A Unified Framework for the Analysis of Side-Channel Key-Recovery Attacks

F.-X. Standaert, T.G. Malkin, M. Yung

UCL Crypto Group, Université catholique de Louvain Dept. of Computer Science, Columbia University Google Inc.

Eurocrypt 2009 - Cologne, Germany

1. Introduction

- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Introduction

- Side-channel attacks (the story made short)
 - Exploit the power consumption, electromagnetic radiation, ... of a cryptographic implementation
 - Most of the times to recover keys
 - Powerful but device-specific (\Rightarrow hard to evaluate)
 - Hard to prevent
 - Only a part of the physical reality
- Practical issues
 - "How to compare two implementations?"
 - "How to compare two adversaries?"

Goal of this framework: determine the extent to which these questions can be answered in a fair manner.

Example

- Evaluation and comparison of two implementations of the AES Rijndael (AES-CMOS and AES-WDDL)
- Tool: adversary A := { standard DPA, Hamming weight leakage model, target: one key byte }
 - $\operatorname{Succ}_{\operatorname{A}_{\operatorname{AES-CMOS}}}^{\operatorname{sc-kr}}(q,\ldots) = 0.9$ for q = 10

UCL Crypto Group

• Succ^{sc-kr}_{A_{AES-WDDL}(q,...) = 0.9 for q = 10000}

Is the lower success rate caused by a "secure implementation" or a "weak adversary"?

Introduction

- Limitations of previous (practical) works:
 - Mainly rely on heuristics
 - ▶ Use device-dependent metrics (*e.g.* variance)
 - ▶ Use adversary dependent metrics (*e.g.* correlation)

 \Rightarrow Separate the evaluation of the implementations from the evaluation of the side-channel adversaries

- Limitations of previous (theoretical) works
 - Hardly apply to actual implementations
 - Quantitative rather than qualitative

 \Rightarrow Propose a concrete evaluation methodology

A more friendly introduction

- Practice oriented provable security requires computational assumptions
 - e.g. the AES Rijndael is indistinguishable from a PRP for any polynomial-time adversary
- Leakage-resilient cryptography requires physical assumptions (*i.e.* bounded leakage, typically)
- This work attempts to provide foundations in order to determine what is a "reasonable physical assumption"
- Started from Micali & Reyzin (TCC)
- Ongoing research since 2004

A more friendly introduction

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Terminology

 $\bullet \ \text{primitive} \to \text{device}$

- \bullet device + side-channel + meas. setup = implementation
- (optional) preparation + exploitation = adversary

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Security metric # 1

 o^{th} order success rate of the side-channel key recovery adversary $A_{E_{K},L}$ against a key class variable S

Experiment
$$\mathbf{Exp}_{A_{\mathsf{E}_{K},\mathsf{L}}}^{\mathrm{sc-kr-o}}$$

 $k \stackrel{R}{\leftarrow} \mathcal{K};$
 $s = \delta(k);$
 $\mathbf{g} \leftarrow A_{\mathsf{E}_{k},\mathsf{L}};$
if $s \in [g_{1}, \dots, g_{o}]$ then return 1;
else return 0;

$$\mathsf{Succ}^{\mathrm{sc-kr-}o,S}_{\mathsf{A}_{\mathsf{E}_{\mathcal{K}},\mathsf{L}}}(au,m,q) = \mathsf{Pr} \ [\mathsf{Exp}^{\mathrm{sc-kr-}o}_{\mathsf{A}_{\mathsf{E}_{\mathcal{K}},\mathsf{L}}} = 1]$$

UCL Crypto Group

Security metric # 2

Guessing entropy of the side-channel key recovery adversary $A_{E_{K},L}$ against a key class variable *S*

Experiment
$$\mathbf{Exp}_{A_{E_{K},L}}^{sc-kg}$$

 $k \stackrel{R}{\leftarrow} \mathcal{K};$
 $s = \delta(k);$
 $\mathbf{g} \leftarrow A_{E_{k},L};$
return *i* such that $g_{i} = s;$

UCL Crypto Group

$$\mathsf{GE} \;_{\mathsf{A}_{\mathsf{E}_{\mathcal{K}},\mathsf{L}}}^{ ext{sc-kr-}\mathcal{S}}(au,m,q) = \mathsf{E}ig(\mathsf{Exp}_{\mathsf{A}_{\mathsf{E}_{\mathcal{K}},\mathsf{L}}}^{ ext{sc-kg}}ig)$$

Information theoretic metric

Conditional entropy matrix

$$\mathbf{H}_{s,s^*}^q = -\sum_{\mathbf{I}_q} \Pr[\mathbf{I}_q|s] \cdot \log_2 \Pr[s^*|\mathbf{I}_q],$$

Shannon's conditional entropy

$$H[S|\mathbf{L}_q] = -\sum_{s} \Pr[s] \sum_{\mathbf{I}_q} \Pr[\mathbf{I}_q|s] \cdot \log_2 \Pr[s|\mathbf{I}_q] = \mathbf{E}_{s} \mathbf{H}_{s,s}^q$$

UCL Crypto Group

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Practical limitations

- Computing $H[S|\mathbf{L}_q]$ requires the knowledge of $Pr[\mathbf{L}_q|S]$
 - Issue 1: the leakage distribution is generally unknown
 - \Rightarrow The IT metric has to be approximated
 - Issue 2: leakages generally have lots of samples
 - \Rightarrow We have to consider the approximated leakage distribution of a reduced set of samples
- In other words, we need to use generic template attacks (*e.g.* PCA-based, using a Gaussian assumption, stochastic models, ...)

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

1. Asymptotic meaning of $H[S|L_q]$

"Can I approximate the leakage probability distribution?"

Definition 1. Asymptotic success rate of a side-channel key recovery adversary: $\textbf{Succ}_{A_{E_{K'},L}}^{sc-kr-o,S}(q \to \infty)$

Definition 2. Bayesian side-channel key recovery adversary: selects $\tilde{s} = argmax_{s^*} \Pr[s^* | \mathbf{I}_q]$

UCL Crypto Group

Definition 3. Sound leakage probability distribution $\Pr[\mathbf{L}_q|S]$ or approximation $\Pr[\mathbf{\tilde{L}}_q|S]$: if the first-order asymptotic success rate $\mathbf{Succ}_{A_{\mathbf{E}_K,\mathbf{L}}}^{\text{sc-kr-1},S}(q \to \infty) = 1$

Bounded preparation / unbounded exploitation:

$$\mathbf{H}_{s,s^*}^q = \begin{pmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,|\mathcal{S}|} \\ h_{2,2} & h_{2,2} & \dots & h_{2,|\mathcal{S}|} \\ \dots & \dots & \dots & \dots \\ h_{|\mathcal{S}|,1} & h_{|\mathcal{S}|,2} & \dots & h_{|\mathcal{S}|,|\mathcal{S}|} \end{pmatrix}$$

Theorem 1. (...) a leakage probability distribution is sound if and only if $\operatorname{argmin}_{s^*} H^1_{s,s^*} = s$, $\forall s \in S$

Intuitively: the diagonal elements $h_{s,s}$'s are minimum

Example (AES Rijndael)

A Framework for Side-Channel Key Recovery - April 2009

2. Comparative meaning of $H[S|L_q]$

"Does more entropy imply more security?"

$$\mathbf{H}_{s,s^*}^q = \begin{pmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,|\mathcal{S}|} \\ h_{2,2} & h_{2,2} & \dots & h_{2,|\mathcal{S}|} \\ \dots & \dots & \dots & \dots \\ h_{|\mathcal{S}|,1} & h_{|\mathcal{S}|,2} & \dots & h_{|\mathcal{S}|,|\mathcal{S}|} \end{pmatrix}$$

 $h_{s,s}$: residual entropy of a key class s $H[S|L_q] = E_s H^q_{s,s}$ (averaged diagonal of H^q_{s,s^*})

UCL Crypto Group

Definition 4. |S|-target side-channel attack: tries to identify one key candidate out of |S|

Definition 5. Gaussian leakage distribution: such that $L(C_{\alpha}, M, R) = L'(C_{\alpha}, M) + L''(R)$, L''(R) = gaussian noise.

Definition 6. Ideal side-channel attack: Bayesian attack in which the leakages are perfectly predicted by the adversary's approximated probability density function.

2. Comparative meaning of $H[S|L_q]$

Unbounded preparation / bounded exploitation

- Does more entropy imply more security?
 - Ideal 2-target attacks with Gaussian leakages: yes
 - \blacktriangleright Ideal $|\mathcal{S}|\textsc{-target}$ attacks with "perfect" leakages: yes
 - In general: no

 (a pdf cannot be summarized in a scalar value)
 - In practice?

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Implementation dependencies

A Framework for Side-Channel Key Recovery - April 2009

Comparing masking schemes (CHES 2006)

- SNR=10 -

UCL Crypto Group

Comparing masking schemes (CHES 2006)

- SNR=11 -

UCL Crypto Group

Other experimental validations

- Comparison of different side-channel resistant logic styles from SPICE simulations (CHES 2007)
- Comparison of power and EM leakages using PCA/LDA from real measurements (CHES 2008)
- Experimental evaluation of various side-channel distinguishers in two microcontrollers (ICISC 2008)
- Evaluation of the profiling efficiency of template attacks and stochastic models (ACNS 2009)

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Evaluation methodology

- Side-channel attacks \approx statistical sampling problem

UCL Crypto Group

A last remark

- Side-channel attacks are an implementation problem
- Performances (and constants) are important !
- ► It is easy to build provably secure (but expensive) implementations, *e.g.* the AES as a 2¹²⁸ table
- ▶ We need to trade efficiency for security on a fair basis
- We hope this work can be used as a fair basis

- 1. Introduction
- 2. Terminology
- 3. Formal definitions
- 4. Practical limitations
- 5. Relations between the metrics
- 6. Applications of the model
- 7. Evaluation methodology
- 8. Conclusions

Conclusions

- Side-channel attacks pprox cryptanalytic problem
 - Having provably secure encryption modes do not remove the need of block cipher cryptanalysis !

Questions?

http://www.dice.ucl.ac.be/ fstandae/tsca/

