨ ¬y ∨ z. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses, e.g.
(x ∨ ¬y ∨ z) ∧ (¬x) ∧ (y ∨ z). We can also write a clause
as a set of literals, e.g. {x,¬y, z}, and a CNF formula as
a set of clauses, e.g. {{x,¬y, z}, {¬x}}. An assignment is
a mapping of variables to Boolean values (> or ⊥). An
assignment satisfies a formula if the formula is evaluated to
> by substituting variables by their assigned values.

A. SAT Solvers General Principles

SAT solvers are often described as a highly optimized black
box solving the SAT problem. Most of SAT solvers take



a formula in CNF as an input and are able to provide an
assignment of the variables if the formula is satisfiable.

With the introduction of CDCL (Conflict Driven Clause
Learning) algorithms [3], [6], [7], learning clauses became
the cornerstone method of SAT solvers. However, as CDCL
solvers can learn more than 5,000 clauses a second, carefully
managing the learnt clause database has quickly been crucial.
In our approach, we use Glucose [8], a state of the art SAT
solver that has the particularity of removing a lot of learnt
clauses (on a typical run of Glucose, 95% of the learnt clauses
could have been remove), thanks to a measure over the quality
of clauses. What is important in our context is the ability of
this SAT solvers to identify important clauses to keep from
runs to run. We will indeed use a particular mode of operation
for SAT solvers: incremental SAT (see [9] for a more detailed
) exactly as it was defined in Minisat [7]. The idea is to be
able to keep the same SAT engine from calls to calls (and
with it all the interesting learnt clauses) by activating and
deactivating some sets of clauses. It is the responsibility of
the SAT solver to be able to handle which learnt clauses to
keep and which learnt clauses to deactivate (in practice, this
is done with assumption literals, see section II-B3).

B. Model Checking

Model checking is an automatic, exhaustive technique of
formal verification checking whether a given model verifies a
given property. Models are usually encoded as state machines
and properties (expressing a particular behavior of the system)
are generally given in temporal logic (for instance Boolean
finite-state transition systems for the model and AGp (CTL*
logic) for asserting properties).

Definition 1: A finite-state transition system is a tuple
M = 〈V, I, T, P 〉, where V is a set of Boolean variables,
I(V ) is a formula over V describing the initial states, P (V )
a formula over V describing the states verifying the property,
and T (V, V ′) is the transition relation, i.e. a formula over V ,V ′

defining the accepted transitions. V ′ = {v′ | v ∈ V } is the
primed version of the set V , usually used to represent next
state variables.

By extension, we will use Vi = {vi | v ∈ V } to express
the same sets as V with renamed variables when unrolling
the transition relation. Assignments satisfying a formula over
V represent states of the system, so we will often refer to
formulas as sets of states. Thus, we define Bad(V ) = ¬P (V )
as the set of states that contradict the desired behavior of
the system. Bad (Resp. safe) states correspond to the set of
states verifying Bad(V ) (resp. P (V )). A system admits a
counterexample if it is possible to reach a bad state from
the initial states by repeatedly applying the transition relation.
Conversely, the property is verified if there is no path from
the initial states to a bad states. In other words, the set of
reachable states and the set of bad states are disjoint.

1) Bounded Model Checking: Bounded model checking
is a parameterized model checking algorithm focusing on
counterexamples detection [1]. Intuitively, the idea is to build
a formula that is satisfiable if the model can reach a bad state

in k transitions. BMC is very efficient for bug finding, but
not used to prove properties in practice. Indeed, it is hard to
find a suitable depth k for which the property is ensured to be
verified1. Formally, BMC is defined as follow:

BMCk = I(V0) ∧
k−1∧
i=0

T (Vi, Vi+1) ∧Bad(Vk)

In other words, the formula expresses that there exists a path
of length k from the initial states to a bad state. This formula
is usually encoded in CNF and its satisfiability is determined
using a SAT solver. However, this definition does not allow
to check BMCk and claim that there is no counterexample in
less than k transitions. Hence, model checkers usually ensure
soundness by performing BMC incrementally, i.e. start with
k = 0 and increase k by 1 after each solver call. Another
less common approach consists in extending Bad(Vk) to∨k

i=0 Bad(Vi).
2) k-induction: k-induction is a generalization of the simple

induction principle. Simple induction proof consists in two
parts: the base case and the induction step. The base case ex-
presses that the initial states verify the property. The induction
step states that the transition relation preserves the property,
i.e. the set of states reachable in one transition from the safe
states are safe states too. Formally, the two parts are defined
as follow:

I(V ) ⇒ P (V ) (base)
P (V ) ∧ T (V, V ′) ⇒ P (V ′) (step)

The base case checks if the initial states and the bad states
are disjoint, while the induction step checks if a bad state
can be reached in one transition from the safe states. Simple
induction, equivalent to 1-induction, attempts to show that the
property is an inductive invariant. However, in practice, proper-
ties are rarely inductive by themselves, meaning that induction
step fails, i.e. is satisfiable. In this case, no conclusion can be
drawn and the property must be strengthened. In k-induction,
first introduced in [2] as temporal induction, the induction
hypothesis is strengthened by a path of k consecutive time
steps where the property is assumed to hold. Hence, the base
case must be extend to ensure that the property is verified for
the k first time steps. BMCk is used as base case formula and
the induction step formula k-ind is defined as:

k-ind =

k−1∧
i=0

[
P (Vi) ∧ T (Vi, Vi+1)

]
∧Bad(Vk)

3) ZigZag Algorithm: ZigZag algorithm, introduced in [4],
simply consists of combining BMCk and k-induction inside a
single solver. k-ind and BMCk are performed consecutively
for k = 0, 1, . . .∞, until either a BMC formula becomes
satisfiable, i.e. there exists a counterexample, or a k-ind
formula becomes unsatisfiable, the property is verified. For

1The number of model states is obviously a sufficient depth but the
satisfiability checking of the generated formula is usually too hard to be
solved.



clarity, in the following, we will use Ii, Pi to represent I(Vi),
P (Vi) and Ti,j in place of T (Vi, Vj). Let us illustrate how
ZigZag works on the first SAT calls:

0-ind:
[
Bad0

]
BMC0:

[
I0
]
∧
[
Bad0

]
1-ind: P0 ∧ T0,1 ∧

[
Bad1

]
BMC1:

[
I0
]
∧ P0 ∧ T0,1 ∧

[
Bad1

]
2-ind: P0 ∧ T0,1 ∧ P1 ∧ T1,2 ∧

[
Bad2

]
BMC2:

[
I0
]
∧ P0 ∧ T0,1 ∧ P1 ∧ T1,2 ∧

[
Bad2

]
Square brackets are used to highlight the temporary formula
parts. These parts are usually activated/deactivated with the
help of assumption literals (see [7], [10].

An assumption literals is a literal that is added to a set
of clauses in order to easily modify their trivial satisfiability,
while leaving the rest of the formula untouched. For instance,
suppose a solver S with clause c = {¬act, x, y} in which the
assumption literal act was added. It is easy to activate c by
forcing act to > in S. The solver has then also to satisfy the
constraint x ∨ y. On the contrary, by forcing act to ⊥, c is
deactivated, the solver may return a model with x = ⊥, y = ⊥.

In practice, by solving BMCk and k-ind formulas consecu-
tively inside the same running instance of a solver, the solver
can benefit from clauses deduced from the common part of
both formulas, i.e. the unrolling of the transition relation and
the parts related to the property. Our hypothesis is that it is
important to allow the solver to keep good clauses from runs
to runs.

4) Backward ZigZag: The ZigZag algorithm can be per-
formed in two directions: forward or backward, as the authors
of [4] well explained it. To illustrate the differences between
backward and forward ZigZag, let us write the first SAT calls
of the ZigZag algorithm, in backward:

0-ind: Bad0

BMC0:
[
I0
]
∧Bad0

1-ind: P1 ∧ T1,0 ∧Bad0

BMC1:
[
I1
]
∧ P1 ∧ T1,0 ∧Bad0

2-ind: P2 ∧ T2,1 ∧ P1 ∧ T1,0 ∧Bad0

BMC2:
[
I2
]
∧ P2 ∧ T2,1 ∧ P1 ∧ T1,0 ∧Bad0

There are two main differences between the forward and the
backward version. First, the part of the formula that stays
activated at the same depth for BMCk and k-ind, i.e. the static
part, is not the same: In the forward version, it corresponds to
the initial states, whereas in the backward version it is the bad
states. Second, as the initial states are only activated for BMC,
this means that the static part is activated in every SAT calls
in the backward version. Somehow surprisingly, it was shown
in [5] that backward zigzag was more efficient than forward
zigzag.

III. HYBRID ZIGZAG

In this section, we propose to generalize the notions of for-
ward / backward Zigzag by proposing to unroll the transition

relation from the middle.
As reported in [5], ZigZag seems to be more efficient for

finding CEX when performed forward. At the opposite, it is
generally faster to check models with a valid property when
the transition relation is performed backward. This observation
makes sense when observing which part of the formula stays
static between SAT calls (we will make the same observation
in the experimental part, see figure 2 (top sub-figure)) It can be
noticed here that SAT solvers are used in an incremental way,
and thus good learnt clauses can be kept from calls to calls, if
they depend only on the current static part of the formula. For
instance, a learnt clause derived by resolutions from clauses
belonging to the Bad0 ∧T1,0 ∧P1 ∧T2,1 ∧P2 (see lines 2-ind
and BMC2 in the backward ZigZag example) will be kept
from runs to runs until the end. At the opposite, clauses built
by resolutions from clauses of P0 ∧T0,1 ∧P1 ∧T1,2 (see lines
2-ind and BMC2 in the forward ZigZag example) can be kept
in the forward ZigZag scenario. We see here how important
the unrolling direction is important for preserving good learnt
clauses.

We propose to generalize this observation by allowing
clauses close to the initial property and clauses close to the bad
states to stay in memory. Our idea is simply to unroll half of
the transitions forward and half of the transitions backward, by
alternatively selecting which direction to unroll. For simplicity,
let us partition the formula into 3 parts. Let us first define the
part encoding the forward unrolling:

Tav(k) :=

(k−1)/2∧
i=0

(
P2i ∧ T2i,2i+2

)
Then, let us define the backward unrolling:

Tar(k) :=

(k−2)/2∧
i=0

(
P2i+3 ∧ T2i+3,2i+1

)
We need now to define the part of the formula that connects

the two directions. The only variables required to connect two
distinct depths are the latches variables. Hence, we will use m
to state the subset of V representing the latch variables only.

EQ(k) := m2·b k+1
2 c = m2.d k+1

2 e−1

Thus, for a given k, the hybrid unrolling formula is defined
as follows:[

I0
]
∧ Tav(k) ∧

[
EQ(k)

]
∧ Tar(k) ∧Bad1

Parts of the formula that are in brackets are subformulas
that can be activated or deactivated thanks to assumption
literals during SAT calls. I0 is only activated for BMC calls
(and thus deactivated for k-induction calls). EQ(k) constraints
are activated and deactivated following unrolling steps. When
the ZigZag algorithm is at depth k, the constraint EQ(k) is
activated and all the other EQ() constraints are deactivated
(e.g. EQ(0) is only activated for solving formulas BMC0 and
0-ind). A more detailed example of how our hybrid ZigZag



0-ind: [m0 = m1] ∧Bad1

BMC0:
[
I0
]
∧ [m0 = m1] ∧Bad1

1-ind: P0 ∧ T0,2 ∧ [m2 = m1] ∧Bad1

BMC1:
[
I0
]
∧ P0 ∧ T0,2 ∧ [m2 = m1] ∧Bad1

2-ind: P0 ∧ T0,2 ∧ [m2 = m3] ∧ P3 ∧ T3,1 ∧Bad1

BMC2:
[
I0
]
∧ P0 ∧ T0,2 ∧ [m2 = m3] ∧ P3 ∧ T3,1 ∧Bad1

3-ind: P0 ∧ T0,2 ∧ P2 ∧ T2,4 ∧ [m4 = m3] ∧ P3 ∧ T3,1 ∧Bad1

BMC3:
[
I0
]
∧ P0 ∧ T0,2 ∧ P2 ∧ T2,4 ∧ [m4 = m3] ∧ P3 ∧ T3,1 ∧Bad1

4-ind: P0 ∧ T0,2 ∧ P2 ∧ T2,4 ∧ [m4 = m5] ∧ P5 ∧ T5,3 ∧ P3 ∧ T3,1 ∧Bad1

Fig. 1. Illustration of unrolling steps for our Hybrid ZigZag algorithm

works is illustrated figure 1. As we can see, all the learnt
clauses implying forward unrolling close to the initial statue
can be kept if they are good enough for the solver to decide
so. Good clauses involving backward transitions and close
to the bad stats can also be kept. However, it is unknown
whether the cost of connecting both formulas thanks to the
EQ(k) constraints is prohibitive or not. This is addressed in
the following section.

IV. EXPERIMENTAL RESULTS

In order to compare the performances of the different strate-
gies for ZigZag, we implemented a tool working on standard
format AIGER [11]. Our tool had a builtin preprocessor for
AIG models, providing usual features, s.t. constants propaga-
tion, rewriting rules (idempotency, contradiction, subsumption,
etc.), structural hashing, cone of influence. No sweeping was
performed. Moreover, variables elimination [12] was only
performed at model level following a method somewhat anal-
ogous to the one in ABC [13]. Also, our ZigZag algorithm
(forward, backward and hybrid) allowed the generation of
simple path constraints on demand [4].

We used a slightly modified version of Glucose [14] as
our SAT decision procedure. We ran our set of strategies
on 547 benchmarks from the 2015 hardware model checking
competition (HWMCC 2015). We set the time limit to 1 hour,
and the memory limit to 8 GB. In some cases (when specified),
we will consider in the remaining only results of interesting
problems, e.g. problems taking more than one minute to solve.

We ran a set of 4 strategies: Fwd: Transitions are unrolled
forward. Bwd(1): Transitions are unrolled backward where
constraints are systematically added to connect contiguous
depths. Bwd(2): Transitions are also unrolled backward but
we used an encoding trick, i.e. we perform alias propagation
to only add constraints when we don’t have any other choice.
Hyb.: Transitions are unrolled both forward and backward as
described in the previous section.

Our first results are reported table I. From this table, it is
clear that the method of choice is Bwd(2). As stated before,
this result is not new. However, we would like to focus on the
last column. The hybrid results offer the same results as the

TABLE I
FORWARD (FWD) VS BACKWARD (BWD(1-2)) VS HYBRID (HYB.) ZIGZAG

PERFORMANCE. NUMBER OF UNSOLVED INSTANCES (UNK), SOLVED
INSTANCES WITH COUNTER EXAMPLE (CEX) AND NUMBER OF SOLVED

INSTANCES FOR WHICH THE PROPERTY WAS VERIFIED (PRO).

Fwd Bwd(1) Bwd(2) Hyb.

UNK 332 329 327 332
CEX 119 118 118 118
PRO 96 100 102 97

Fwd version, which is really encouraging given the number of
constraints added by EQ(k) to consider.

Let us now study the results in more details. We compare
the results, figures 2, of all our versions one against the other.
We restricted the points to all the problems that needed more
than 10s to be solved by the 3 techniques (Fwd, Bwd(2)
and Hyb). We observe a clear improvement when performing
backward unrolling. As it can be seen figure 2 (top sub-figure)
the backward approach seems to be even more efficient for the
hardest problems, especially for PRO problems.

Results for our new hybrid approach are more mitigated.
One more PRO instance is solved but one less CEX is solved.
We can observe figure 2 (middle sub-figure) that, once again,
the hybrid approach solves the same number of problems as
the forward method, but is also slightly more efficient for the
hardest problems.

However, when we compare the hybrid approach with
the backward (Bwd(2)) approach, the later is clearly more
efficient. However, if we omit the PRO results on the figure
2 (bottom sub-figures) results in terms of time are really
comparable.

The question is now whether it could be interesting to
add the hybrid method in a formal verification portfolio. The
table II shows that there are some cases where unrolling
the transition relation from the middle that can pay a lot.
Of course, we carefully selected those benchmarks and it
is clearly not always the case but we would like to point
out that, as reported in the table’s caption, in 25% of the
cases, the hybrid approach was better than Fwd, Bwd(1) and
Bwd(2) which is a very encouraging result at this stage of our
investigations.



101 102 103

Forward (Time (s))

101

102

103

B
a
ck

w
a
rd

 (
T
im

e
 (

s)
)

cex

pro

101 102 103

Forward (Time (s))

101

102

103

H
y
b
ri

d
 (

T
im

e
 (

s)
)

cex

pro

101 102 103

Backward (Time (s))

101

102

103

H
y
b
ri

d
 (

T
im

e
 (

s)
)

cex

pro

Fig. 2. Comparison of the time required to solve the same problems between
the different strategies (forward, backward, and hybrid unrolling).

TABLE II
A SELECTION OF SOME GOOD CASES FOR OUR HYBRID METHOD. WE

COUNTED 20 SIMILAR CASES (HYBRID IS FASTER THAN FORWARD AND
BACKWARD 2) OVER THE 78 CASES WHERE ALL ZIGZAG VERSIONS
NEEDED MORE THAN 10S TO GIVE AN ANSWER. TIME IS GIVEN IN

SECONDS. THE MAXIMAL DEPTH REACHED IS GIVEN IN PARENTHESIS.

Instance Fwd Bwd Bwd(2) Hybrid

oski15a08b07 325 (11) 358 (11) 358 (11) 287 (11)
6s20 590 (8) 536 (8) 546 (8) 493 (8)

oski3b0i 911 (31) 950 (31) 1181 (31) 833 (31)
6s7 3447 (54) T.O. (51) T.O. (51) 2990 (54)

V. CONCLUSION

With the new unrolling process for the ZigZag method we
introduced in this paper, one can easily imagine an adaptable
algorithm (an heuristic) that choose to unroll the transition
for the next depth, depending on where the SAT solver
was working on, for example by analyzing where the more
important conflicts occurred during the search (in terms of
depths). Another interesting possibility is to check whether
the solver is spending more time resolving BMC rather than
the k-induction formulas. We could then chose to unroll the
next transition from the initial state side rather than the bad
states side and the other way around.

Even if our results are still below the performances of
backward Zigzag, that was demonstrated only very recently,
we showed that we obtain very similar results than forward
Zigzag. We also observed a number of problem where the
results are very promising while we have to consider a lot of
additional constraints. This latter issue might be an interesting
point for future work: for instance it could be possible to
reduce the number of these constraints with a better encoding.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in International conference on tools and algorithms for
the construction and analysis of systems. Springer, 1999, pp. 193–207.

[2] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a sat-solver,” in International conference on formal
methods in computer-aided design. Springer, 2000, pp. 127–144.

[3] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference. ACM, 2001, pp. 530–535.

[4] N. Eén and N. Sörensson, “Temporal induction by incremental sat
solving,” Electronic Notes in Theoretical Computer Science, vol. 89,
no. 4, pp. 543–560, 2003.

[5] G. Baud-Berthier and L. Simon, “On selecting constraints for replication
in model checking,” in International Conference on Tools for Artificial
Intelligence (ICTAI), 2017.

[6] J. P. M. Silva and K. A. Sakallah, “Graspa new search algorithm
for satisfiability,” in Proceedings of the 1996 IEEE/ACM international
conference on Computer-aided design. IEEE Computer Society, 1997,
pp. 220–227.

[7] N. Eén and N. Sörensson, “An extensible sat-solver,” in International
conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

[8] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers.” in IJCAI, vol. 9, 2009, pp. 399–404.

[9] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[10] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving glucose for
incremental sat solving with assumption: Application to mus extraction,”
in Proceedings of SAT 2013, 2013.

[11] A. Biere, “The aiger and-inverter graph (aig) format,” Available at fmv.
jku. at/aiger, 2007.

[12] N. Eén and A. Biere, “Effective preprocessing in sat through variable
and clause elimination,” in International conference on theory and
applications of satisfiability testing. Springer, 2005, pp. 61–75.

[13] N. Eén, A. Mishchenko, and N. Sörensson, “Applying logic synthesis
for speeding up sat,” in International Conference on Theory and Appli-
cations of Satisfiability Testing. Springer, 2007, pp. 272–286.

[14] G. Audemard and L. Simon, “The glucose sat solver,” 2013.


