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Abstract—As more and more data is generated and stored, and
as longer data streams become available, concept drift detection is
becoming crucial for most real world applications. We introduce
Partially Supervised Drift Detection, PSDD, a drift detection
method based on Decision Trees that does not suppose any
knowledge of true class labels during inference. QOur approach
works in any number of dimensions and is able to distinguish
real from virtual drift. We successfully evaluated our method
with well established datasets in the drift detection field.

Index Terms—Concept Drift, Drift Detection, Semi Supervised,
Data Streams, Real Drift

I. INTRODUCTION

Concept drift [1] occurs when the underlying distribution
of a data source changes over time. It may strongly degrade
the model’s performances and can occur in all classification
domains, at various speeds and recurrences [2], which explains
why it has been the subject of intensive research in recent
years [3]. Sources of concept drifts have been widely studied
and sorted as in [3] and [4].

Much attention has been given to drift detection on labelled
data. In [5], [6] and [7], the presence of drift is based on
a classifier’s error rate with the hypothesis that a drop of
classification performance is a consequence of drift. These
methods are very efficient in detecting type P(y | X) drift
but require true labels to operate, which may be not realistic
for real-world applications. Other algorithms handle drift by
design. For instance, [8] introduces an adaptive ensemble
algorithm where individual model contribution is weighted
based on recent performance or age. In [9], the models of the
ensemble are also updated with each new batch. In [10], a new
model is added to the ensemble when a drift is identified using
a detector. Those ensemble-based methods provide quality
classification performances while handling drift, but strongly
depend on the presence of labelled data. To avoid using true
labels, some drift-detectors track drift in the feature space
instead. In [11], the authors compute weight distances of two
neural networks built on separate batches of data.

In [12], authors introduce ADWIN, an unsupervised single
dimension drift detection algorithm. The model uses a dynam-
ically sized window that shrinks when a drift is detected while
increasing when data distribution is stationary. The instances
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of the window are split into two groups based on their
order of appearance, a drift is detected when the difference
of the sub-windows values’ averages exceeds a user defined
threshold. Another one-dimension window-based unsupervised
algorithm is KSWIN [13]. KSWIN uses a window of user-
defined size n that is split into old and recent samples. The
recent samples’ window size is user defined and its size
cannot exceed n/2, r samples are picked at random from the
old window. KSWIN then computes the Kolmogorov-Smirnov
distance of the empirical cumulative data distribution of the
two windows, if that distance exceeds a user defined parameter
« dependant threshold, than a drift is detected.

In [14], the authors introduce Discriminative Drift Detector
(D3). D3 detects drift of type P(X) based on the assumption
that if a model can differentiate old samples from new ones
then there is a drift. D3 attempts to find if a drift has occurred
between a training set and a test set. Training samples are
attributed the class 0 while testing samples class is set to 1. The
samples are randomly shuffled and split into a new training set
and a new test set. A model is then fitted on the training set.
A drift is detected if the AUC metric on the test set exceeds
a user defined threshold.

In [15] the authors use a student-teacher approach to detect
drift. The teacher model is trained to predicts the true class of
a given instance, while the student model is trained to predict
the output of the teacher model. The authors’ hypothesis is that
a drop in performance of the student model signals that a drift
has occurred, getting around the unavailabilities of the true
class labels. A drift is detected by a drift detection algorithm
such has ADWIN on the error rate of the student model.
During the training phase in [16], the authors use an encoder to
project the input data in a low-dimension feature-space while
maximizing inter-class and minimizing intra-class distances.
During inference, concept drifts are detected by monitoring
distances of new instances to the learned class centroids in
the embedding space. In [17], the author introduce a multi-
dimension online unsupervised drift detection algorithm based
on Minimum Enclosing Balls. During inference, the detector
calculates the centroid of a sliding window, if the distance
between a new observation and the centroid is greater than
a dynamically set threshold a drift is detected, otherwise the
window is updated. [18] introduces a time-based split criterion



that partition a feature into two parts that have homogeneous
drift characteristics. This is used as the split criterion in a
decision tree to partition the data into set that have the same
distribution.

Most drift detection work is done in a prequential manner,
when true labels are available immediately after inference.
We consider this hypothesis to be unrealistic in many real
world applications like [15] and [16]. We introduce PSDD,
a tree based drift-detector that tracks P(X | y) drift type.
PSDD is semi-supervised as it doesn’t need labels during the
detection phase. PSDD creates a Decision Tree of pure leaves
that tracks changes within each leaf distribution to detect drift.
PSDD works with two user defined parameters that control the
drift detection sensibility. Our main contribution is that the
model works on unlabeled data in any dimensions, enabling
use for real world application drift detection. Some key aspects
of concept drift are presented in section 2, the model is detailed
in Section 3 and an experimental evaluation is presented in
Section 4.

II. CONCEPT DRIFT

A. Definition

Concept drift occurs when the underlying distribution of a
data source changes. Drift can come from different sources, at
various speeds, it can be real or virtual. This diversity explains
why recent algorithms are designed to detect or deal with
specific drifts rather than to achieve high performance in all
contexts.

Py)P(X | y)
P(X)

With Bayes Formula, one can separate three types of drift.

Py | X) =

e P(y | X): This drift type occurs when the true underlying
classification function changes, it is the most studied
type of drift as it has a direct impact on a model’s
performances. As mentioned above, most techniques to
detect this type of drift are based on inferences ground-
truth labels being accessible to perform detection, this hy-
pothesis is not realistic in real-world predictive pipelines.

o P(X | y): This type of drift occurs when data distribution
changes conditioned by y values. This distribution change
impacts models with previously unseen values for a given
class.

e P(y): This drift is characterized by a shift in class labels.
Although a fixed trained model will not be impacted, this
is challenging when online learning is required.

B. Drift Speed

Drift can appear at various speeds. It can be sudden or
abrupt when the concept changes quickly over a short period
of time. The covid pandemic gave us many examples of
abrupt drift, such as the drop of airline traffic. Drift can be
incremental, where the distribution changes slowly over time,
global warming creates an incremental drift in weather data.
Drift can be recurrent and oscillate between two or more
concepts. Drift recurrence can be dealt with by having a pool

of instances of detectors, each corresponding to a concept [19],
[8]. PSDD aims to detect P(X | y) type of drift regardless of
speed. However, our experimental results will focus on abrupt
drift detection.

C. Virtual Drift vs Real Drift

Virtual drift [4] can be characterized by a change in distribu-
tion that does not impact the model’s predictive performances.
As opposed to real drift which will decrease the model’s
performances. Detectors that monitor error rate such seen in
[5], [20], [21] or [22] bypass this challenge, as decrease in a
model’s performances is the triggering signal.

ITII. UNSUPERVISED CLASS DISTRIBUTION DRIFT
DETECTION

A. Notations and Hypothesis

Let B* be a batch of labelled data containing m instances
across d features.

B* = (Xi,...,Xa,Y) where the X; = (z¢,...,2%,
feature vectors and Y = (y1, ..., Ym ) is the class vector.

Let B be a batch of unlabelled data (X7, ..., Xg)

We assume that Vi, j € [1,d]*:

) are

Xi ~ N (pi,04) (D

CO’U(XZ‘,X]‘) :O7Vi7£j (2)
B. Description of UC3D: training and detection

1) Our detector: A Decision Tree 7T is first trained over
labelled data B* (splits are successively made until leaves are
pure or that the minimum sample-split is threshold is reached).
We don’t use impure leaves for the model detection. For each
leaf of 7, we get the samples D} from B* that belong to it and
compute the cluster centre of these points using the euclidean
distance.

During inference, we distribute the samples of B into 7’s
leaves, and then compute the centroid C; of the unlabeled data
points for each leaf. To detect a drift, we then test the null
hypothesis of the means.

2) Detector: We build a decision tree 7 on B* with m
pure leaves of high cardinality (> 20). We achieve this by
specifying the min sample split size to 20 and by removing
post training impure leaves.

Let D* be all the labelled instances of B* belonging to class
c. D* ={X1,...Xq |y =c} € B*, Card(D*) =n}

Similarly, let D be the instances of B where the predicted
class by T is ¢. D = {X1,....Xq | § = ¢} € B, Card(D) =
Ne

Let D; € D* be the set of labelled observations from B*,
of class ¢ belonging to leaf Ly.

Let D, € D* be the set of unlabelled observations from B,
of estimated class ¢ belonging to leaf L.

Let X .
n n
* 1 - 7 . 7
Hi = — ( Lpyeeey Tg)
ny, 4 ‘
i=1 =1



and
g = —(Z Xy, Zmé)
[ i=1
be the euclidean mean vectors of D} and of Dj.
Because of (1) and (2), for each leaf Dy, we test:

Ho : g, = ik
with risk «.
Let R be the number of leaves where the null hypothesis

is rejected.

If
R

— > 5
m

then there is a drift. Both « and 3 are hyper-parameters. A
high 5 value means more leaves are require to show a change
in distribution.

To detect a shift in variance we could proceed the exact
same way with the null hypothesis H : o}, = o. In this paper,
we implemented and tested the shift in mean. The variance
shift detector will be the focus of future work.

IV. EXPERIMENTAL STUDY

Firstly, we make an overview of data and detector used ;
secondly, we introduce the benchmarking procedure and,
lastly, we present our experimental results. We challenge our
approach on six well established real-world datasets. All of
the dataset have been processed to have only binary and
numeric attributes; numeric attributes have been normalized
and standardized.

A. Datasets and Comparative Methods

We will conduct our benchmark on eight widely used
datasets [12], [16].

CoverTypes (Cov) [20]: Each entry describes a 30 x 30
meter cell of a forest. By sorting the cells by increasing
altitude, we create a gradual drift as the main tree essence and
forest characteristics change with altitude. The classification
goal is to predict the most common tree type.

Elec [5]: The ELEC dataset describes electricity demand in
5 fields. Drift exact occurrence is unknown. The goal is to
predict whether the price is going up or down in the next half
hour.

Adult [23]: The goal is to predict if a person’s salary is
over 50K a year based on a series of attributes.

Musk: The goal is to determine if a molecule is a musk.

Wine: The goal is to predict where a wine comes from.

Spam: The goal is to classify if an email is spam or genuine.

Bank: The goal is to predict if the client will subscribe a
term deposit.

Phishing: The goal is to predict if a web page is malicious
or not.

Both the Elec and CoverTypes dataset have been largely
used in drift detection benchmarks [5], [7], [12], all other
datasets have been used in [16] and [24].

Table I describes the datasets characteristics.

We test PSDD! with hyperparameters o = 0.01 and 3 =

IThe source code is available on: https://github.com/mfuccellaro/psdd

TABLE I
DATASET OVERVIEW
Dataset | # of instances | # of features Classification
Cov 110393 50 Multi-class (7)
Elec 45312 13 Binary
Adult 48842 65 Binary
Musk 6598 166 Binary
Wine 6497 12 Binary
Spam 6213 499 Binary
Bank 45211 48 Binary
Phishing 11055 46 Binary

0.01 against:

e Discriminative Drift Detector (D3) [14] with the default
threshold of 0.75.

o Task-Sensitive Drift Detector (TSDD) [16] coupled with
the author’s default architecture and their modified z-
score as a detector.

o Student-Teacher (ST) Detector [15] with standard deci-
sion trees coupled with ADWIN [12].

o ADWIN [12] with § = 0.007.

o KSWIN [13] with default o = 0.005.

All experiments have been run ten times to calculate the differ-
ent metrics (means and standard deviation). Hyper-parameter
tuning has been done to tune ADWIN’s delta parameter as
well as KSWIN window size. All other algorithms are used
with default settings.

B. Experiment Setup

When considering concept drift as a supervised problem,
the accuracy of a base learner is often used to benchmark
the pertinence of drift detection methods. The accuracy of a
base learner can be necessary to detect drift as in [5], [6]
[7]. When methods don’t use labelled data for detection or
when detection is done in a prequential manner [25], [26] the
accuracy is often used to compare the drift detection methods
[13]. Even if prequential evaluation doesn’t use true labels for
detection, it implies constant retraining of the detector and
needs labels for evaluation, which we don’t consider realistic
in a real world-scenario.

In order to test our detector against the state of the art drift-
detectors, we induce artificial drift into the datasets. This is
a standard drift detection benchmark [16], [24] as it allows
us to know exactly where the drift is taking place and to
control its amplitude. This method allows us to test without
constant retraining while disregarding true labels completely.
In this benchmark we compare detectors’ abilities to detect
the presence of drift, to avoid false positive and we look at
the detection time as in the number of drift-laced samples
necessary to trigger a detection.

1) Drift Induction: We start by randomly shuffling the
dataset to remove any existing drifting behavior. We then
randomly split the dataset threefold. 50% of the observations
into the training set, 25% into a test set and 25% to the
validation set. Drift is only induced in the validation set in
a homogeneous manner with regards to observations class as
detailed hereafter. The training set is used by detectors to learn



the initial data distribution while the test set is used with the
validation set to accurately compute detection times. Both the
training and test set share the initial unmodified distribution.

We induce two different types of drift into the validation
set:

o Drift by adding a Gaussian noise A(1,1) to a subset of

features.
o Drift by shuffling the values of a subset of features.

The features in which drift is induced are selected by
a trained decision tree over the training set, the model’s
feature importance list is used to rank features based on their
predictive impact. We collect two sets of features, the top 25%
most informative features and the bottom 25% least important
features.

Each dataset will be used four times to test the different drift
configurations: (least, noise), (least, shuffle), (most, noise),
(most, shuffle).

2) False Positives: While decreasing trust in the detec-
tor, False Positives (FP) can have various negative impacts
on a predictive pipeline. For instance, they might trigger
superfluous retraining procedures. Some of our benchmark
configurations may lead to a virtual drift, that is when the
distribution change does not impact predictive performances,
as opposed to real drift, when the change has a direct impact
on performances. An optimal drift-detector will only trigger
an alarm for real drifts. In order to distinguish real drift from
virtual drift, we compute the accuracy score over the training
set, the validation set and the four modified test set. When
the condition ACCyest < ACCyar — |ACClhyrain — ACChai
is true, we are in presence of a real drift. Mean classification
accuracy of a standard decision tree model over the 6 different
sets is presented in Table II. In Table II, real drift scenarios are
highlighted. As expected, all but one virtual drift takes place
when the least informative features are modified, no matter
the drift induction process.

TABLE I
VIRTUAL VS REAL DRIFT

Least Important Most Important

Data | Train | Val - —Qore—Tqp e | Noise | Shuffie
Cov [ 9920 | 7750 | 64202 | 75580 | 31202 | 32£.03
Elec | 1040 | 87£01 | 74201 | 79£01 | 54£.01 | .6£05
Adult | 1020 | 8120 | 71405 | 8£01 | .394.06 | 63+.11
Musk | 1.0£0 | 97£01 | 97401 | 97+01 | .51+.02 | .49+.04
Wine | 1040 | 1040 | 1020 | 1020 | .62£01 | 37+.02
Spam | 1.0£0 | 95:01 | 95+01 | 95+01 | .49+.05 | .512.07
Bank | 1040 | 93+0 | 75:.03 | 88+.03 | .5+01 | .5+.04
Phishing | 99+.0 | 95+0 | .882.03 | 92+.02 | .61=.01 | .47+.14

3) Detection Delay: We define the detection delay as the
minimum number of drift-laced observations needed by a
detector to trigger an alarm. If that number of observations is
greater than the validation test size, we consider the detector to
have missed the drift, and increment a False Negative counter.

In order to compute the detection delay we proceed in two
ways. As D3, TSDD, ST as well as PSDD allow for drift
detection in batch mode, detectors are first trained on the
training set. A drift batch is created by concatenating a random

sample of the test and validation set together, starting with
10% of drift laced observations. While no drift is detected, the
proportion of the validation set in the drift batch is increased
by another 10%. When the drift set is a subset of the validation
set and no drift is detected, then the detector failed to detect
a drift and the run is marked as a false negative.

As ADWIN and KSWIN are able to detect drift in one
dimension, we proceed in a slightly different fashion. For each
feature of a given dataset, we create a new instance of the
detectors and feed it the observation of that said feature. We
then give the detector the data from the drift laced validation
dataset. When a drift is detected, we move on to the next
feature. The detection delay kept is the smallest number of
observations needed by the detector to flag a drift across all
features. If no detection is triggered on the dataset the detector
has not detected a drift.

C. Experimental Results

In this experiment, we look at three metrics that are essential
in order to assess the quality of a detector in a meaningful way:
False Positive rates, Detection Delays for the detection speed
as well as False Negative rates for missed detections.

1) False Positive Detection: We consider a False positive
(FP) when a drift is detected for cases of virtual drifts. Table
IIT and IV report FP ratios across all ten runs. Overall, the
detectors have more trouble ignoring Gaussian noise than
feature shuffling.

When Gaussian noise was added to the least informative
features, the Bank and Phishing datasets are excluded because
of virtual drift. D3 raises 100% FP alarms across all datasets.
KSWIN also detects a drift across all datasets, although not
systematically on the Elec and Adult datasets. PSDD under-
performed the ST detector with four consistent FP vs two
for ST. Only the musk dataset, triggered a significant number
of FP across all detectors but ADWIN. ADWIN outperforms
all methods by having no FP on the Musk and Wine datasets.
PSDD came fourth after ADWIN, TSDD and ST when adding
noise on the least important features.

When looking at the shuffle of least important features, we
take all datasets into account. Both TSDD and PSDD almost
never trigger FP with the exception on the spam dataset
where PSDD raised a false alarm once and on the CoverTypes
dataset for TSDD. KSWIN, D3 and the Student-Teacher
detector consistently raised FP for several datasets, all three
detectors consistently raised FP alarms on the Phishing dataset.
PSDD came first followed by TSDD and ADWIN on FP
detection on least important feature shuffling.

When looking at overall results, TSDD has the least FP with
19%, followed by ADWIN 24%, then by PSDD with 29%, ST
has 39%. Both KSWIN and D3 have shown the inability to
properly distinguish real drift from virtual drift with an overall
of 75% and 79% FP rates.

2) False Negatives: A False Negative (FN) is detected
when failure to detect a real drift. FN results are reported
in Table V and VI



TABLE III
FALSE POSITIVE RATES

TABLE V
FALSE NEGATIVE RATES

Data Least Imp. Noise Most Imp. Shuffle
D3 PSDD ST TSDD ADWIN KSWIN Data D3 PSDD ST TSDD ADWIN KSWIN
Cov 1.0 1.0 1.0 0.0 0.7 1.0 Cov 1.0 1.0 0.0 1.0 0.5 0.0
Elec 1.0 0.0 0.1 0.0 0.4 0.4 Elec 1.0 1.0 0.4 1.0 0.7 0.8
Adult 1.0 1.0 0.0 0.0 0.5 0.8 Adult / / / / / /
Musk 1.0 1.0 1.0 0.7 0.0 1.0 Musk 0.0 0.9 0.0 1.0 1.0 0.0
Wine 1.0 0.0 0.0 1.0 0.0 1.0 Wine 0.0 1.0 1.0 0.9 1.0 0.0
Spam 1.0 1.0 0.2 0.4 0.1 1.0 Spam 0.0 0.0 0.0 0.1 0.8 0.0
Bank / / / / / / Bank 0.0 1.0 0.1 0.7 0.7 1.0
Phishing / / / / / / Phishing 0.0 1.0 0.0 1.0 1.0 0.0
Total 100% 66% 38% 37% 28% 87% [ Total [ 28% 4% 21% 1% 1% 25% ]
TABLE 1V TABLE VI
FALSE POSITIVE RATES FALSE NEGATIVE RATES
Data Least Imp. Shuffle Most Imp. Noise
D3 PSDD ST TSDD ADWIN KSWIN Data D3 PSDD ST TSDD ADWIN KSWIN
Cov 0.0 0.0 1.0 04 0.9 1.0 Cov 0.0 0.8 0.0 1.0 0.6 0.0
Elec 0.0 0.0 0.1 0.0 05 0.1 Elec 0.0 1.0 0.1 1.0 0.9 0.6
Adult 0.1 0.0 0.0 0.0 0.0 0.0 Adult 0.0 0.0 0.9 0.0 0.6 0.6
Musk 1.0 0.0 0.6 0.0 0.0 1.0 Musk 0.0 0.0 0.8 0.1 0.8 0.0
Wine 1.0 0.0 0.0 0.0 0.0 1.0 Wine 0.0 1.0 1.0 0.0 1.0 0.0
Spam 1.0 0.1 0.0 0.0 0.1 1.0 Spam 0.0 0.0 0.0 0.5 0.8 0.0
Bank 1.0 0.0 0.5 0.0 02 0.2 Bank 0.0 0.0 0.0 0.1 0.4 0.1
Phishing 1.0 0.0 1.0 0.0 0.0 1.0 Phishing 0.0 0.9 0.0 1.0 0.8 0.0
Total 64% 1% 40% 5% 21% 66% Total 0% 46%  35%  46% 2% 16%
Least Imp. Noise
D3 PSDD ST TSDD ADWIN KSWIN
. . > Bank 1.0 0.0 0.0 1.0 0.7 0.2
‘ When shuffling the most important fegtu@s We don’t take Phishing | 00 0.0 0.3 10 07 0.0
into account the adult dataset as the drift is virtual. PSDD, Toal 1 350% 0%  40% 100% 0% 0%

TSDD and ADWIN consistently fail to detect drifts on most of
the datasets with less than 20% of True Positives. PSDD con-
sistently detected all drifts on the spam dataset along with
TSDD. KSWIN exhibits FN on the Bank and Elec dataset,
while ST only fails to detect drift on the Wine dataset. Finally
D3 detects all real drifts except for the Elec and CoverTypes
datasets.

When adding noise to the most important features,
PSDD yields similar detection rate as TSDD with four mean-
ingful detections at of eight, our model fails to detect drift on
the Wine dataset, while TSDD only partially detects drift on
the Spam dataset. ST does slightly better with five meaningful
detections while D3 detects every single drift. ADWIN con-
sistently fails to detect drift across all datasets with 72% FN
rate, but manages to find drifts in some runs. KSWIN on the
other hand has a very low FN rate of 16%.

When we look at the adding of noise on the least important
features of the Bank and Phishing datasets, PSDD comes
first with no FN, followed by KSWIN with 10% FN. D3 and
ST detect drift on one of the dataset each. TSDD along with
ADWIN completely fail to detect drift here.

We clearly see that PSDD, with an overall TP rate of 44%,
detects less drifts than D3 (83%), ST (70%) and KSWIN
(81%). However, our method outperforms TSDD and ADWIN
that have a TP rate of 34% and 25%.

3) Detection Delays: Detection delays results are reported
in Table VII. The hyphen indicates that a detector fails to
detect the drift across all runs while the forward slash indicates
that the drift is virtual and has not be taken into account. When

the standard deviation is not shown, it means that only one
detection was made. The two fastest detections are marked in
bold. Drift detection delays widely depends on the dataset’s
number of samples.

When shuffling the most important features, only the adult
dataset exhibits virtual drift. ST generally detects drift the
fastest on four datasets and second fastest on one. KSWIN
comes in second place on three datasets. PSDD detects drift
the fastest on the Spam dataset, and third on the Musk dataset.
ADWIN comes first once on the Elec dataset and second on the
CoverTypes dataset. On several dataset, a high False Negative
rate prevent us from accurately comparing detection times.
When shuffling features, drift seems harder to detect for all
detectors, this may be due to the high count of binary features
in the data.

When adding noise to the most important features, our
model is the first to detect drift on the Musk and Spam
datasets, second on the Adult dataset. D3 has the lowest FN
rates, but is the second slowest to detect drift in five datasets
and slowest on Wine. ST is still the fastest to detect drift,
coming first on five datasets. TSDD is the fastest to detect
drift on 2 datasets.

On the Spam and Musk datasets, which has the highest
number of features, our model is fastest twice and second
fastest once to flag drift, this demonstrates are model ability
to work efficiently in a high dimension context. When adding
noise to the least important feature of the Bank and Phishing



dataset, PSDD comes third and last. KSWIN is the fastest
detector in this context.

However, methods average detection delays exhibits great
difference. On several datasets the difference is too large to be
comparable. We showed that PSDD’s detection delays aren’t
the fastest, but are within the same range of the state of the
art.

4) Experiment learnings: Let’s note that without careful
configuration, both window sized drift-detectors ADWIN and
KSWIN performances dropped very significantly. Due to the
fact that both ADWIN and KSWIN only accept time series,
the detection time linearly slowed down with the number of
dimensions in the dataset in our experiment context. When
combining False Negative, False Positive and Detection Delay
results, we clearly see that D3 slowly detects drifts on most
of the datasets, but suffers a very high False Positive rate
like KSWIN, which makes them hard to use in a real-world’
scenario as they cannot differentiate between real and virtual
drift. TSDD has the lowest FP rates followed by ADWIN
and PSDD. All of those algorithm showcase good detection
times. But, this is counterbalanced by a high FN rate. The
student teacher model has a lower FP rate than D3, is faster
to detect a shift, but has a moderately high FN rate. Overall
PSDD manages to detect real drift and ignore virtual drift in
a wide array of datasets. This experiment demonstrated the
viability of PSDD as a drift-detector that is fast and won’t
trigger any false alarms.

V. CONCLUSION

We introduced PSDD, a drift detection method that will
not need labels during inference making it a good alternative
for real-world applications. We provided mathematical proof
that it can detect real drifts, given that a decision tree is able
to produce some pure leaves. We empirically showed that
PSDD ignores virtual drift due to the structure of the decision
tree algorithm. We demonstrated through our experiment that
our model is as good as the state of the art. It shows a
good compromise between False Positives, False Negatives
and Detection Time. We also demonstrated it’s ability to
work in any dimension. We showed that there is still room
for improvement when it comes to detecting drift in an
unsupervised environment.

Future work will consist in adapting the model with new
tests to reject or accept the null hypothesis of equal mean
in tree leaves. We will focus on building a detector that
also monitors a shift in variance that might decrease the
False Negative rates that PSDD currently suffers from. Some
other way of partitioning the data into pure segment will
be investigated. Finally we will be working on incorporating
a drift-detector such as ADWIN to monitor each leaf tests’
results during inference.
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TABLE VII
DETECTION DELAY

Most Important
Dataset Model Noise Shuffle
D3 14542470 -
Cov PSDD 20831+3902 -
ST 924+174 244242420
TSDD - -
ADWIN 1904 6856+3447
KSWIN - -
D3 7101+99 -
Elec PSDD K K
ST 6050+3220 3360+1096
TSDD - -
ADWIN 7167 2868+3285
KSWIN 693242417 8267+1316
D3 6150+68 /
PSDD 1343+386 /
Adult ST 12222 /
TSDD 1221 /
ADWIN 575944633 /
KSWIN 6049+2044 /
D3 570663 579697
Bank PSDD 6328+3774 -
ST 882+406 2210+2365
TSDD 11300 -
ADWIN 574343878 697542201
KSWIN 6297+2276 -
D3 823+23 841+19
Musk PSDD 164 492
’ ST 514+267 328+119
TSDD 2924383 -
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