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Abstract—Recent research yielded a wide array of drift de-
tectors. However, in order to achieve remarkable performance,
the true class labels must be available during the drift detection
phase. This paper targets at detecting drift when the ground
truth is unknown during the detection phase. To that end, we
introduce Gaussian Split Detector (GSD) a novel drift detector
that works in batch mode. GSD is designed to work when the
data follow a normal distribution and makes use of Gaussian
mixture models to monitor changes in the decision boundary. The
algorithm is designed to handle multi-dimension data streams
thus suited for computer vision tasks and to work without
the ground truth labels during the inference phase making it
pertinent for real world use. In an extensive experimental study
on real and synthetic datasets, we evaluate our detector against
the state of the art. We show that our detector outperforms the
state of the art in detecting real drift and in ignoring virtual
drift which is key to avoid false alarms.

Index Terms—Computer Vision, Concept Drift, Drift Detection

I. INTRODUCTION

Few data distributions remain stationary over long periods
of time. Machine learning models are constructed based on the
assumption that the data encountered during the training stage
and the future inference data share the same distribution. When
models are trained and then deployed for inference, a change
in the underlying data distribution can cause a drop in per-
formance [16]. This shift in distribution is known as Concept
Drift (CD) and detecting it will be the focus of this paper. The
democratization of predictive modeling has made concept drift
an active research topic as it cripples in production systems.
Concept drift must not be confused with anomaly detection
where few samples are out of distribution. Drift is not domain
specific and impacts every field including text and video [24].
When dealing with computer vision tasks, drift can be caused
by a wide array of factor including the change of equipment,
unseen weather conditions or deterioration of the camera.

Real drift is a change in distribution that modifies the
decision boundary. Real drift impacts a model’s ability to
predict instances classes. When real drift occurs, a drop of
a model’s predictive performances is systematically observed.
Virtual drift is a change of distribution that does not affect
the decision boundary. Since virtual drift does not impact the
model’s performance, we don’t believe its occurrence warrants

the re-training of the model. We believe a good drift detector
should detect real drifts while ignoring virtual drifts.

Assume X is a set of variables used to predict the target
class vector y. Three primary causes of concept drift are
identified [27]: changes in the class distribution P(y | X),
the feature space P(X | y) or class priors P(y). Drift of
type P(y | X) happens when the decision boundaries change.
Drift type P(X | y) happens when values reach unseen
domains. Different drift speeds have been identified [21]. If
the distribution change is sudden, it is referred to as abrupt
drift, whereas if the distribution shift is slow over time, it is
called gradual drift. When a distribution oscillates between
two or more concepts, it is called recurrent drift.

In this paper, we introduce a novel drift detection method,
Gaussian Split Detector (GSD). GSD computes decision
boundaries of the most informative features on the training
set. During the inference phase, the Expectation Maximization
[9] (EM) algorithm estimates the parameters of the Gaussian
mixture distribution on the selected features. The parameters
are used to compute the new decision boundaries. Drift de-
tection is based on the difference of the training boundaries
and the inference boundaries. As GSD works in any number
of dimensions, it does not need labels during inference and
outperforms the state of the art in thorough experiments.

In Section 2, we present related work and position our paper.
The GSD algorithm is described and evaluated in Section 3.
Section 4 concludes this paper.

II. RELATED WORK

Concept drift has become the focus of recent work in the last
few years [21]. Recent research yielded a wide array of models
handling drift intrinsically [10]. As well as drift detectors that
work jointly with a predictive model. If the ground truth is
available shortly after inference, some detectors manage to
achieve almost perfect drift detection. Two hypothesis are
usually made in supervised drift detection. The first is that
recent data shares the same distribution as upcoming data.
The second is that a change in a model’s error rate is a strong
indicator of the presence of real drift.

With the assumption that recent and upcoming data share
the same distribution, one approach is to continuously update
a pool of models. In [10] a batch of new data is evaluated
by a pool of models, and the contributions of each individual
model are weighted based on its recent performance. With979-8-3315-4184-2/24/$31.00 ©2024 IEEE



each new batch of data, a model is trained on it and added to
the pool. Consistently poorly performing models are removed.
This ensures quick adaptation to recurring drifts while keeping
a strong level of performance. Techniques that operate on a
dynamic pool of models have been extensively studied in [6],
[17].

Detection methods based on the second hypothesis have
received significant attention since they can reliably identify
genuine drift while ignoring virtual drift. In [1] and [20] a
model’s error rate is monitored and a decline in performance is
interpreted as drift. Various statistical tests [22] are employed
to monitor the error rate and signal the occurrence of drift.
These methods can reliably identify real drift while disregard-
ing virtual drift as it does not impact a model’s performances.

Updating a pool of models and monitoring the error rate are
both effective techniques for handling drift. Both approaches
require immediate access to the true labels after the inference
stage. This is a very strong hypothesis for real-world situations
where class labels may be never known [15]. Unsupervised
methods have been the focus of research to deal with ground
truth unavailability.

To detect drift based on the feature space instead of the true
labels, window-based techniques have been studied. In [2] the
authors introduce ADWIN that maintains a reference window
consisting of past instances. The window size dynamically
adjusts based on whether drift is detected. Specifically, when
no change is detected, the window expands, while in the
presence of drift, the window rapidly contracts. The detection
mechanism of ADWIN involves repeatedly separating the
window into two smaller windows based on the observation’s
age. Drift is detected when the averages of the values of
these sub-windows exceed a threshold. Other window-based
detectors have been proposed such as in [23].

Rather than relying on one-dimensional sliding windows,
some methods detect drift on all the feature space. In [11], the
authors introduce QT-EWMA where concept drift is detected
using an exponential moving average to monitor the distri-
bution of a QuantTree histogram built on the training data.
The authors in [14] use minimum enclosing balls to identify
abrupt or gradual changes. A ball is defined as a centroid and a
minimum radius that encompasses all the samples in the ball.
If a significant number of values are identified as outliers, a
drift is detected and the centroid is updated to fit the latest
concept.

Some authors use the hypothesis that if past and present
data can be sorted, there is a drift. In [12], the authors train a
model to distinguish between past and recent data. To prevent
the model from identifying this distinction based on obvious
timestamp-like aggregates, these were removed before training
the model. The researchers evaluated the model’s performance
using the AUC metric. In [3], the authors use time as a means
to detect drift by incorporating the timestamp attribute in the
observations and training a model to predict the target variable
for both past and recent data. If the timestamp attribute is
considered as an informative feature, then the target variable
is dependent on time, which indicates presence of a drift.

In [8], the authors propose a different unsupervised ap-
proach to detect drift. They train a teacher model on past
labeled data, and then train a second model, known as the
student model, to mimic the behavior of the teacher model.
During the inference phase, the authors monitor the error rate
of the student model and use the method presented in [2] to
detect a drift if the error rate exceeds a certain threshold.

The authors in [24] investigate drift detection in the context
of unsupervised image classification. The dimension is first
reduced, followed by a two-sample test to identify drift. They
evaluate a variety of dimension reduction and two-sample
tests, including MMD [13] and KS, by applying various types
of shifts to images. In [7], the authors propose an approach
where the target class is incorporated in the dimension reduc-
tion mechanism, allowing the detector to ignore virtual drift.

The idea behind concept drift detection by statistical tests
is that a distribution change will be a strong indicator of drift
[14], [24]. A distribution change will enable the detection
of drift, but will not discriminate between real drift and
virtual drift. To the best of our knowledge, few algorithms
are able to discriminate between real drift and virtual drift
in a multivariate setting without access to true labels after
detection such as Discriminative Drift Detector [12], QT-
EWMA [11], Student-Teacher (ST) [8], Task Sensitive Drift
Detector (TSDD) [7].

In this paper we introduce a novel algorithm to detect drift:
Gaussian Split Detector (GSD). GSD is designed to handle
binary classification problems. GSD successfully detects real
drifts while triggering very few false positive by ignoring
virtual drifts. The detector does not need true class labels to
operate during the inference phase.

III. GAUSSIAN SPLIT DETECTOR

In this Section we introduce GSD, an algorithm that mon-
itors the decision boundaries shifts using a Gaussian mixture
model in order to detect drift. We simplify the assumption
made by the authors of [5] by making the hypothesis that the
data distributions of any feature used for detection is a sum
of two Gaussian distributions each corresponding to a class.

We start by building an ensemble of n single Bayesian
splits. In a similar fashion to the random forest algorithm [4],
each split is randomly given a subset of samples and features.
During the training phase, for each feature ψ available to
the split, the mean µψc , variance σψc and proportion pψc are
calculated for each class c. The proportion is used to find
the optimal decision boundary with regards to a possible
class imbalance scenario, we have pψ0 + pψ1 = 1. Since we
assume the variables are drawn from a Gaussian distribution
we use these parameters to find the decision boundary. It is the
intersection that minimizes the misclassification error rate of
the two Gaussian curves. The feature selected for the split is
the one that has the smallest misclassification area Eψ . Figure
1 illustrates the process of computing the decision boundary.

During inference, the EM algorithm allows us to estimate
the parameters of a Gaussian mixture distribution. The param-
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Fig. 1. In this figure, we plot the weighted density functions for the positive
(in green) and negative (in red) samples. The decision boundary α is marked
by the black line.

eters are then used to compute a new decision boundary α̂.
The decision boundary difference is used to detect drift.

A. Mathematical formulation

1) Hypothesis: We assume that the predictive task is binary
classification.

Furthermore, for each variable ψ, we make the hypothesis
that:

∀c ∈ {0, 1} : Xψ | y = c ∼ N (µψc , σ
ψ
c ) (1)

where Xψ | y = c denote the samples for feature ψ labelled
as belonging to class c. GSD does not require the features to
be independent.

2) Algorithm: Let Fψc (x) be the cumulative distribution
function of the estimated Gaussian distribution for the variable
ψ of the samples of class c. Let pψi be the proportion of
samples of class i. Let α denotes the decision boundary that
minimizes the misclassification area between the two classes.
The misclassification area is calculated with equation 2.

Eψ = min

(
min

[
pψ0 × Fψ0 (α), pψ1 × Fψ1 (α)

]
+

min
[
pψ0 × (1− Fψ0 (α)), pψ1 × (1− Fψ1 (α))

]) (2)

As in classic decision trees, the feature used in the split
minimizes the misclassification probability across all features.
For each feature ψ, the optimal boundary, α, is one of two
intersections of the weighted Gaussian distributions. α can be
computed analytically by solving a quadratic equation where
the coefficients are:

a =
1

2(σψ0 )
2
− 1

2(σψ1 )
2
, b =

µψ1

(σψ1 )
2
− µψ0

(σψ0 )
2

c =
(µψ0 )

2

2(σψ0 )
2
− (µψ1 )

2

2(σψ1 )
2
− ln

(
pψ0 σ

ψ
1

pψ1 σ
ψ
0

)
The α chosen minimizes the misclassification area. In some

rare cases, the distribution functions do not intersect. This
happens when the means are close and there is a steep class

imbalance which causes a weighted distribution to encompass
another. When encountered, the feature is dropped. We use
here an ensemble of single splits for two reasons:

• In order to properly estimate the parameters of the
Gaussian distribution we need a large enough sample size.
This is not achievable when the data is partitioned by a
large number of splits.

• It allows the model to work when the variables are not
independent. In that case, a shift in the first split may
drastically change the distribution of the final partitioning
when we update its decision boundary.

B. Overview of the detection phase

Algorithm 1 GSD - Inference
Parameters:
- τ : Minimum ratio of drifting tree to flag drift
- β : Vector of thresholds to flag a drift
Inputs:
- M = {M0, ...,Mk} : Trained ensemble of k + 1 single
Gaussian splits
- α = {α0, ..., αk} : Decision boundaries of the Gaussian
splits
- I ∈ Rm×d : Test set with d features and m samples
Variables:
- γ = 0 : Number of drifting splits

1: for all ψ used in M do
2: Run EM on I[ψ] and get ˆ

µψi ,
ˆ
σψi ,

ˆ
pψi , i ∈ {0, 1}

3: Get the Gaussian decision boundary α̂ψ
4: if |αψ − α̂ψ| ≥ βψ then
5: γ = γ + 1
6: end if
7: end for
8: if γ

k+1 ≥ τ then
9: A drift is triggered

10: end if

The drift detection phase is formally described in Algorithm
1. Let M be the ensemble of Gaussian splits computed during
the training phase. In lines 1-2, for each feature in M we
run the EM algorithm on the inference data. This gives the
estimated parameters (µ̂ic, σ̂ic, p̂ic) for each subsequent feature
i and class c of the two Gaussian distributions that constitute
the overall distribution. In line 3, we find the new decision
boundary α̂ψ by solving (2). It is the intersection of the two
weighted Gaussian probability density functions. When the
EM algorithm does not converge, the tree’s output is not taken
into account.

The β vector is used to determine if a change in the decision
boundary in between the training data and inference data is
high enough to signal a drift. To compute it, we split the
labelled data into a train set containing 75% of the instances
and a validation set. We then proceed to build a Gaussian split
on all features of the training set. We then isolate the two
components of the Gaussian mixture with the EM algorithm
on the validation set as it is done in the detection phase. With



α̂i the estimated decision boundary on the validation data for
feature i, the β vector is defined as [|α0 − α̂0|, ..., |αd − α̂d|].

In lines 4 through 6, when the difference in the decision
boundary exceeds the feature dependant βψ parameter, the γ
count is incremented. In line 8, if the ratio of drifting split
exceeds a user defined threshold τ , a drift is triggered. The τ
value controls the sensibility of the detector. A low value will
likely trigger false alarms while a high value might lead the
detector to miss some real drifts.

C. Experimental results

In Figure 2 and Figure 3, we show how real drift affects
the decision boundary and how the decision boundary can
remain unchanged with virtual drift. In Figure 2, real drift
is illustrated as the optimal split shifts with the distribution
change. At time t + ∆t, the decision boundary calculated at
time t is no longer relevant. In Figure 3, virtual drift is shown
as the decision boundary remains unchanged despite of the
distribution change. We evaluate GSD against a panel of five
state of the art detectors on both real and synthetic datasets.
In order to test our method’s ability to detect real drift and
ignore virtual drift, perturbations are made on the datasets. The
drift induction experimental procedure used in this section is
standard when testing drift detectors [7], [25], [26].

1) Experimental protocol: The usual procedure to test
algorithms suited to handle drift when true class labels are
available after inference, is the test-then-train approach. A
model predicts the class on a batch of samples, then, the
true class is revealed and the model updates itself. The global
prediction accuracy is then used to rank models.

This setup is not suited for models that do not rely on
true labels availability. In most datasets used to benchmark
drift handling methods, the presence of drift is only assumed
or artificially introduced by sorting the observations on an
attribute.

To know the exact drift occurrence and its impact, several
distinct perturbations on images are applied. We add the
image shift and Gaussian noise perturbations introduced by
[24]. The image shift consists in applying rotations, (x-y)
axis translation and zoom-in. Different standard deviations
of Gaussian noise are added to corrupt the features. Several
degrees of perturbations are added.

In order to assess if the perturbations yield real or virtual
drift we fit a Random Forest Classifier on the unmodified train
set before reporting its accuracy on the train set, unchanged
validation set and the different drift sets. For the sake of
robustness, we repeated the process ten times.

The drop of the model’s accuracy between the different sets
is used to classify drift as virtual or real. If the difference
in accuracies between the validation set and the training set
is lower than that of the validation set and the drift set, we
consider the drift induced to be real, otherwise, it is considered
as a virtual drift. We apply this protocol on all datasets. Our
experiment is carried out with two dimensionality reduction
techniques. In one setting we reduce the dimensionality to
32 features using Principal Component Analysis (PCA) which

At time t

At time t + t

Fig. 2. Real drift

At time t Optimal Split
New Optimal Split
X | y=0
X | y=1
Confusion

At time t + t

Fig. 3. Virtual drift

explains above 75% of the variance for all datasets. As GSD is
designed to work when the data follows normal distributions.
In a second setup, a Variational Autoencoder (VAE) is trained
to project the data to a latent space of four dimensions that
follow a normal distribution.



TABLE I
REAL AND VIRTUAL DRIFT CLASSIFICATION

dataset Cifar-10 Cifar-100 Fashion Mnist
Type Intensity

large 0.00 0.00 1.00 0.67
Gaussian Noise medium 0.00 0.00 0.00 0.00

small 0.00 0.00 0.00 0.00
large 1.00 0.33 1.00 0.00

Image Shift medium 0.33 0.17 0.83 1.00
small 0.00 0.00 0.67 0.67

We evaluate the performance of GSD with τ = 0.25 against
other state of the art unsupervised drift detectors :

• Discriminative Drift Detector (D3) [12]
• Student-Teacher (ST) [8]
• Task Sensitive Drift Detector (TSDD) [7]
All detectors were used with their default parameter values.
Our experiment is carried out on the MNIST [19], CIFAR-

10 [18], CIFAR-100 [18] and FASHION-MNIST [28] datasets.
In Table I, we show whether the combination of different

types of perturbations and their respective strengths yields
real drifts or virtual drifts. We consider a drift to be real
if the perturbation generated a real drift at least in 50% of
the cases. In italic are the settings that produce real drift. We
note that when Gaussian Noise is added, it only produces real
drift when the intensity is large. We also note that none of
the perturbations yield real drift on the Cifar-100 dataset In
order to correctly conduct our experiment, each experiment is
performed over ten runs.

We group the experimental results in two tables (Table II
and Table III). Table II reporting the performance of detectors
when shown virtual drift, Table III reporting the results on real
drift.

2) Results: Table II evaluates the detectors on their power
to ignore virtual drift by reporting the true negative rate. A
high true negative rate signifies that the detector accurately
ignored virtual drift. When PCA is used, GSD consistently
ignore the virtual drifts on the Fashion and MNIST datasets.
GSD only comes last on the Cifar-10 and Cifar-100 datasets.
D3 comes in second place with the lowest number of false
positives on the Cifar-100 dataset and being the second best
on the Fashion and MNIST datasets. TSDD takes the third
place closely followed by the Student-Teacher model both
achieving 47% on the Cifar-10 dataset. When a VAE is
used, GSD achieves good results on the Mnist and Cifar-100
datasets. D3, ST and TSDD consistently ignore the virtual
drifts on all the datasets.

Table III reports the detection results of models on real
drift. A high true positive rate indicates a good detection by
the model on real drift. When the dimensionality is reduced
using PCA, GSD comes first with the best detection rate on
the Fashion and MNIST datasets. GSD comes in second on
the Cifar-100 dataset. The D3 model comes second on the
Cifar-10 and Cifar-100 datasets. The ST model makes four
correct detections. The Student-Teacher performs poorly with
no consistent detections. Both TSDD and ST have trouble

TABLE II
VIRTUAL DRIFT DETECTION

Method Dataset Cifar-10 Cifar-100 Fashion Mnist
PCA GSD 0.33 0.33 0.67 0.73

D3 0.45 0.86 0.48 0.64
ST 0.47 0.83 0.28 0.55
TSDD 0.47 0.83 0.39 0.64

VAE GSD 0.60 0.89 0.40 1
D3 1 1 1 1
ST 1 1 1 1
TSDD 1 1 1 1

TABLE III
REAL DRIFT DETECTION

Method Dataset Cifar-10 Fashion Mnist
PCA GSD 0.0 0.80 0.40

D3 0.10 0.33 0.20
ST 0.0 0.00 0.0
TSDD 0.0 0.15 0.20

VAE GSD 0.10 0.80 0.10
D3 0.0 0.20 0.0
ST 0.0 0.0 0.0
TSDD 0.0 0.0 0.0

detecting drifts on the datasets that contain the most features.
When a VAE is used, GSD comes first on all the datasets,
although with a relatively low detection rate on the Cifar-10
and Mnist datasets. No drift detection is made by the ST and
TSDD models, D3 manages to get a 20% true detection rate
on the Fashion dataset.

In this benchmark, the drift detectors that ignore virtual
drift, have trouble to detect real drift while the detectors that
consistently detect real drift cannot ignore virtual drift. We
demonstrated that GSD raises little to no false alarms, while
achieving a good level of performance in detecting real drift
offering a good compromise in between a high false positive
rate and a low true positive rate. GSD is designed to work
best when the input data follow Gaussian distributions. Our
experimental protocol shows that it is the case but also suitable
when it is not the case.

IV. CONCLUSION

The non discrimination of virtual and real drift is not
suitable for industrial applications as it can generate a high
number of false alarms, triggering costly label acquisition
processes or long retraining times especially when dealing
with computer vision tasks.

In this paper we introduced GSD, a novel drift detector
that does not need labels to work. GSD works best when the
data distribution is normal by design. However, our experiment
shows that it is able to detect drift even when the normality
hypothesis is not respected. We demonstrated its ability to
ignore virtual drift while keeping a good level of detection
in the presence of real drift. The focus of future work will
be evaluating the pertinence of the model when the image
variables are evaluated differently. Indeed, our method applies
directly to the pixels and aims to detect drift if the pixel values
change. Architectures such as Convolutional Neural Networks



(CNNs) can be used as feature extractors, with our detector
connecting to the output of the layers just before the multilayer
perceptron (MLP) classifiers.
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