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Abstract—The maximal clique enumeration (MCE) problem
consists of computing and listing all maximal cliques in a finite
graph. The problem is NP-complete since it subsumes the classic
version of the NP-complete clique decision problem. The most
well-known algorithm to solve this problem has been proposed
by Bron & Kerbosch (BK).

Generalizing this algorithm to hypergraphs presents significant
challenges and admits multiple solutions. The primary difficulty
stems from the fundamental difference in structure: while in
standard graphs a vertex has a bounded number of incident
edges, in hypergraphs a vertex can participate in an exponential
number of hyperedges. Specifically, in a hypergraph with n
vertices where hyperedges have arity r, a single vertex may belong
to up to (Z:ll) hyperedges. This structural complexity renders
the direct generalization of BK computationally inefficient.

In this article, we propose three new approaches to solve
the MHE problem. First, a relaxation method based on the
relaxation of a hypergraph in a graph. Then, a method based on
an efficiently computation of the hypercliques containing a set
of vertices. Finally, a method combining the previous ones. We
conducted an experimental study on a set of benchmarks, show-
ing one or two orders of magnitude performance improvements
of our approach with regards to the direct generalization of BK
to hypergraphs.

Index Terms—Hypergraph, Clique Enumeration, Bron & Ker-
bosch, Experiments

I. INTRODUCTION

In a wide variety of applications such as social network
analysis [1], web mining [2], aligning 3D protein sequences
[3], detection of protein-protein interaction [4] and entity reso-
lution [5], the detection of complete subgraphs, (i.e. clique) is
an essential component. The problem of determining whether
or not a graph has a clique of a size k, called k-CLIQUE is
a well-known NP-complete decision problem [6].

The maximal clique enumeration (MCE) problem (i.e. to
compute and to list all the cliques that cannot be augmented by
adding additional vertices) subsumes the k-CLIQUE problem
and is therefore NP-hard. Hence, a great deal of effort has
been spent on building efficient algorithms [7]-[11] to solve
this problem. Most of these algorithms are based on the well-
known Bron & Kerbosch (BK) algorithm [7]. In practice,
BK has been reported as being faster than its alternatives [12],
[13]. It uses a backtracking technique based on the vertices
neighbourhood to explore the search space. Its efficiency also
comes from the fact that it maintains a set of vertices to avoid
reporting duplicate and non-maximal cliques.

There is however less research (and practical solutions)
on the maximal hyperclique enumeration (MHE) problem.

This is all the more unfortunate as there are a large number
of problems for which this problem cannot be solved by a
simple reduction to the MCE problem, such as the detection
of cardinality constraints in Boolean formulas [14] or the
enumeration of inclusion dependencies (INDs) within and
across databases [15], for example. In these applications, for
a given r-hypergraph (i.e. the arity of each edge is r), a
hyperclique is a complete hypersubgraph in which every r-
subset of the vertices represents an edge. As stated in [16],
it is usually assumed that this problem cannot be solved
efficiently in practice. Indeed, generalizing efficient algorithms
for graphs to hypergraphs is more complex than it seems
and the BK algorithm is no exception. This lack of studies
is in contrast with the central importance of this problem
to many areas in Artificial Intelligence, including constraint
satisfaction, knowledge graph analysis, logic-based learning,
and multi-relational data mining. Hypergraphs offer a natural
and expressive way to model multi-entity relations, which
frequently arise in Al applications such as, again, entity reso-
lution, relational reasoning, and complex pattern discovery.

In both cases (graphs and hypergraphs), given a clique
C, determining if a vertex x can extend C is equivalent to
checking if « appears with the vertices of C in a certain number
of edges. The main difficulty is that in the case of graphs, this
can easily be determined by using only the neighbourhood of
x whereas in the case of hypergraphs, the neighbourhood is a
necessary condition, but it is not sufficient. Assuming that all
the edges have an arity r, it must be ensured that all subsets
of vertices in C of cardinality (r — 1) appear with x in an
edge. In terms of complexity, the number of mandatory edges
to extend the clique is (,™ ) where n is the number of vertices
in C and r is the arity of the edges. For graphs (i.e. r = 2), the
number of edges is n, while for hypergraphs, with just r = 3,
the number of edges can already be large (”21)”5

In this paper, we propose different approaches to solve the
MHE problem. First, we propose a relaxation using the clique-
expansion conversion [17] to transform a hypergraph into a
graph. This conversion replaces each hyperedge with edges
forming a clique among the vertices of the hyperedge. This
method is a relaxation as it may return bigger cliques than the
ones in the hypergraph, but if it returns only the hyperedges
(which are the most basic cliques in a hypergraph), then the
original hypergraph does not have a larger clique. We then
propose a generalization of the BK algorithm. Because it is



not sufficient to use the neighbourhood of each vertex to
detect a clique, we define the notion of clique neighbourhood,
that checks for the (T,fl) mandatory edges to expand the
clique. We define an incremental way to compute the clique
neighbourhood, just by checking the last added vertex to
the hyperclique. Finally, we introduce two hybrid versions
combining the generalization of the BK algorithm and the
relaxation to improve the overall efficiency in practice.

To conclude we experimented the different approaches and
variants of this article. The results show that our algorithms
improve the performances of a basic approach by a factor
of 10 or even 100 on some series of problems. A GitHub
repository, allowing to replay most of the experimental part
is available' and can be easily used as an external library to
enumerate maximal cliques in hypergraphs since the source
code is open-source.

II. PRELIMINARIES
We reproduce the definitions from Claude Berge [18].

Definition 1 (Hypergraph). Let X = {x1,...,x,} be a finite
set. A hypergraph on X is a family H = (Ey, Es, ..., E,,) of
subsets of X such that:

Ei #10
U
=1

The elements {x1,...,2,} of X are called vertices, and the
sets {E1,FEs,...,En} are the edges of the hypergraph (or
hyperedges). We will denote by X (H) = X the set of vertices
of a hypergraph.

(i=1,2,...,m) (1)

2

Definition 2 (Simple Hypergraph). A hypergraph is said to be
simple if no edge contains another that is: £; C E; = i = j.

Definition 3 (Order and Rank). The order of H, denoted

by n(H), is the number of vertices. The number of edges

is denoted by m(H). The rank is r(H) =  max |E;|. The
<j<m

anti-rank is s(H) = min |E;|.

1<j<m
Definition 4 (Uniform Hypergraph). H is a uniform hyper-
graph if r(H) = s(H). A simple uniform hypergraph of rank
r is also called r-uniform or r-hypergraph.

Remark 1. A 2-hypergraph is a graph.

Definition 5 (Neighbourhood). The neighbourhood N (z) of
a vertex x is the set of vertices that appear with x in at least
one edge: N(x) ={u € X|3E; € H s.t. {u,a} C E;}.

Definition 6 (Hypersubgraph [19]). Let Y be a subset of X.
The hypersubgraph of H induced by Y, denoted by Hy, is
defined as the hypergraph having for vertex set ) and edge
set By = {E1|E1 - y}

Thttps://github.com/mpelleau/ICTAI- 2025
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Fig. 2: An illustration of a 3-hypergraph with 7 vertices and 3
maximal hypercliques. Bipartite graph-based representation

Definition 7 (r-Uniform Complete Hypergraph). The r-
uniform complete hypergraph or r-complete hypergraph, de-
noted by K, is the hypergraph containing n vertices in
which every r-subset of the vertices represents an edge.
It is easily observed that the number of edges in K is
Kl = (1) = T,(n”ilr), and that each vertex x in X(K)

has a degree d(x) = (?:i)

Because we are only considering r-hypergraphs, we propose
the following definition to improve readability:

Definition 8 (r-Clique). In an r-hypergraph H, an r-clique
C" of order n is a hypersubgraph of H isomorphic to K.

Remark 2. In the following, we call clique or hyperclique C
a complete hypersubgraph of an r-hypergraph. By abuse of
notation, C corresponds to the set of vertices that induces the
complete hypersubgraph.

The following example illustrates the enumeration of max-
imal hypercliques:

Example 1. The 3-hypergraph in Fig. 2 has one clique of
order 5 ({x1,x2,x3,25,x¢}, in blue), 6 cliques of order 4
({x1, 2,23, x4} in pink, and 5 included in the clique of order
5) and 25 cliques of order 3 ({x5,x¢,x7} in , and 24
included in the cliques of order 4). Only 3 cliques are maxi-
mal: {x1,22,23,24}, {T1, 22,23, 25,26} and {x5, 26, x7}.

Finally, since we will use it later, we need to define
the Clique-Expansion (CE), which is one way to convert a
hypergraph into a graph:

Definition 9 (Clique-Expansion (CE) [17]). Let H be a
hypergraph, the Clique-Expansion graph (CE-graph) of H is
the 2-hypergraph on vertices X (H) and with edge set E such
that: E = {(u,v)|3E; € H s.t. {u,v} C E;}.

An illustration of the Clique-Expansion conversion is given
Fig. 4. Following, we only consider r-hypergraphs, even in the
search of maximal hypercliques, since it is “often desirable to
study hypergraphs where all the hyperedges have the same



Fig. 4: CE-graph

cardinality” [20], [21]. Therefore a non-uniform hypergraph
will be seen as multiple uniform hypergraphs. Indeed, by
having a look at Fig. 3, we can split this hypergraph into three
different ones: the pink one with 5 vertices and 6 hyperedges,
the one with 4 vertices and 2 edges and the blue
one with 4 vertices and 1 hyperedge. This splitting is always
possible. Indeed, as explained in [22], “(A) non-uniform
hypergraph is a superposition of m-uniform hypergraphs for
m = 2,...,M” with M being the biggest hyperedge arity.

III. DETECTING ALL MAXIMAL CLIQUES

The problem of enumerating maximal cliques is by itself a
hard problem. The CLIQUE problem is one of the Karp’s 21
NP-complete problems [6] and, moreover, an n-vertex graph
can contain up to 35 maximal cliques [23].

To deal with the intrinsic hardness of our problem, we
introduce here four approaches. The first method uses the
clique-expansion conversion of hypergraphs and the famous
Bron & Kerbosch (BK) algorithm [7] to compute a relax-
ation of the maximal cliques, then checks if each clique is
also a hyperclique. The second method generalizes the BK
algorithm in the case of hypergraphs. The last two ones are
hybridizations of the relaxation and the generalized BK. One
hybrid version applies the relaxation then, if a clique does not
correspond to a hyperclique, the generalization is called to
find the maximal hypercliques. The other hybrid version uses
the relaxation inside the generalized BK. To the best of our
knowledge, this is an original work, and after [16] which is too
deeply embedded in databases, the second work on detecting
maximal hypercliques.

A. Relaxation

The first proposed approach converts the hypergraph into a
graph by performing a clique-expansion (CE) conversion [17]
where each hyperedge is replaced by a clique. The resulting
graph will be referred as CE-graph in the following. It then
applies the BK algorithm to find the maximal cliques. This
step can find cliques in the graph that are not cliques in the
hypergraph. Thus, a checker is applied to verify that the clique
found in the CE-graph is also present in the hypergraph.

We illustrate this approach with the following example.
Fig. 3 represents an initial graph and Fig. 4 its CE-graph.
The hypercliques are computed on r-hypergraph. Thus, in
the hypergraph in Fig. 3, there are 6 maximal hypercliques:
{z5,x¢,z7, 25} (in the 4-hypergraph, in blue), {z1,x9,x3},
{x1,29,24}, {x2,23,24,25} (in the 3-hypergraph, in pink)
and {x4, 27}, {25, 26} (in the 2-hypergraph, in ). By
applying BK on each graph in Fig. 4, we obtain 5 maximal
cliques {x5, g, 7, s} (in the CE-graph of the 4-hypergraph,
in blue), {x1,x9, 23,24}, {x2, 3, 24,25} (in the CE-graph
of the 3-hypergraph, in pink) and {z4,27}, {25,276} (in the
CE-graph of the 2-hypergraph, in ). Using a checker
afterwards, we can detect that {z1, 22, x3, x4} is not a hyper-
clique. In the 3-hypergraph containing only the vertices in the
clique, there are less than (g) = 4 hyperedges. On the other
hand, the other cliques are hypercliques and are necessarily
maximal, as proven by the following proposition:

Proposition 1. Given H an r-hypergraph. Let G be the CE-
graph of H. If a clique Cg is maximal in G and corresponds
to a hyperclique Cy (the two cliques have the same set of
vertices)? in H, then Cy is a maximal hyperclique.

Proof. Let H be an r-hypergraph and G its CE-graph. Let Co
be a maximal clique in G that corresponds to a hyperclique
Cy in H. For the sake of contradiction, assume that Cg is not
maximal in H. Then there exists at least a vertex v such that it
can be added to Cp so that it forms a new clique. So VV C Cy
with |[V| =r—1, VU{v} € H. In other words, any vertex in
Cyr appears with v in at least one hyperedge. Thus, with the
CE, this means that there exists an edge between each vertex
of Co and v in G. Hence, v can be added to Cg to form a
new clique. Contradicting the fact that C; is a maximal clique
in G. If a clique C¢ is maximal in G and corresponds to a
hyperclique Cg in H, then Cy is maximal in H. O

Transforming the hypergraph into a simple graph using the
CE conversion and then checking if each clique returned by
BK is also a hyperclique gives a lower bound on the number
of maximal hypercliques.

B. Hyper Bron & Kerbosch

As stated in [16], it is usually assumed that the gener-
alization of BK to hypergraphs cannot be done efficiently.
Indeed, the concept of neighbour is not sufficient to decide
if a set of vertices is a clique, therefore generalizing BK to
hypergraphs is not straightforward. However, by considering
the neighbourhood of a clique instead of the neighbourhood
of each vertex, BK can be generalized efficiently in practice.
We propose the following definition of clique neighbourhood
to generalize the BK algorithm [7].

Definition 10 (Clique Neighbourhood). Let H be a r-
hypergraph. Given a clique C and Y C X (H) \ C, we denote
by v(C), the clique neighbourhood of C, a set of vertices such
that if any vertex is added to C it forms a new clique:

2Cq and Cy correspond to the same set of vertices; the two notations are
introduced to improve readability.



Algorithm III.1: Hyper-Bron-Kerbosch

Result « 0 // global variable
Hyper-Bron-Kerbosch(Current, Candidate, Not)

1 if (Candidate = () and (Not = () then

2 | Result < Result U{Current}

3 for each vertex v in Candidate do

4 Current + Current U {v}

5 CliqueN < y(Current)

6 Hyper-Bron-Kerbosch(Current,Candidate N
CliqueN,Not NCliqueN)

7 Current + Current \ {v}

8 Candidate ¢ Candidate \ {v}

9 Not <+ Not U {v}

¥(€) = {y € Y|YN C C with |N| <r—1,3E; € H

From this definition, we propose Algorithm III.1, based on
BK, to enumerate all the maximal cliques in a hypergraph.

The advantage of this algorithm is that it enumerates only
maximal clique and avoid generating non-optimal ones. Cur—
rent, Candidate and Not are sets of vertices. On the
first call Current and Not are set to (), and Candidate
contains all the vertices of the hypergraph.

Current is the temporary result which corresponds to
the vertices in a clique, Candidate the set of possible
candidates that may extend Current to form a new clique,
and Not contains vertices from which cliques have already
been computed and is used to avoid reporting duplicates. Once
all the cliques for a given vertex v are computed, v is added
to Not (line 9). Having the set Not allows the algorithm to
avoid generating non-maximal cliques, as it was already the
case in the original BK algorithm.

Even though, this algorithm can list all the maximal cliques
in a simple graph, it is far from obvious that it can be extended
as easily for hypergraphs. To prove it, we need to prove that
at each step Current is a clique and that if this algorithm
adds a clique to Result, then the clique is maximal. We also
need to prove that all the maximal cliques are found.

Proposition 2. At each step of Algorithm IIl.1, Current is
a clique.

Proof. An empty set or a single vertex is a clique. Let Cur—
rent be a clique of order n > 2. Either Candidate is
empty and we backtrack to a superior level where the last
vertex added is removed, and Current remains a clique. Or
Candidate contains at least a vertex v. Candidate is a
subset of C1iqueN (line 6), then by Definition 10, v can be
added to Current such that it forms a new clique. O

Algorithm III.1 terminates and reports only and all the
maximal cliques in an r-hypergraph. (Proof in appendix.)

The efficient computation of the clique neighbourhood
(Definition 10) depends on the set of considered vertices ).

To test experimentally whether this can speed up the approach,
we propose different filtering methods.

1) Filtering: In this section, we present two different fil-
tering techniques. Both are meant to reduce the number of
candidates, that is to reduce the size of the set ), to speed-up
the clique neighbourhood computation. These filterings may
return false positive matches but do not return false negative
matches. In other words, for each possible vertex, the filtering
return either “possibly in set” or “definitely not in set”. As the
combinatorics can be extremely large, it may be more efficient
to have some false positives that need to be confirmed than
computing the clique neighbourhood for all the vertices.

a) Neighbourhood filtering: One way that we propose
to filter the set of candidates uses the neighbourhood of each
vertex already in Current.

Proposition 3. Let ¢ € X'\ Current be a vertex. If there
exists a vertex © € Current such that ¢ ¢ N(x), then ¢ &
Candidate.

Proof. 1If a vertex c is not in the neighbourhood of a vertex
in Current, then by definition of clique neighbourhood
(Definition 10), it cannot belong to Candidate. O

Even though only checking the neighbourhood of each
vertex already in Current independently is not sufficient to
be sure that a vertex ¢ will expand the current clique, it is
an efficient way to filter the list of potential candidates. If the
vertex c is not in one neighbourhood, then for sure it cannot
expand the current clique.

b) Cligue filtering: This filtering is based on Proposition
1: each candidate that is not in a maximal clique in the CE-
graph with the vertices in Current, cannot extend the current
hyperclique. This is formalized by the following Proposition:

Proposition 4. Let ¢ be a vertex such that ¢ € X \ Current
and let Cliques be the resulting set containing all the cliques
in the CE-graph containing all the vertices in Current. If
AC € Cliques, such that ¢ € C, then ¢ ¢ Candidate.

Proof. From Proposition 1 if a clique is maximal, and is
a hyperclique, then it is necessarily a maximal hyperclique.
Therefore, if a vertex c is not at least in one maximal clique
with all the vertices in Current, then c cannot belong to the
set Candidate. O

2) Incremental Computation: Another way to reduce the
computation cost of the clique neighbourhood is to incre-
mentally compute it. Indeed, when a new vertex v is added
to the clique, then, for all the candidates ¢, we know that
we need to have at least one hyperedge containing v, ¢ and
the subsets of all the vertices already in the current clique.
For instance, consider a current clique of order 4 in a 3-
hypergraph: {z1,x2, 3,24} with x4 being the last added
element. A vertex c¢ remains a candidate if and only if the
following hyperedges exist {4, z1, c},{z4, z2, c},{z4, 3, c}.
Note that edges {x1, 22, ¢}, {x1, x5, c} and {zq, z3, c} exist as
c is a candidate (these edges were checked on previous vertex
additions). We formalize it with the following Proposition:



Proposition 5. Let x.,, be the last vertex added to the clique
Current and let ¢ a vertex with ¢ € X \ Current. If there
exists a subset comb C Current \ {x,} with |comb| <
r — 2, such that no hyperedge contains {x,,, comb, c}, then
¢ ¢ Candidate.

Proof. Let H be an r-hypergraph, Current be a clique
containing the vertex x,. Let ¢ be a vertex with ¢ € X (H) \
Current. Let comb C Current \ {z,} with |comb| <
r — 2 be a subset of Current. As |comb| < r — 2 then
{comb,z,}| < r — 1. By Definition 10, as {comb,z,} C
Current, if /AE; € H st {comb,x,,c} C E; then ¢
cannot be in the clique neighbourhood of Current and is
therefore not a candidate. O

By storing each hyperedge in a hashmap, the incremental
computation can be performed. It is denoted as “missing edge”
in [24, §3.5.1, Lemma 1]. However, one way to implement this
computation as filtering is to use a Bloom filter [25]. It is a
space-efficient probabilistic data structure that is used to test
whether an element is a member of a set. We use this data
structure to filter candidates for which at least one hyperedge
is missing so that they will not be considered as candidates.

C. Hybridizations

In this section, we propose two hybridizations of the relax-
ation and the generalization of the BK algorithm.

1) Relaxation as an oracle for Hyper Bron-Kerbosch: As
stated in Section III-A, computing the maximal cliques on the
CE-graph, may not give the maximal hypercliques. However,
if a clique is also a hyperclique then it is maximal (Proposition
1). Based on this proposition, we propose to guide the search
for maximal hypercliques using the maximal cliques in the CE-
graph. It computes all the maximal cliques, if a clique C is a
hyperclique then it is directly added to the result, otherwise,
Hyper-Bron-Kerbosch is called with Candidate = C. The
pseudo-code of this method is given Algorithm III.2. To
enumerate only the maximal hypercliques two checkers are
mandatory. The first verifies if a clique is a hyperclique. The
second verifies if a hyperclique is not already contained in
another hyperclique found by the call to Bron-Kerbosch or a
previous call to Hyper-Bron-Kerbosch.

Example 2. Applying BK on the CE-graph of the 3-
hypergraph in Fig. 4, we obtain 2 maximal cliques
{x1, 29,23, 24} and {xa,x3, x4, 25}. The second is a hyper-
clique while the first one is not. Thus, Hyper-Bron-Kerbosch
is called with Candidate set {x1, 2,3, x4} and returns 3
hypercliques {x1, 2,23}, {1, %2, x4} and {xa,x3,24}. The
last one is included in {2, 23,24, x5} and is not kept. Finally,
this method returns 3 hypercliques {x1,xo,23}, {x1,22,24}
and {xa,x3, 24,25}

Algorithm II1.2 terminates and finds all the maximal cliques
in an r-hypergraph. (Proof in appendix.)

2) Hybrid Bron-Kerbosch: In the previous hybrid method,
the checker is applied a posteriori. We propose here to add it

Algorithm III.2: Relax-HBK(H)

1 Result <

2 cliques < 0

3 notcliques <+

4 Bron-Kerbosch(), X, )

5 for each clique c in Result do
6 if Is-hyperclique(c) then

| cliques < cliques U {c}

// cliques in Result

7 else notcliques < notcliques U {c}
8 for each clique c in notcliques do
9 Result « 0
10 Hyper-Bron-Kerbosch((), ¢, #) // hypercliques in
Result
11 for each hyperclique hc in Result do
12 to-add < true
13 for each clique ¢’ in cliques do
14 if hc C ¢’ then
L | to-add « false

15 if to-add then
| cliques < cliques U {hc}

Algorithm III.3: Hybrid-Bron-Kerbosch

Result «+ 0 // global variable
Hybrid-Bron-Kerbosch(Current, Candidate, Not)
1 for each vertex v in Candidate do
2 if Is-hyperclique(Current U {v}) then
3 Current + Current U {v}
4 Hybrid-Bron-
Kerbosch(Current,Candidate N
N(v),Not N N(v))
5 Current < Current \ {v}
6 Not « Not U{v}
7 Candidate « Candidate \ {v}
8 if (Candidate = () and (Not Ny(Current) = 0)
then
9 | Result < Result UCurrent

in the original BK algorithm. Algorithm IIL.3 gives the pseudo-
code of this Hybrid BX. In this algorithm, N (v) stands for the
neighbourhood of a vertex v (Definition 5).

Like in the original algorithm, the clique is kept in Cur—
rent, Candidate corresponds to the set of possible vertices
that can be added and Not to the set of vertices from which
a clique has already been computed. As the computation of a
clique neighbourhood is time-consuming, we propose to com-
pute it only if a clique is found to ensure it is maximal (line
8). Moreover, each time a new vertex is added the function is
recursively called only if Current is a hyperclique (line 2).

Proposition 6. At each step of Algorithm II1.3, Current is
a clique.

Proof. An empty set or a single vertex is a clique. Let Cur—
rent be a clique of order n > 2. Either Candidate is empty
and we backtrack to a superior level where the last vertex
added is removed, Current remains a clique. Or Candida-



te contains at least a vertex v. v is added to Current only
if by adding it Current forms a new clique (line 2). Hence
at each step of Algorithm III.3, Current is a clique. [

Algorithm III.3 terminates and finds all the maximal cliques
in an r-hypergraph. (Proof in appendix.)

IV. FROM GRAPHS TO HYPERGRAPHS

It has been shown that the vertex ordering can influence
the efficiency of BK. We thus decided to check if the same
statement can be applied to the case of hypergraphs.

A. Candidate ordering

It has been shown that the best-suited ordering for BK is
the degeneracy ordering for sparse graphs [8]. Therefore, we
propose to try different orderings to see if this statement is
still valid in the case of hypergraphs. We thus experimentally
evaluated different orderings: random ordering, according to
the min—-£1i11 algorithm, ordering by the min-degree of each
vertex, the natural ordering and finally the degeneracy ordering
of the hypergraph. The random ordering is uniform, the
min-fil1l algorithm is presented in the htd documentation
[Algorithm 1] [26], the natural ordering is just the original
graph ordering.

B. Preprocessing

As stated in Definition 7, each vertex x in X (K] ) has a
degree d(x) = (:j) So, for a given rank r, if a vertex
z has a degree d(z) < (.",) = r, then the maximal
cliques containing = are of order r which corresponds to
the hyperedges containing x. We can therefore preprocess
the r-hypergraph and remove all the vertices having a degree
less than 7 from the initial Candidate set and add all the
hyperedges containing them in Result.

This property can be extended. Given two vertices x, v in
X (K?), they appear together in ("~7) edges. In other words,
z has n — 1 neighbours with whom it appears in (7~2) edges.
So, for a given rank 7, if a vertex x does not have at least
r neighbours with whom it appears in (::é) =r — 1 edges,
then the maximal cliques containing x are of order r which
corresponds to the hyperedges containing x. Therefore we can
remove all such vertices from the initial Candidate set and

add all the hyperedges containing them in Result.

V. EXPERIMENTS

We implemented the proposed approaches in an open-
source solver (written in C++) on top of the htd library
[27]. We used a cluster of identical computers with two 16-
Cores processors Intel Xeon Gold SKL-6130 with 96GB of
memory (two cores were booked for each process to limit
memory bandwidth bottlenecks). For each problem, we set
a time-out of 1800 seconds. For ensuring maximal repro-
ducibility, we set up a Docker image containing our tool, a
database of all our traces, and a tools to easily reproduce
them (replaying any entry in the DB, re-computing a table
of results, ...). The description for using this Docker image is
given in the pre-release of the following GitHub repository

https://github.com/mpelleau/ICTAI-2025. In addition, an in-
depth interactive visualisation of the exhaustive set of results
is accessible at https://mpelleau.shinyapps.io/Hyperclique/.

For comparing the performances of our tool, we have done
our best to contact different authors, even for related problems
to the MHE problem such as the Maximum Clique Problem,
without success. It was, unfortunately, neither possible to get a
binary, nor the benchmark sets, nor to get the results of their
approach on our set of problems from [28]. We also tried
to measure the performances of [24], but this was also not
possible (the tool was not designed to be used as a separate
tool). To the best of our knowledge, there is no efficient, open-
source, solution for enumerating hypercliques. This is also an
important contribution of our work.

Therefore, we had to limit our study to our three different
approaches. The first one, HyperBK (HBK), is our general-
ization of the Bron & Kerbosch algorithm (Algorithm III.1).
The second one, RelaxHBK (RHBK), applies the relaxation
and then calls HyperBK if a clique does not correspond to
a maximal hyperclique (Algorithm III.2). The last method,
Hybrid (Hyb), provides a hybridization between computing
cliques in the CE-graph and computing the hyperclique di-
rectly (Algorithm II1.3). These three approaches have three
parameters to be tested. The first is the ordering of the
set Candidate (Section IV-A). The second is the filtering
technique (Section III-B1) of the Candidate set before
each recursive call to the Hyper-Bron-Kerbosch algorithm.
The last parameter is the preprocessing (Section IV-B) of the
Candidate set before the first call of the approach.

In the following we denote by:

¢ o the chosen ordering: random ordering (o = r), accord-
ing to the min-£fill algorithm (o = mF'), ordering by
the min-degree of each vertex (o = mD), the natural
ordering (o = n) and finally the degeneracy ordering of
the hypergraph (o = d).

o f the chosen filtering: the Bloom filtering (f = b),
the clique filtering (f = c¢), the filtering using the
neighbourhood (f = m) and no filtering (f = 0). We also
put in this category the incremental computation (f = 7).

« p the preprocessing method: based on the vertices degree
(p = d), based on co-occurrences (p = c), both prepro-
cessings (p = b), and no preprocessing (p = 0).

A. Set of Problems and Configurations

We decided to test all the possible configurations (3 meth-
ods, 5 filtering, 5 orders, 4 preprocessings). We have 300
configurations per problem to test, with a timeout of 1,800
seconds, which corresponds to almost one week of CPU
time per problem (6.25 CPU Days). One of the challenges
in this section is to give a synthetic view of the relative
performances of the 300 configurations. In addition to the web-
based interactive exploration of our data, we decided to use the
Par2 score, as it is used in many competition to rank solvers
amongst them. Given a timeout, the Par2 score of a solver on
a set of problems is the sum of its CPU time on the finished
runs plus the penalty multiplied by the number of unfinished



TABLE I: Some statistical information regarding each subfamilies of the set Hyperbench considered for the experimental evaluation. We
computed the average number of vertices and edges for each subfamily. We also computed the average value of the arity for each hyperedge
(the standard deviation), the degree of each hypergraph (the standard deviation).

Subfamily  #Ins.  #Vertices  #Edges Arity (std) Degree (std)
cQ 175 21.960 5.211 5.049 (2.550) 1.21 (0.192)
CQ-Rand. 500 9.488 1.000 9.488 (4.235) 1.000 (0.000)
CSP-App. 1090 151.709 68.898  5.739 (7.805) 3.341 (1.622)
CSP-Rand. 863 40.736 67.580  4.847 (2.954) 10.438 (10.032)
D-Chrysler 15 592.133  318.600  2.964 (0.099) 1.551 (0.149)
Grid2D 12 1655333  988.333  3.859 (0.101) 2.294 (0.083)
ISCAS89 24 669.416  428.708  2.871 (0.318) 1.827 (0.240)
MaxSAT 31 120.419  178.000  3.329 (2.086) 4.144 (1.359)
SQLShare 290 29.982 8.075 7.508 (8.714) 1.257 (0.309)

runs. For a ParX ranking, the penality is X times the timeout
(our penalty for not solving an instance is thus 3600).

The set of problems we choose comes from Johannes K.
Fichte et al. [29] (available at http://hyperbench.dbai.tuwien.
ac.at/). These benchmarks are usually used for the analysis of
hypertree widths, generalized hypertree widths and fractional
hypertree widths (some results about the hypertree width of
these benchmarks are available in [30]). This set contains
3000 problems that are not too hard, given the number of
configurations to test.

We collected 900,000 runs, representing more than 64 days
of CPU time. 800,590 jobs were trivial (less than 0.1s) and
many other problems were probably too easy to draw any
conclusion between the methods. Thus, we decided to select
only the 1037 problems where at least one configuration took
more than 1s (40,741 jobs took more than 1s). The final set
of the 1037 problems we consider from now on contains 328
problems from CSP-Applications, 621 from CSP-Random, 13
from DaimlerChrysler, 11 from Grid2D, 23 from ISCAS 89,
25 from MaxSAT and 16 from SQLShare.

Amongst all the configurations, we identified HyperBK
with no preprocessing (p = @), no filtering (f = @) and the
natural ordering (o = n) as the “reference” configuration.
It is very encouraging to measure that the average CPU
time for this configuration is 13s (on the 1037 problems),
without any timeout. That means that scaling the Bron &
Kerbosch algorithm to hypercliques may gives good results.
The question is now how far we can improve it.

B. Experimental Results

Table II summarizes our results by considering, on each
line, a summary of all the configurations matching the line
constraint (for instance, the first line considers all the runs, on
the 1037 problems, that involves HyperBK with any set of
parameters). The first observation is the number of timeouts
(#TO): clearly, Hybrid seems to be the best. There is no
timeout, whatever the other parameters are. It is also very
surprising to see that the reference solver HyperBK, that does
not timeout in its native setup (with all the default parame-
ters), shows the worst performances when considering all its
variants. That means that some values for the other parameters
greatly impact its performances. For a more detailed analysis,
we can look at the Par2 column, which gives the average Par2
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Fig. 5: Scatter plot of the CPU time (s) of the reference solver (see
text) against the best configuration.

TABLE II: Synthesis of the Par2 score of all the configurations,
aggregated on each parameter. See text for descriptions.

config #TO Par2 Par2 Rank
HBK 1334 59.34 170 (162, 88)
Hyb 0 1.13 112 (112, 66)
RHBK 565 25.52 200 (175, 90)
f=0 0 4.16 131 (152, 74)
f=0 0 290 104 (115, 88)
f=c 1719  117.60 180 (192, 83)
f=n 0 437 133 (156, 76)
f=i 180 1427 114 (131, 91)
p=20 1459 89.64 252 (243, 36)
p=d 440 2424 202 (197, 51)
p=c 0 0.38 38 (63, 56)
p=>b 0 0.38 82 (95, 40)
o=r 395 29.56 148 (151, 86)
o=mD 379 28.85 158 (152, 87)
o=mF 376 28.79 152 (153, 86)
o=n 410 29.85 138 (145, 88)
o=d 339 26.24 142 (146, 86)




of all the variants of the considered line. This column also
offers a number of surprises. The Hybrid line shows a very
impressive average Par2 value. More importantly, we see that
the preprocessing based on co-occurrences (p = ¢) and based
on both degree and co-occurrences (p = b) leads to great
improvements in general. It seems also that the impact of the
order choice is very limited. We confirmed this by studying the
variance of the same configurations according to the different
orders. 95% of the variances are less than 0.1 and 99% less
than 10. However, maybe harder problems can demonstrate
the advantage of one order above the others.

“Par2 Rank” summarizes the ranks of all the variants match-
ing the considered line, relatively to all the 300 configurations
(numbers are noted Median (Average, StD)). This last column
shows that, Hybrid is generally better than the other solvers
(its median ranking is 112). This last column also shows that
the preprocessing based on co-occurrences (p = c) generally
offers better performances than the one based on both degree
and co-occurrences (p = b) (its median ranking is 38).

Based on the previous analysis, we were able to find the best
possible configuration. This configuration is Hybrid with the
Bloom filtering (f = b) and the preprocessing based on co-
occurrences (p = c). Figure 5 shows the final progress we
made during our journey. It shows an impressive improvements
on almost all the problems. Our best configuration is almost
10 times faster and, on some families (CSP-Application) it
shows an improvement of almost a factor of 100.
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VII. CONCLUSION

Despite its importance in numerous areas, particularly in
Artificial Intelligence (constraint satisfaction, knowledge graph
analysis, logic-based learning, multi-relational data mining,
etc.), the problem of enumerating all maximal cliques of a
hypergraph (MHE) has probably not received all the attention
it deserves. In this paper, we present three different methods
to solve the MHE problem.

The first one is a generalization of the Bron & Kerbosch
algorithm, to hypergraphs, called HyperBK. We demonstrate
that our generalization is sound, complete and terminates. We
show that the generalization opens the way for several variants.
For instance, the size of the candidates set in the main loop of
HyperBK plays a crucial role in its performances. We have
proposed to study three different techniques to efficiently filter
out some of the candidates.

The first filtering considers an intersection with the neigh-
bourhood of all the vertices already in the current clique. The
second filtering uses the cliques in the Clique-Expansion graph

(CE-graph). The third filtering, is a variant of the incremental
way to compute the clique neighbourhood using a probabilistic
hashmap (Bloom-filter) to identify the vertices for which at
least one hyperedge with the last added vertex is missing. We
also consider a number of variants for ordering the candidates
during the main loop of HyperBK.

Then, we propose two hybridizations of our algorithm.
The first hybridization considers computing all the maximal
cliques in the CE-graph of the input graph and then only
checking, for each maximal clique, if it is also a clique in the
original hypergraph. Secondly, we consider a more interleaved
hybridization, by first checking if the union between the next
candidate and the current clique is still a clique before the
main recursive call of the RelaxHBK algorithm.

At last, we experimentally show, on a set of well established
problems, that we were able to improve the basic version of
Bron & Kerbosch algorithm for hypergraphs by a factor of 10
and, on some categories of problems, by a factor of 100. All
our algorithms (with variants) are open-source, built on top of
the widely used library HTD for hypergraph manipulations.
We hope that this will allow easy adoption of our algorithms
by the community.
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APPENDIX

The proofs of soundness and completeness of the three
different Algorithms are in this appendix. We first prove
the soundness and the completeness of Algorithm III.1. But
before, we recall the Proposition 2

Proposition 2. Ar each step of Algorithm IIl.1, Current is
a clique.

Proof. An empty set or a single vertex is a clique. Let Cur—
rent be a clique of order n > 2. Either Candidate is
empty and we backtrack to a superior level where the last
vertex added is removed, and Current remains a clique. Or
Candidate contains at least a vertex v. Candidate is a
subset of C1iqueN (line 6), then by Definition 10, v can be
added to Current such that it forms a new clique. O

Proposition 7. A clique is added to Result by Algorithm
111, if and only if it is maximal.

Proof. When a vertex is added to Current, which from
Proposition 2 is a clique, if Candidate becomes empty.
Then either Not is empty and Current is maximal as no
vertex can be added (line 2). Or Not contains at least a vertex
v. Not is a subset of the clique neighbourhood C1iqueN (line
6), then by Definition 10, v can be added to Current such
that it forms a new clique. So if Not is not empty, the clique

is not maximal and Algorithm III.1 does not add it. The same
goes if Candidate does not become empty. O

Proposition 8. When a candidate c is eliminated in Algorithm
1111, it cannot extend the current clique.

Proof. A candidate ¢ is removed thanks to the intersection
between the sets Candidate and CliqueN (line 6) or
after a call to Hyper-Bron-Kerbosch (line 8). In the first
case, if ¢ is not in the neighbourhood of Current, then
by Definition 10, ¢ cannot extend Current and thus is
eliminated. In the second case, it is removed as all the maximal
cliques containing CurrentU{c} have been computed by the
recursive calls to Hyper-Bron-Kerbosch. O

Algorithm III.1 terminates and reports only and all the
maximal cliques in an r-hypergraph.

Proof. Soundness comes directly from Proposition 7, Algo-
rithm III.1 only returns maximal cliques. Completeness comes
from Proposition 8 it ensures that the set of all the possible
candidates is tried as a candidate is eliminated only if it cannot
be part of the current clique. Thus all the cliques are tried
and reported if they are maximal. Finally, Algorithm III.1
terminates. Otherwise, by Kénig’s lemma, either Candidate
is infinite or the call stack is infinite. Candidate is a subset
of CliqueN which is a subset of X which is finite by
Definition 1. Thus Candidate cannot be infinite. As the
call stack depend on the size of Candidate, then it cannot
be infinite. O

We then prove the soundness, the completeness and the
termination of Algorithm IIL.2.

Proposition 9. Algorithm II1.2 reports maximal cliques.

Proof. From Proposition 1, if a maximal clique is also a hy-
perclique then it is reported. Otherwise Hyper-Bron-Kerbosch
is called with for candidates only the vertices in the clique.
Then by Theorem 9, we know that Algorithm III.2 reports
only maximal cliques. O

Proposition 10. All maximal cliques are found by Algorithm
111.2.

Proof. Toward a contradiction. Assume that a maximal clique
C exists and it is not found. That means that either C has
been returned by Bron-Kerbosch since it is maximal and
that Bron-Kerbosch is sound [7]. Therefore, if C is also
a hyperclique, then by the Proposition 1 and line 7, it is
returned and therefore contradiction. Or C has been returned by
Hyper-Bron-Kerbosch since this algorithm returns all maximal
cliques (Theorem 9). Because we assume that C is maximal,
then at line 16, the variable to-add is true and thus C is added,
again leading to a contradiction. Because there is no other way
to return a clique, this implies that all maximal cliques are
found by Algorithm III.2. O

Algorithm III.2 terminates and finds all the maximal cliques
in an r-hypergraph.



Proof. Soundness comes directly from Proposition 9, this
method only returns maximal cliques. Completeness comes
from Proposition 10. Finally, this method terminates, it calls
Bron & Kerbosch algorithm which terminates and returns a
finite set of cliques. In the worst case, Hyper-Bron-Kerbosch
is called for each clique found by Bron & Kerbosch. Hyper-
Bron-Kerbosch terminates (Theorem 9) and is called a finite
number of times. O

And finally, we prove the soundness and the completeness
of the Algorithm III.3. First we recall Proposition 6.

Proposition 6. At each step of Algorithm II1.3, Current is
a clique.

Proof. An empty set or a single vertex is a clique. Let Cur—
rent be a clique of order n > 2. Either Candidate is empty
and we backtrack to a superior level where the last vertex
added is removed, Current remains a clique. Or Candida-
te contains at least a vertex v. v is added to Current only
if by adding it Current forms a new clique (line 2). Hence
at each step of Algorithm III.3, Current is a clique. O

Proposition 11. A clique is added to Result by Algorithm
II1.3, if and only if it is maximal.

Proof. By Proposition 6, Current is a clique. If Candida-
te becomes empty, then either Not N~y (Current) is empty
and Current is maximal as no vertex can be added (line 9).
Or Not Ny(Current) contains at least a vertex v. Not N
~v(Current) is a subset of y(Current), by Definition 10, v
can be added to Current such that it forms a new a clique. So
if Not Ny(Current) is not empty, the clique is not maximal
and Algorithm III.3 does not add it to Result. The same
goes if Candidate does not become empty. O

Proposition 12. When a candidate c is eliminated in Algo-
rithm I11.3, it cannot extend the current clique.

Proof. A candidate ¢ is removed thanks to the intersection
between the sets Candidate and N(v) (line 6). If ¢ is not
in the neighbourhood of Current, then by Definition 10, ¢
cannot extend Current and thus is eliminated. O

Algorithm III.3 terminates and finds all the maximal cliques
in an r-hypergraph.

Proof. Soundness comes directly from Proposition 11, Algo-
rithm II1.3 only returns maximal cliques. Completeness comes
from Proposition 12. For the termination, it is easy to see that
by Kénig’s lemma, either Candidate is infinite or the call
stack is infinite. Candidate is a subset of X which is finite
by Definition 1. Thus Candidate cannot be infinite. As the
call stack depend on the size of Candidate, then it cannot be
infinite and therefore Algorithm III.3 terminates. O



