
Some Tools for Software

Protection

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Protection

Serge Chaumette, Olivier Ly, Renaud Tabary

LaBRI – Bordeaux University

Cryscoe Workshop – 2009 june 5

SECURE PROGRAM PARTITIONING FOR

HARDWARE-BASED SOFTWARE PROTECTION

Software execution protection

Goal: protect sensible parts of the software

- Confidential data

- High added value algorithm

End user not trusted,

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

neither the computer on which the software is executed.

Example: banking client

(that you run within i-explorer at the moment)

Is-it really secure ?

Obfuscation

Transform a program into a functionaly equivalent virtual black box.

Transform a program to make it hard to be understood

• by static analysis

• by dynamic analysis

Remember

the talk of

Louis !

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Widely used, but no satisfactory solution yet ..

[see Barak and al. « On the (Im)possibility of Obfuscating Programs »]

Louis !

Executable code externalisation

/ Protected computing
Execution is externalized to a trusted device (e.g. a smart card).

♦ Sensible algorithms are not given to the end user

♦ They are encrypted at production time

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

During execution,

• The public part is executed on the untrusted computer

• When a sensible processing is required:

1. It is transmitted to the trusted device

2. The trusted device decyphers it and entity executes it

3. The trusted device gives back the result.

Protected Computing

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Executable code externalisation

/ Protected computing
Idea is not new :

• I. Schaumüller-Bichl and E. Piller ”A Method of Software Protection Based

on the Use of Smart Cards and Cryptographic Techniques” (1984)

• Antonio Mana et al. ”A framework for secure execution of software”

(2004)

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

However some problem remains open:

• What about protection of arbitrary long function ?

Executable code externalisation

Our constraints:

• Protection should be transparent for the developer.

→ Static Analysis

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

• The trusted device has a limited amount of resource in

general (memory space).

→ Program Partitioning

Program Partitioning

The part of the processing to be protected is cut into small pieces.

→ Each part must fit in the trusted device

Execution of a sensible

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Execution of a sensible

processing:

→ Pieces are transmitted

one by one

The flow of piece must not leak any information !

Executable code externalisation

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Program Partitioning

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Code Piece Flow P2 P3 P3 P2 ...

Related information 0 1 1 0 …

Program Partitioning

Zhang’s solution

[T. Zhang ”Tamper-Resistant Whole Program Partitioning” (2003)]

Compute a minimal secure partitioning that

• minimizes the partition size

• keeps private data confidential Unsafe partition sequence

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

• keeps private data confidential

Safe partitioning : do not generate this type

of sequence:

Unsafe partition sequence

Program Partitioning

However, it remains some problems : some information leakage are not catched.

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Here the number of partitions

Depends on the value of a

Program Partitioning

We define formally a secure program partitioning in term of non-interference:

Values of private variables do not interfere with the sequence of partitions.

(but public information may leak)

1. Identify private data (static analysis)

2. Identify code where control flow depends on private data

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

2. Identify code where control flow depends on private data

3. Partition these blocs in a control flow independent manner

Program Partitioning

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Breadth-first running

Static Analysis

The developer points:

• Sensible functions

• Sensible data

Static analysis for data/function which can leak sensible data:

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Static analysis for data/function which can leak sensible data:

• Undecidable : one computes an upper approximation of the

set of assets to be hidden.

Static Analysis
We consider pairs (L,P) where

- L is a l-value

- P is a trace target (a program point + execution history).

We compute depencies as regular languages:

(L,P) ←←←← (L’, LP)

where LP is a regular language of trace targets describing the set of trace target

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

where LP is a regular language of trace targets describing the set of trace target

where L depends on L’.

Current work: represent approximation of dependencies by rational transducers.

♦ We can consider abstractions of trace target (e.g. just a target point, or no loop)

⇒ compromise between efficiency / approximation

Implementation

Target language : Java Bytecode

• Bytecode Static Analysis �

• Program partitioning �

• Original code automatic modification �

• Simulation in JCATools In progress

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

• Simulation in JCATools In progress

• Modification of the embedded Virtual Machine In progress

Analysis of our solution

• Static analysis of java programs – public/private parts

• Data protection

• Partition size remains small

• No information leaks about private data

• Public information may leaks !

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

• Public information may leaks !

THE OPPOSITE WAY :

A TOOL FOR UNDERSTANDING OBFUSCATED

PROGRAMS

Static Analysis of executable code

Desobfuscation !

• Viruses try to escape detection by obfuscating their own code. A virus may

obfuscate it-self iteratively in order to hide its footprint.

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

obfuscate it-self iteratively in order to hide its footprint.

Goal : Semi-automatic Semantic Analysis for the desobfuscation.

Static Analysis of executable code

Obstacles to static analysis of executable code:

• Un-structured programs: no explicit loops, no types, jumps, etc..

• Dynamic jumps forbid a classical - global analysis : the control flow is

discovered step by step during analysis.

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

discovered step by step during analysis.

The structure of the program is not

known and even not computable

Static Analysis of executable code

• Computation of the (uncomplete) Control Flow Graph

• Semantic of each elementary bloc : BDD

• Simplication of blocs (desobfuscation)

• Linear memory model

• Method of « weakest-precondition », invariants and induction proofs.

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Perspectives:

• Concolite execustion → BINCOA ANR Project.

• Use of generic microcode

Thank you !

Workshop on Cryptography and Security for Embedded Systems

CrysCoe Project - Olivier Ly - Juin 2009

Thank you !

