
SatEx: A Web-based Framework for
SAT Experimentation

Laurent Simon and Philippe Chatalic
Laboratoire de Recherche en Informatique,

U.M.R. CNRS 8623,
Université Paris-Sud,

91405 Orsay Cedex, France
email: {simon,chatalic}@lri.fr

Abstract

SatEx is a web site devoted to SAT experimenta-
tion. It is not only a front end to a database gath-
ering an exhaustive number of executions, but it al-
so allows dynamic results synthesis as well as de-
tailed explorations of experimentation results. Be-
ing dynamically generated and constantly updated
and improved, this site can be considered as an al-
most always up-to-date SAT experimentationpa-
per. To the current time, SatEx presents the re-
sults of more than 450 CPU days on a recent ma-
chine. In a few months, this site has been well
received by the SAT community and has reached
more than 20000 hits. SatEx site is available at
http://www.lri.fr/˜simon/satex/satex.php3.

1 Introduction
While satisfiability testing remains an interesting area for
theoretical investigation, most current scientific contributions
leave more and more place to experimentation. In particu-
lar, one may no more consider presenting any new algorithm
without comparing its results with those of other existing al-
gorithms, on a reasonable set of benchmarks. Eight years ago,
the Dimacs challenge on satisfiability testing[11] initiated
such systematic comparisons by testing an important num-
ber of different SAT solvers on different benchmarks. Since
that fruitful meeting, interest in SAT solving hasn’t stopped
growing. Stimulated by this kind of competition, many au-
thors have been constantly improving their algorithms and
proposing new benchmark instances, based on real life, or
interesting problems, encoded using the SAT formalism[18].

Today, achieving a satisfying experimental comparison is
not so easy. While several days where enough at the time
of the Dimacs challenge, today, such a systematic compari-
son would be much more expensive, especially if one wants
to compare all systems on the different benchmarks (in CPU-
time, it can take more than one year, even on a recent comput-
er). Presenting a new algorithm is therefore a rather tricky ex-
ercise. One has to provide the reader with some experimental
evidence supporting the good properties of the algorithm but,
due to CPU-time limitations, space constraints, etc, one can-
not afford an extensive comparison with all other systems on
all benchmarks. As a consequence, accounts of experiments

are often limited and biased by the experimenter’s point of
view.

In this paper we investigate on properties that should
characterize good SAT experimentations. We first discuss
some general principles that most experimental comparisons
should satisfy and then focus on the specificity of SAT ex-
perimentations. Then we describe SatEx web site, a frame-
work which attempts to address these problems by making
available a large database to research community, gathering
detailed information on the behavior of most current SAT
solvers on most benchmarks. The main motivations for this
work are to give the user a precise enough account of exper-
imentation conditions (in order to give him the possibility to
recreate the experiment with exactly the same conditions) and
to allow him to explore the database by himself and exploits
the results without having to run again the same experiments
for each couple program/benchmark. Anybody should thus
be able to compare his program to others with a minimal ef-
fort, just by adding it to the database.

2 Towards fair experimental comparisons of
systems

In the following, we assume that the goal is to conduct some
experimental comparison of a given system, with other sys-
tems able to solve the same task. We further assume that this
is performed by running these programs on sets of benchmark
instances and that the comparison is performed by analyzing
the value of some result parameters. We think that a fair ac-
count of such an experimentation should satisfy the following
properties:

Reproducibility This is probably one of the most important
point. Any user should obtain enough information to be
able to obtain again by himself the same results under
similar conditions. This requires an absolutetransparen-
cy on the conditions of the experimentation. Character-
izing these conditions should be performed at two level-
s. At the logical level, one should be able to obtain the
complete description of the compilation and execution
parameters values, used for each run. At the hardware
level, one should be able to obtain a precise description
of the machine architecture and parameter values. Since
machines are improving all the time, one should have
some way to compare results obtained on different ma-

1



chines. Clearly the frequency of the processor has to be
taken into account, but it is not sufficient. The amount of
memory and also the cache configuration may also have
a significant impact on the obtained results. For exam-
ple, the acceleration induced by cache memory is hard
to measure in general and can drastically change result-
s. Given a binary code, we may, on some instances, ob-
serve a CPU-time ratio of10 between two machines, just
because of different cache configurations, while on other
benchmarks, this ratio may only be of2 or 3. Therefore,
the scale up of CPU-time may be really misleading, and
should always be reported when used in a comparison.
Another point of concern is the case of algorithms that
integrate some kind of randomness. Reproducibility can
simply be obtained by including the random number
generation library into the distribution code of the pro-
gram (thus making the program independent of the oper-
ating system, which may include its own random num-
ber generation process) and by giving, for each run, the
random number seed that deterministically generated the
random number series.

ExhaustivenessA satisfying experimentation should also be
asexhaustiveas possible. There may be plenty of bench-
marks and it seems hard to restrict the comparison to a
subset of them if these choices are not well motivated.
Exhaustiveness may be perceived as a real problem be-
cause it requires a lot of CPU-time. However, with the
relatively low price of computer regarding their perfor-
mances, it seems difficult today to accept such an argu-
ment for restricting the comparison to a subset of bench-
marks or programs.
Moreover, experimentation results should neither be for-
gotten nor deleted. They should remain accessible for
verification or further purpose, for example another test
series, where previous memorized executions will be
naturally omitted.

Objectivity When testing an algorithm, one can hardly think
to obtain the best results on all benchmarks (in SAT, this
is simply not the case: no algorithm gives the best re-
sults on all benchmarks, as pointed out in section 5).
Thus,bad results should also be reportedin any exhaus-
tive and objective account. All experimental sciences
are based on bad results as well as good results and it
is clear that bad results can be really interesting if they
help to understand the behavior of the algorithm being
presented[16].
Another point related to objectivity is the choice of the
result parameters used for the comparison of algorithms.
It is seldom the case that a single parameter is sufficien-
t to obtain a fair comparison. For instance, computing
the only sum of CPU-times on a set of benchmark in-
stances doesn’t account for the diversity on instances.
Other parameters might also be interesting and bring
complementary information (average, median, standard
deviation,. . . ). Some parameters might be meaningful
for some algorithms and not for others. Therefore, the
justification of the choice of result parameters used for
the comparison should also appear.

To our point of view, any fair experimental evaluation of
an algorithm should keep these three criteriae in mind.

3 SAT Experimentations : success and pitfalls
It seems now clear that any claimed advance needs to be sup-
ported by some experimental evidence, but, one may wonder
whether such experiments are really satisfying and meet the
above properties.

Reproducibility is currently rather difficult to achieve. Al-
though most SAT solvers are coded in C and may be recom-
piled without major difficulty, the precise experimentation
conditions are seldom available. Most systems use a num-
ber of parameters, the value of which may have a significant
impact on performances. Most of the time no hint is given
to help adjusting such values. Who has never failed finding
again similar results to those reported in a paper?

Exhaustiveness is practically never achieved. There are
several explanations for that. One of them is that, although
the SAT problem is well defined from a theoretical point of
view, it is addressed in different ways by the various SAT
solvers. While some of them just try to answer the decision
problem, others try to exhibit a model of the formula being
tested for satisfiability, and some of them even try to exhibit
all models of the formula. Some solvers ensure complete-
ness of the results while others (e.g. incomplete randomized
algorithms) don’t. This of course has an incidence on the
complexity of the underlying algorithms and thus on the kind
(and size) of instances that may be solved by each solver. Ac-
tually, the existing solvers may be grouped in different fami-
lies depending on their basic underlying principles (backtrack
search, constraint propagation, local search,. . . ) and compar-
isons are often restricted to the algorithm of a given family.

Benchmarks families used for the comparison may also
differ significantly. Instances meaningful for some family
might not be interesting for other families. Some benchmark-
s correspond to models of real world systems, while others
have been artificially generated. Some of them have a partic-
ular structure (even among those artificially generated) while
others have been generated in a uniform random manner.
For instance, many work have focused their interest on ran-
dom generated instances of fixed length clauses (e.g.3-CNF)
whose can be easily generated. Moreover, experimental evi-
dence has revealed a particular region of really hard instances
[8]. To justify such a restriction, it is often argued that any
CNF formula may be turned into some 3-CNF by an appro-
priate transformation. In addition,[20] adds some evidences
that, when most of the structure of a structured instance has
been exploited, the resulting formula can be efficiently solved
with the same techniques used with random formula.

Today, randomized and incomplete SAT algorithm some-
times present very good experimental studies[17; 26]. Statis-
tical methods have been introduced to report the randomness
factor of such experimentation design. In this context, an im-
portant effort has been done in the community and some kind
of framework for tests that include randomness seems to e-
merge. But, papers describing complete algorithms tested on
non randomly-generated instances are often less cautious. A
typical presentation is often organized in two main parts: a

2



description of the algorithm and a experimentation evidence
that it brings new breakthroughs. Even if this is the case and
if the experimental part has been carefully performed, this
second part is often presented with the aim of increasing the
algorithm’s value. Typically, only two or three benchmark
families are presented, on which the new method perform-
s particularly well. Sometimes, one can also see new aris-
ing benchmarks, on which results are impressive but hard to
compare: independently of the interest of the benchmarks, if
old benchmarks are omitted, it becomes difficult to evaluate
the fairness of the comparison. In many cases, good results
(which are required to ensure publication) are presented but
bad results are omitted.

The lack of exhaustiveness may also result from a lack of
CPU-time to perform all possible tests and/or also from a lack
of space to report all these results. Such cases generally also
lead to some lack of objectivity. Indeed, the choice of a re-
stricted set of systems and instances is inevitably based on the
experimenter a-priori point of view on the programs/instances
selected for the comparison. Moreover, in most of the cases,
results are summarized with a single parameter. Since the de-
tails of executions are not available, it is often not possible to
consider another criteria for the comparison.

4 SatEx: A framework based on web
technologies

In this section, we show that reproducibility, exhausitivity,
objectivity and, moreover, incrementality of any experimen-
tation can be reached through an open-web database. The
web, associated with the low cost of massive storages allows
to keep trace and to dynamically publish all experimentation
results, down to the smallest detail. For reproducibility, such
a framework guarantees that anybody can read the parameter
line and thus run any experiment again in exactly the same
conditions. Moreover, the memorization of the program out-
put allows an important saving of CPU-time by publishing
exactly what would have been obtained if one had launched
the program by its own. This last principle also guarantees
the incrementality and the sharing of the database. Thus, if
somebody wants to compare a new algorithm, they just have
to add it to the base and to check results. Such a web site
can be considered as an almost always up-to-date experimen-
tationpaper. It thus answers the problem of CPU consump-
tion by requiring a minimal cost for any new experimenta-
tion (each run is launched only once). Those principles are
the main fundations of the SatEx1 version2.0, an experimen-
tation framework devoted to SAT which we describe in this
section.

4.1 SatEx Overview
Exhaustiveness is a strong point of SatEx. Today, the2.0 ver-
sion gathers experimental results corresponding to more than
450 CPU-days2 on a recent computer (the maximal time giv-
en for each execution is 10000s). Roughly speaking, it con-

1Available at http://www.lri.fr/˜simon/satex/satex.php3
2On the Dimacs[11] machine scale benchmark, our Pentium-

II 400MHz under Linux, taken as a reference in the current SatEx
release, has a user time saving of 305%.

tains more than 29000 execution traces in a 180 Mb database.
SatEx allows to investigate the results of the following22
SAT provers on 1204 benchmarks:

• For DLL [24] ones,asat and csat [12], eqsatz
[22], nsat and sat-grasp [25], posit [13],
relsat [1], sato and sato-3.2.1 [32], satz
[23], satz-213 [21] and satz-215 [20] and
zchaff [27].

• For DP[9] ones,calcres [4], dr [10] andzres [6;
5].

• For randomizedDLL, ntab (with ntab-back and
ntab-back2 ) [8] andrelsat-200 [1].

• And for other approaches,heerhugo [15] andmodoc
[29].

From the very beginning, the source code of any of those
solvers added to SatEx is verified and, if necessary, modi-
fied in order to delete system-dependent random number gen-
eration (using a classical random number library), as sug-
gested in section 2. Now, from a benchmark point of view,
the database currently contains 1204 benchmarks grouped
in the following families: aim , ais , bf , blockworld
, dubois ,f , g, hole , ii , jnh , parity , pret , sat-
plan andssa from [11; 18; 28; 19]; fvp from [30]; ucsc-
bf anducsc-ssa from [28; 18]; beijing from [7; 18];
quasigroup from [32; 18]; sw100-8-0 andsw100-8-
1 from [14; 18]; barrel , queueinvar and longmult
from [3]; pader-easy andpader-hard from [31] and
joao , generated from the originalMiters .

4.2 SatEx: A Guided Tour
The main page of SatEx, a part of which is given figure 1, is
splitted in three main parts. The first one presents a summary
of the current experimentations status, similar to the previ-
ous overview section and, above the top-10 solver part (see
section 5.2), an index section allows to jump to thefrequent-
ly asked questionspage, the history and the links pages, to
download all results (CPU-time and answer of each couple of
program/benchmark) and to go to the main experimentation
part of SatEx.

This last part proposes an automatic synthesis of results. In
the first version of SatEx, only sums of CPU-time over fami-
lies of benchmarks were given (time needed for a program to
finish all the benchmarks of a family, given a maximal time).
In the current version, the synthesis includes some refine-
ments such as the average, the standard deviation, the median
and a 50% interval confidence. Figure 2 gives an example of
a specific synthesis asked by a user. On this example, the user
chosen to view all statistics of the executions of4 solvers and
5 families of benchmarks. It is shown that, over this selection,
posit is the best onhfo6 andhfo6l , sato-3.2.1 on
ii-32 andmorphed-8-0 , sat-grasp on Joao while
satz-215 is the best on the sum of the whole CPU-time.

Now, from this synthesis page, two much more specific
synthesis are possible. For example, the user can choose to
view the details of all programs behaviors over only one fam-
ily (by a click on the magnify glass of the desired row). We
give in figure 3 the page proposed by SatEx for this kind of

3



Figure 1: A part of the SatEx main page

Figure 2: Example of a user synthesis of families and pro-
grams. This array shows a synthesis containing respectively
the sum, the median, the mean (with the standard deviation), a
50% interval and the min and max CPU-time values for each
cell. Lighter synthesis (displaying only the sum, the mean or
the median) are also available.

Figure 3: Details for a family (Joao in the example), given a
set of programs (csat , eqsatz , relsat , satz-215 and
zchaff )

Figure 4: Details for a family given one program (eqsatz
onParity-32 in the example)

Figure 5: Publication of the standard output with running
statistics for one execution (sato-3.2.1 on aim-50-
1_6-no-4 ). This figure is cutted for lack of place: the o-
riginal trace file is larger.

4



Figure 6: Information page about a given solver. An array of
its results for each families follows.

Figure 7: Current information page for a family (Joao in the
example). Two more arrays are below this page: a sorting
according to the mean and another according to the median.

synthesis, on which each row corresponds to a benchmark of
the given family, and on which results of solvers are symbol-
ized by cell colors (this facilitate bugs revealing). In addition
to the CPU-time, the number of explored nodes for DLL al-
gorithms are also given. The last synthesis (see figure 4 for an
example) focuses on only one couple of program and bench-
mark family. Now, from the two previous synthesis, one can
access to the detail of an execution (standard output, launch-
ing date and running statistics, as given figure 5) by a click on
one cell of the first table (of figure 3) or by selecting the mag-
nify glass of the last table (of figure 4). By reading this kind
of detail, anybody can check execution conditions and results.
The availability of trace files guarantees that, if the automatic
synthesis of CPU-time proposed by SatEx is not satisfying,
any other measurement can be later computed just by reading
all memorized outputs, without doing the whole experimen-
t again. With exhaustiveness, this point clearly answers the
problem of fairness and objectivity.

The last part of the experimentation regards the publica-
tion of manual and automatic informations about solvers and
benchmarks. Thus, each solver has its own page with some

informations (when available) and with a summary of its re-
sults over all benchmarks, relative to other solvers. An exam-
ple of the head of such a page is given figure 6. Informations
about families of benchmarks are also published (see figure
7). Each page presents three ranking of all solvers over the
considered family: one based on the sum of CPU-time, one
on the mean and the last on the median CPU-time needed.
SatEx also allows comments to be added to each program (in
which compilation options or tricks can also appear) as well
as to each benchmark family. This last point relies on the
emergence of new techniques for SAT. It is clear that curren-
t algorithms are so well known and inherits a so important
knowledge about optimization that it seems hard to instantly
obtain better results with a new but not yet optimized method.
Nevertheless, we must give new methods a chance to emerge,
and SatEx was also designed for this purpose. The informa-
tion sections allows global comments on solver behavior to
be added, and thus should allow fair comparisons between
systems, independently of their optimizations maturity level.

4.3 Internal Structure of SatEx
The version2.0 of SatEx inherits all the functionalities of the
first version and adds a number of new functions in the we-
b page generation process, in the database structure and in
the job submission process. Among the possibilities of Sa-
tEx 2.0, one can automatically find some bugs of programs
(by automatically checking the consistency of program result-
s with respect to the majority of answers) or find up-to-date
challenging benchmarks (benchmarks not yet solved by any
other programs), as reported section 5.1. In order to facil-
itate the comparison of programs, SatEx also allows to sort
algorithms according to their performances on each families
of benchmarks (based on the sum, mean or median value), as
reported for example section 5.2.

From an internal point of view, the main evolution of Sa-
tEx 2.0 has been to design a special job server that dispatches
jobs over a network of 20 biprocessor Linux workstations.
This upgrade has been necessary in order to face the incred-
ible amount of CPU-ressource required to maintain such a
site. Closely related to this job server, we can find the first
of the three databases which make up the heart of SatEx.
This database is only devoted to job submissions and output
gathering over the network. To guarantee an easy program
or benchmark addition, a lot of shell scripts and C program-
s have been designed. For example, one can add a program
just by giving information about it (how to launch it, program
family, . . . ). Benchmarks addition are also easily done just
by adding an entry with the path where CNF file are stored:
informations about them are automatically computed into the
database. In order to manage the queue of jobs to be sub-
mitted, one can easily add any couple of program/benchmark
just by specifying their characteristics (programs and bench-
marks characteristics in the database, such like family or o-
rigin names, addition date, . . . ). In addition, any couple in
the queue can be setresignedto prevent useless launchs (its
CPU-time is then assumed to be 10000s).

When a new release of the SatEx is considered, for in-
stance when a new solver has been added and all tests have
been completed, this first database is compiled into a new

5



one. During this stage, cache tables are computed in order to
reduce the web server usage. Program ranking tables, statis-
tics for each couple of program and families (mean, standard
deviation, median, max, min and 50% interval) and a lot of
other small cache tables (such like the statistics appearing the
main page or the list of challenging benchmarks) are comput-
ed. This second database is connected to a local intranet web
server to test the new release in real conditions. At last, this
database is copied to the real web server and the new release
is officially published. This last separation was also needed
for obvious security reasons.

5 SatEx: a Snapshot
We give here a taste of what a user can learn by visiting Sa-
tEx. This section can be viewed as a SAT experimental state-
of-the-art report, focusing only on solvers currently reported
in SatEx. Of course, the reader is strongly encouraged to vis-
it SatEx site to see an up-to-date version of this report. Note
that the current version reports some buggy results from some
solvers on particular instances, mostly due to long formu-
lae parsing problems (our versions ofsatz , ntab , ntab-
back , ntab-back2 , modoc andnsat are concerned by
such small problems on really rare benchmarks). This kind
of problem mustn’t be considered as an important one: a sim-
ple modification in the solver can often fix it. Anyway, at the
publication time, SatEx results contains some bugs of which
the reader of this report should be aware (we are currently
setting all buggies answers to theresignedstatus and, to the
best of our knowledge, those bugs don’t change our current
report).

From the very beginning of SatEx, we wanted to present
SatEx results following[32], where results were given with a
sum of CPU- time over each families3. We give on figures 9,
10 and 11 (at the end of this paper) such a synthesis for all
solvers and all families in the SatEx. Best results for a giv-
en row is written in bold. As we can see, this kind of report
already needs three pages and one can hardly think reporting
much more informations in such a hardcopy synthesis, which
strongly encourage our web publication idea underlying Sa-
tEx.

We will not fully comment these tables here. Nevertheless,
one remark that can be drawn from these tables is that there
is no algorithm surpassing all others on all benchmarks. For
instance,zchaff , which gives really impressive results (see
section 5.2), fails on some hard instances, even on structural
ones (barrel or hfo6 for example).

5.1 Challenging benchmarks

One of the new functionalities of SatEx2.0 is to propose a
challenging benchmark section. A challenge is here defined
as a benchmark not yet solved by any program during the
given time. This part of SatEx allows one to easily find up-
to-date challenges, which is often a hard task today. We show
that, surprisingly, over the1204 considered benchmarks, only

3In such a table, if a solver can’t handle a benchmark in less than
10000s, then this cut off parameter is taken as the time needed by
the solver (we discuss in section 5.2 this choice)

8 of them are challenge ones, and2 of them are known to be
solved byeqsatz in a larger amount of time:

• f1000 , f2000 , from thef family.

• g125.17 , g125.18 , g250.15 , g250.29 , from theg fam-
ily.

• par32-5-c , par32-5 , from theParity-32 family.

In addition, SatEx provides a list of benchmarks solved by
only one or two provers. When we read the following list,
it is striking to remark the number of different program that
solves such virtually challenging benchmarks. Today, these
16 benchmarks are:

• 2dlx_ca_mc_ex_bp_f , 2dlx_cc_mc_ex_bp_f ,
9vliw_bp_mc , from thefvp family (solved byzchaff ).

• 3bitadd_31 , from theBeijing family (solved bysatz-
215 , which issatz-214 (not available in SatEx) with detec-
tion of implied literals[20]).

• c3540-s , c6288-s , c6288 , from theJoao family (solved
by zchaff andheerhugo ).

• f600 , from thef family (solved bysatz ).

• par32-1-c , par32-1 , par32-2-c , par32-2 ,
par32-3-c , par32-3 , par32-4-c ,par32-4 , from
theParity-32 family (solved byeqsatz ).

5.2 An Attempt of Solver Ranking
We give on figure 8 the ranking of solvers proposed by SatEx.
Of course, such ranking must be taken with great care. First-
ly, it is only indicative and it can give a bad or a wrong idea of
some program performances, especially for those which have
been designed for only some specific benchmarks. Secondly,
this ranking can be easily modified by adding to the SatEx
some particular benchmarks (e.g. random uniform formulae,
formulae with a lot of equivalency clauses, structured bench-
marks...). And, lastly, the CPU cut-off parameter may be also
misleading. What happens to this list if we modify this value?

We give on the same figure (fig. 8) a first answer to this
question by considering the whole database with two smaller
cut off parameters in the 3 last columns of the figure (respec-
tively with values 1000s and 200s instead of 10000s). We
compute the same top while discarding results that needed
more than 1000 seconds (or respectively 200s, on which we
also provide the number of solved instances). One conclusion
that may be drawn is that, surprisingly, the cut-off principle
is strong enough for this kind of ranking. Besides the case
of sato , most solvers keeps more or less the same place in
the ranking. If this suggests that a satisfying experimentation
can be drawn from small cut-off values, it also suggests that
considering 10000s is large enough in most cases and should
put bad solvers at a disadvantage by bounding their perfor-
mances with a large CPU-time value. One last remark can
be raised from this figure: the robustness of the cut-off val-
ue can, in great part, be due to the easiness of benchmarks,
most of which can be easily solved by recent and optimized
solvers. In the future, some new and much harder benchmark-
s (for example from VLSI[?], where new huge benchmarks
are available) will be added and will certainly change the ro-
bustness of the cut-off choice.

6



Program Total Time #Solved #Tested Rank Rank Rank #Solved
1000s 200s 200s

zchaff 2 d, 16 h, 28 h 1183 1204 1 1 3 1147
relsat-200 4 d, 7 h, 17 h 1173 1204 2 2 1 1149

relsat 5 d, 18 h, 18 h 1158 1204 3 3 2 1137
eqsatz 6 d, 3 h, 12 h 1162 1204 4 5 8 1119

sato 6 d, 23 h, 20 h 1157 1204 5 12 12 1056
satz-215 7 d, 8 h, 17 h 1150 1204 6 4 4 1114
satz-213 7 d, 12 h, 41 h 1149 1204 7 6 6 1108

sato-3.2.1 8 d, 9 h, 15 h 1138 1204 8 8 7 1105
satz 8 d, 14 h, 59 h 1136 1204 9 7 5 1106

modoc 9 d, 20 h, 19 h 1128 1204 10 11 11 1074
ntab-back2 10 d, 9 h, 59 h 1120 1204 11 9 9 1082
ntab-back 11 d, 5 h, 29 h 1111 1204 12 10 10 1083
sat-grasp 19 d, 7 h, 44 h 1055 1204 13 13 13 994

csat 21 d, 18 h, 17 h 1031 1204 14 14 15 967
posit 22 d, 15 h, 45 h 1020 1204 15 15 14 967
nsat 27 d, 11 h, 31 h 988 1204 16 16 16 923

heerhugo 32 d, 5 h, 43 h 946 1204 17 18 18 862
ntab 33 d, 18 h, 15 h 921 1204 18 17 17 885
asat 39 d, 14 h, 14 h 871 1204 19 19 19 823
zres 96 d, 17 h, 10 h 408 1204 20 21 21 99

calcres 99 d, 12 h, 37 h 353 1204 21 20 20 221
dr 131 d, 15 h, 25 h 67 1204 22 22 22 64

Figure 8: Top solvers as given in SatEx and crossing values for different cut-off parameters

More lightly, one can also note that DP-based solvers hold
the tail of the list. As two of them were proposed by us, those
bad results give us a kind of authorization (at least a moral
one) for the comparison and the ranking of other works. We
hold ourselves our own last places.

6 Related and Future Work
Historically, previous web-based work were proposed before
SatEx. One of the most important one is SatLib[18]. This
web site proposes to distribute benchmarks and solvers. To-
day, this site is simply the best reference of the topic. The
strong point of SatLib is its benchmark distribution section
and its important number of pages detailing each benchmark-
s families proposed for downloading – most of benchmarks
included in SatEx are indeed from SatLib –. Unfortunately,
the solver section is not so complete and a lot of program-
s in SatEx were directly requested from their author or their
web site. One of the weakness of SatLib is its static aspect,
and, in this context, SatEx fully complete SatLib by provid-
ing detailed experimental information on all this benchmarks
and solvers. As SatLib is already well known and often used
by the community, we doesn’t plan to distribute benchmark-
s or solvers directly from SatEx. Another web project, Sat
Live! [2], was proposed to facilitate and encourage discus-
sion and diffusion of ideas and papers. One of the policies
of Sat Live! isupdatingand, in this sense, it also fully com-
pletes the SatLib web site by providing constantly fresh in-
formations about papers and solvers.

Now, from a SatEx point of view, the near future first im-
plies some important benchmark additions. For instance, ran-
dom formulae are not well represented in the current version
and should allow a more satisfying representation of algo-
rithm performances. Comments (including tricks for solvers)

should also be added for each solver as suggested in section
4.2. For this purpose, we opened a forum on Sat Live!, show-
ing the complementarity of the two dynamic web-based ap-
proaches.

6.1 Scaling-up CPU-time results
In the future, we also plan to add support for evaluating ran-
domized and local search algorithms, for which thousands
runs are needed for each benchmark. The special job serv-
er was also designed in this aim. But, this imply to scale-up
CPU-time from different machines. This is one of the biggest
problem facing SatEx evolution. We also find problem again
when we want to anticipate and follow computer evolution,
which must be taken into account to provide an up-to-date
site in even a couple of years. One of the solutions for this
can be to launch all previous failed executions again, with the
same cut-off parameter on more recent machines and then to
automatically upgrade the results of the whole database by
scaling-up all its results to a new reference machine. But,
scaling-up CPU-time is a hard – and mostly impossible –
task. It seems impossible to find a law for scaling results in
a fully satisfying way: too many factors play important roles
in an execution (Main memory, CPU family, cache memory
size and configuration, bus size, operating systems, compiler-
s, . . . ), and the problem will be even much worse in the future:
it is believed for example that no simple law (with less than
hundreds factors) exists to transform a CPU-time report from
a Pentium III to the fully new Pentium 4 architecture.

At last, the reader should be aware of another CPU-time
report problem. For instance, CPU-time measurements are
of a limited precision for very quick answers and, even on
the same computer, a20% error is often observed on small
CPU-time values (due to small errors in CPU-time operating
system measurement). A reported time smaller than a dozen

7



seconds is clearly imprecise enough to bias a comparison, and
especially when this comparison reports the sum of hundreds
imprecise small values.

Some partial solutions are indeed possible. First, we can
forget our job server, focusing for now on executions on the
same machine. When significantly faster machines will be
available, we launch the whole experiments again on a net-
work built with only the same machines. If this can be eas-
ily done by reusing all the SatEx architecture, this solution
is clearly unsatisfying from the incrementality point of view.
Another solution can be based on approximation and bound-
ing of the scaling process. This require an important experi-
mental study of programs behavior over the different architec-
ture but should be fully satisfying for providing a good taste
of program behavior and comparison. The last and certainly
most satisfying answer is to forget architecture problems and
to build a new SatEx based on a kind of virtual machine on
which C compiler are available, and to base the whole exper-
imentation process on this machine. Cpu-time reports will be
then independent of the machine running the virtual one.
Aknowledgements: Authors would like to thank Daniel Le
Berre for fruitful discussion about SatEx from the very begin-
ning, and of course all solvers and benchmarks authors whose
works are reported in SatEx.

7 Conclusion
In this paper, we have tried to define properties that charac-
terize good experimentations. We have noticed that almost
all current SAT experimentations aren’t fully satisfying, al-
though they often rely on their experimental results to vali-
date their new approach. We propose a different approach of
experimentation, based on the publication of detailed result-
s as well as an automatic synthesis that uses a dynamic and
constantly evolving web site. For instance, all the results of
zchaff , an efficient new solver, were available only some
days after its public release and anybody had the opportuni-
ty of comparing its results with previous approaches. In this
sense, we think that a tool like SatEx is at least as important
for the community as a new scientific result.

We think that, for incrementality, homogeneity, transparen-
cy, program/benchmark distribution and program behavior
study (which is the basis of experimentation in other areas), a
project like SatEx is necessary. Moreover, we think that this
framework could also be used in other fields, where bench-
marking plays an important role to compare and motivate new
approaches. The web technology allow us to publish all the
details of all executions that are presented in any paper re-
porting an experimental analysis. Such a framework will at
least guarantee fairness and unbiased results to be published.

8



asat calcres csat dr eqsatz heerhugo modoc nsat
aim-100 4471.54 166839.92 0.90 240000.00 1.73 1.72 0.30 0.18
aim-200 130040.78 240000.00 0.77 240000.00 2.48 4.60 1.20 1.35
aim-50 0.60 80995.24 9.57 172050.33 3.89 1.31 0.12 0.06

ais 118.23 30621.24 1.79 40000.00 3.15 2632.66 33.76 3145.74
barrel 11813.07 50650.75 30882.91 70000.08 13.15 10047.34 15923.16 80000.00

Beijing 106170.40 160000.00 94820.58 151022.98 66484.11 120084.15 29259.35 91751.40
bf 30102.79 20270.06 29611.84 40000.00 44.81 11.26 5.76 10000.33

blockworld 10071.89 50009.58 134.23 60000.42 6189.93 20061.68 20004.29 19280.21
dubois 54398.16 2.42 100729.21 1.37 0.39 0.96 72479.47 0.44

f 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00
fvp 40000.00 40000.00 40000.00 40000.00 34954.60 30211.16 40000.00 10000.30

g 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00 40000.00
hfo3 128.21 400000.00 33.62 400000.00 387.05 236491.02 12476.28 332088.31

hfo3l 2.13 400000.00 1.55 400000.00 10.96 48336.30 23.26 2364.96
hfo4 198.20 400000.00 109.46 400000.00 1093.24 320669.22 1985.01 371181.91

hfo4l 2.43 400000.00 1.92 400000.00 11.53 204891.98 7.96 353.41
hfo5 218.16 400000.00 162.53 400000.00 1312.78 292061.75 1211.70 341623.47

hfo5l 2.46 400000.00 2.44 400000.00 16.33 210290.31 5.70 105.80
hfo6 238.09 400000.00 219.17 400000.00 1130.80 321003.22 924.82 295112.34

hfo6l 3.48 400000.00 4.52 400000.00 43.42 224831.48 7.50 64.75
hole 158.64 40205.66 131.47 40639.76 4467.96 26409.21 283.95 11444.67

ii-16 51176.43 100000.00 50072.16 100000.00 261.18 76976.01 17946.93 56146.66
ii-32 503.60 170000.00 59.63 170000.00 390.58 31048.15 25265.59 20488.35
ii-8 48118.72 130000.08 10924.14 130000.10 11.52 15.59 1.74 0.80
jnh 1.43 500000.00 1.63 500000.00 8.30 929.25 2.76 14.10

Joao 221827.73 250000.00 210754.62 250000.00 165538.39 49146.65 190127.91 150015.70
longmult 29897.40 120100.66 31587.56 140011.19 24329.35 93378.31 125206.79 32071.97

morphed-8-0 8.32 1000000.00 11.47 1000000.00 24.21 123.28 3.84 2.91
morphed-8-1 23934.39 1000000.00 10016.94 1000000.00 23.95 114.15 4.13 3.03

Parity-16 60.53 100000.00 119.91 100000.00 3.26 94658.63 490.12 840.61
Parity-32 100000.00 100000.00 100000.00 100000.00 38929.71 100000.00 100000.00 100000.00
Parity-8 0.17 13.10 0.68 50002.95 0.53 1.15 0.23 0.18
pret-150 40000.00 40000.00 40000.00 27.71 0.14 11.13 40000.00 0.27
pret-60 111.36 0.70 40000.00 0.99 0.14 2.03 202.24 0.09

Quasigroup 120787.26 220000.00 8196.47 220000.00 9544.89 145102.33 41995.12 31520.82
queueinvar 22615.42 80576.83 2797.93 100000.00 55.10 35000.89 23957.10 10571.31

satplan 45718.63 90000.00 6243.13 90000.00 6194.54 20553.68 20781.92 26163.90
ssa 30369.78 3495.33 3614.57 60021.63 6.04 4.92 2.53 20000.59

ucsc-bf 1817410.75 520368.31 921310.88 2060116.50 98378.53 270.74 126.47 183948.38
ucsc-ssa 410186.22 24875.73 77667.95 940034.69 88.30 49.91 49.94 103986.69

Figure 9: Synthesis (sum of cpu time temps CPU) from SatEx, part (A), number of solved instances not reported

9



ntab ntab-back ntab-back2 posit relsat relsat-200 sat-grasp
aim-100 13395.03 1117.15 6.42 310.56 1.46 2.04 0.52
aim-200 74575.71 30213.42 810.12 111169.93 2.28 3.55 8.29
aim-50 0.6 0.57 0.5 0.42 2.72 2.55 0.24

ais 19.02 21.6 31.52 0.71 26.9 44 253.15
barrel 30313.67 30365.52 30392.46 50000.95 32248.14 11872.8 41204.48

Beijing 130022.9 130019.63 111494.68 91038.86 24370.74 24024.57 34978.47
bf 30071.16 10028.3 10008.2 20022.69 6.34 2.18 2.1

blockworld 20000.67 20000.66 20000.67 10015.6 618.9 491.88 1510.41
dubois 55537.98 54682.96 55579.96 63167.4 0.18 0.27 9.65

f 30000 30000 30000 30000 30000 30000 30000
fvp 40000 30000.2 30000.19 40000 30022.31 30006.79 30009.3

g 40000 40000 40000 40000 40000 40000 40000
hfo3 118.14 157.49 224.48 47.96 196.93 309.78 168115.47

hfo3l 3.02 3.6 4.84 1.83 5.08 6.39 129.54
hfo4 288.01 356.59 500.45 91.23 710.13 569.51 287870.12

hfo4l 4.19 4.9 6.2 1.56 7.31 7.56 204.47
hfo5 508.62 579.25 786.75 112.12 973.98 561.13 293962.22

hfo5l 5.01 5.59 7.09 1.78 13.07 16.18 106.42
hfo6 585.95 622.51 831.14 88.28 1059.85 595.52 246922.67

hfo6l 7.08 7.55 9.52 2.55 45.33 68.68 76.68
hole 21.67 27.92 34.67 279.41 786.58 1113.67 11520.25

ii-16 10726.18 5.72 4.98 20040.67 115.63 62.41 10102.68
ii-32 3.87 3.87 3.71 10099.87 952.69 812.22 3.2
ii-8 1.28 1.4 1.35 5.43 4.05 2.94 5.01
jnh 2.53 2.67 2.72 1.62 11.5 6.93 5.69

Joao 200042.89 180495.44 170179.78 220130.16 150184.3 86670.25 182403.59
longmult 100011.99 90015.54 90014.27 14461.11 80743.97 41243.77 82309.19

morphed-8-0 7.34 8.02 8.34 34.9 7.2 9.15 23.03
morphed-8-1 7.52 7.6 8.38 10521.62 7.81 9.3 22.86

Parity-16 61.22 83.85 106.58 24.45 151.7 117.04 18710.47
Parity-32 100000 100000 100000 100000 100000 100000 100000
Parity-8 0.35 0.35 0.4 0.31 0.46 0.48 0.18
pret-150 40000 40000 40000 40000 0.58 0.4 2.63
pret-60 383.02 558.23 624.74 323.07 0.1 0.08 0.23

Quasigroup 62303.24 62372.76 33777.16 100073.17 2864.29 2347.83 86544.53
queueinvar 22665.81 24694.4 4155.49 51534.56 643.6 236.04 764.23

satplan 50001.11 26047.6 20006.86 20027.71 633.5 492.93 1549.14
ssa 23103.43 10338.2 11631.79 10061.91 8.49 2.52 2.68

ucsc-bf 1668129.12 24039.17 44677.9 871828.06 357.73 117.22 84.18
ucsc-ssa 174027.27 33299.29 54045.06 32022.82 118.79 25.57 25.88

Figure 10: Synthesis (sum of cpu time) from SatEx, part (B), number of solved instances not reported

10



sato sato-3.2.1 satz satz-213 satz-215 zchaff zres
aim-100 0.14 0.14 1.9 1.58 1.91 0.21 160189.27
aim-200 0.45 0.35 2.35 2.29 2.55 0.7 217412.23
aim-50 0.08 0.09 7.27 3.59 3.8 0.14 8350.63

ais 0.24 0.29 0.53 0.55 0.66 57.92 30013.04
barrel 10417.7 11225.41 24670.02 12575.32 7494.03 912.22 50862.7

Beijing 44078.88 23814.7 70066.74 32086.73 21290.58 20268.12 146296.55
bf 1.25 6.23 6.13 6.22 12.59 0.63 14008.88

blockworld 244.58 782.48 10003.62 1286.26 1048.68 41.31 50009.41
dubois 0.56 0.19 39771.01 54129.45 49967.97 0.2 47.23

f 30000 30000 25576.86 30000 30000 30000 30000
fvp 30006.35 40000 36908.74 36927.21 30455.28 1224.86 40000

g 40000 40000 40000 40000 40000 40000 40000
hfo3 3479.41 759.99 24.5 23.57 26.35 1756.19 400000

hfo3l 7.07 4.57 2 2.55 3.23 5.42 400000
hfo4 33785.92 2390.02 210.84 177.01 182.53 6506.1 400000

hfo4l 8.5 5.68 3.96 4.43 5.18 6.62 400000
hfo5 42986.17 1839.89 288.53 276.48 279.23 3267.82 400000

hfo5l 6.34 5.47 9.96 10.9 11.52 5.32 400000
hfo6 23675.85 960.57 362.57 360.49 361.37 1151.53 400000

hfo6l 5.87 5.87 38.7 40.4 41.13 4.6 400000
hole 180.5 81.64 100.95 129.59 144.2 42.81 21027.13

ii-16 2.14 30007.98 49.15 47.99 46.17 69.23 100000
ii-32 5.19 3.12 10213.66 10225.97 10219.96 3.41 170000
ii-8 0.43 0.44 2.41 2.7 2.77 0.79 120151.65
jnh 0.99 0.86 6.65 7.7 8.15 1.46 500000

Joao 199291.88 220206.31 190332.83 210349.48 210452.42 21289.77 201957.88
longmult 22270.98 7590.25 46541.15 38165.44 42955.44 4502.49 120992.63

morphed-8-0 1.99 1.9 8.85 10.24 11.94 3.83 1000000
morphed-8-1 1.83 2.01 543.05 12027.97 12102.34 3.95 1000000

Parity-16 152.81 230.88 70.16 56.84 62.37 29 98486.32
Parity-32 100000 100000 100000 100000 100000 100000 100000
Parity-8 0.1 0.08 0.43 0.48 0.59 0.14 189.39
pret-150 1.19 933.53 40000 40000 40000 0.15 23.97
pret-60 0.11 0.13 215.62 404.94 143.38 0.04 3.82

Quasigroup 1087.7 337.61 50361.22 1049.75 986.16 845.89 220000
queueinvar 20400.45 21586.18 21133.79 1458.83 10040.4 15.39 61344.6

satplan 242.83 1111.79 10069.59 1226.86 1069.87 43.17 90000
ssa 1.59 8508.05 425.64 427.04 273.77 0.89 11824.02

ucsc-bf 63.83 84620.58 9750.18 9922.81 6324.15 22.28 490168.97
ucsc-ssa 22.62 97525.28 17364.5 17069.68 18587.83 6.83 62866.28

Figure 11: Synthesis (sum of cpu time temps CPU) from SatEx, part (C), number of solved instances not reported

11



References
[1] R.J. Bayardo and R. Schrag. Using CSP look-back tech-

niques to solve real-world sat instances. In14th Nation-
al Conference on Artificial Intelligence, pages 203–208,
1997.

[2] Daniel Le Berre. The Sat Live! web site.
http://www.satlive.org.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic Model Checking without BDDs. InPro-
ceedings of Tools and Algorithms for the Analy-
sis and Construction of Systems (TACAS’99), num-
ber 1579 in LNCS, 1999. Benchmarks available at
http://www.cs.cmu.edu/˜modelcheck/bmc.

[4] Ph. Chatalic and L. Simon. Davis and Putnam 40 years
later: a first experimentation. Technical Report 1237,
LRI, Orsay, France, 2000.

[5] Ph. Chatalic and L. Simon. Multi-resolution on com-
pressed sets of clauses. In12th International Confer-
ence on Tools with Artificial Intelligence, ICTAI-2000,
pages 2–10, 2000.

[6] Ph. Chatalic and L. Simon. Zres: the old DP meets ZB-
DDs. In Proceedings of the 17th Conference of Auto-
mated Deduction (CADE), pages 449–454, 2000.

[7] James Crawford. International competition and sympo-
sium on satisfiability testing. March 1996.

[8] J.M. Crawford and L.D. Auton. Experimental results
on the crossover point in random 3sat.Artificial Intelli-
gence, 81, 1996.

[9] M. Davis and H. Putnam. A computing procedure for
quantification theory.Journal of the ACM, pages 201–
215, 1960.

[10] R. Dechter and I. Rish. Resolution versus search: T-
wo strategies for sat.Journal of Automated Reasoning,
24(1/2):225–275, February 2000.

[11] The DIMACS challenge benchmarks. from the site ft-
p://ftp.rutgers.dimacs.edu/challenges/sat.

[12] O. Dubois, P. André, Y. Boufkhad, and J. Carlier. Sat
versus unsat. InDimacs challenge on Satisfiability Test-
ing, 1993.

[13] Jon William Freeman.Improvements to propositional
satisfiability search algorithms. PhD thesis, University
of Pennsylvania, 1995.

[14] Ian P. Gent, Holger H. Hoos, Patrick Prosser, and Toby
Walsh. Morphing: Combining structure and random-
ness. InProceedings of the Sixteenth National Confer-
ence on Artificial Intelligence (AAAI’99), pages 654–
660, Orlando, Florida, 1999.

[15] Jan Friso Groote and Joost P. Warners. The proposi-
tional formula checker heerhugo.Journal of Automated
Reasoning, 24(1/2):101–125.

[16] J. N. Hooker. Needed: An empirical science of algo-
rithms. Operations Research, 42:201–212, 1994.

[17] Holger H. Hoos and Thomas Stützle. Local search al-
gorithms for sat: An empirical evaluation.Journal of
Automated Reasoning, 24:421–481, 2000.

[18] Holger H. Hoos and Thomas Stützle.SAT20000: High-
lights of Satisfiability Research in the year 2000, chap-
ter SATLIB: An Online Resource for Research on SAT,
pages 283–292. Frontiers in Artificial Intelligence
and Applications. Kluwer Academic, 2000. (web site:
http://www.satlib.org).

[19] Henry Kautz and Bart Selman. Pushing the envelope :
Planning, propositional logic, and stochastic search. In
Proceedings of the Twelfth National Conference on Ar-
tificial Intelligence (AAAI’96), pages 1194–1201, 1996.

[20] Daniel Le Berre. Exploiting the real power of unit
propagation lookahead. InProceedings of the Work-
shop on Theory and Applications of Satisfiability Test-
ing (SAT2001), Boston University, Massachusetts, US-
A, June 14th-15th 2001. to appear.

[21] Chu-Min Li. A constrained based approach to narrow
search trees for satisfiability.Information processing
letters, 71:75–80, 1999.

[22] Chu-Min Li. Integrating equivalency reasoning into
davis-putnam procedure. Inthe proceedings of AAAI-
2000, pages 291–296, 2000.

[23] Chu-Min Li and Anbulagan. Heuristics based on unit
propagation for satisfiability problems. InProceedings
of IJCAI’97, pages 366–371, 1997.

[24] G. Logeman M. Davis and D. Loveland. A machine
program for theorem-proving.Communications of the
ACM, pages 394–397, 1962.

[25] João P. Marques-Silva and Karem A. Sakallah. Grasp:
A search algorithm for propositional satisfiability.IEEE
Transactions on Computers, 48(5):506–521, 1999.

[26] David G. Mitchell and Hector J. Levesque. Some pit-
falls for experimenters with random sat.Artificial Intel-
ligence, 81(1-2):111–125, March 1996.

[27] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering an
Efficient SAT Solver. InProceedings of the 38th Design
Automation Conference (DAC’01), June 2001.

[28] Allen van Gelder and Yumi Tsuji. Instances from circuit
fault analysis. Available in[11] repository.

[29] Allen VanGelder and Fumiaki Kamiya. The partial re-
habilitation of propositional resolution. Technical Re-
port UCSC-CRL-96-04, 1996.

[30] Miroslav N. Velev. Formal verification of superscalar
and VLIW processors benchmarks (FVP-UNSAT.1.0).
Available at http://www.ece.cmu.edu/˜mvelev.

[31] Available for downloading at
http://sat.inesc.pt/benchmarks/cnf/uni-paderborn.

[32] Hantao Zhang. SATO: An efficient propositional prover.
In CADE-14, LNCS 1249, pages 272–275, 1997.

12


