
Automatic Integration of Counter-Measures
Against Fault Injection Attacks

Mehdi-Laurent Akkar1 Louis Goubin Olivier Ly

Texas Instruments
821, Avenue Jack Kilby

BP 5
06271 Villeneuve-Loubet Cedex

France

ml.akkar@free.fr

Axalto
36-38, rue de la Princesse

BP 45
78430 Louveciennes Cedex

France

LGoubin@axalto.com

LaBRI
Université Bordeaux I

351, cours de la Libération
33405 Talence Cedex

France

ly@labri.fr

Abstract. This paper describes a technology aiming at enforcing semi-
automatically counter-measures against fault injection attacks of smart
cards. This technology addresses in a generic way the whole software
embedded on the card. In particular, it addresses threats going beyond
cryptography-related parts of the embedded software, like threats against
the firewall of the Java Card embedded virtual machine, the PIN code
verification, etc. Counter-measures are automatically integrated to the
source code at the pre-compilation step, according to a guideline defined by
the programmer under the form of a set of directives included into the
source code.

Keywords. Security, Hardware, Smart Cards, Fault Injection Attacks.

Contents
1. Introduction... 2
2. Principles .. 3
3. Architecture of the Pre-Processor... 5
4. Optimization ... 8
5. Example .. 9
6. Experiment.. 12
7. Conclusion .. 12
8. References... 13

1 This work was done when the first author was at Schlumberger Smart Cards & Terminals
(now Axalto).

1. Introduction

One of the motivations of this work is to be found in the well-known
discovery of three researchers of Bell Core (Boneh, DeMillo and Lipton) in
September 1996. They proposed a new attack model against smart cards,
which they called "Cryptanalysis in the Presence of Hardware Faults" (cf.
[3] or [4]). This attack model initially focused on several public-key
cryptographic algorithms: the RSA signature scheme and the Fiat-Shamir
and Schnorr authentication schemes. In [2], Biham and Shamir showed that
DES is also potentially vulnerable to these kinds of attack.

The impact of these kinds of attack – the fault injection attacks - goes
beyond the implementation of cryptographic algorithms. They actually
concern the whole software embedded on the card and can be focused on
any point on which the security of the card relies. For instance, they can be
used to bypass the verification of the PIN code, or to bypass the run-time
checking enforced the firewall of the Java Card virtual machine. They
constitute at the moment a serious threat against smart card security,
especially considering the growing complexity of the security models of
modern smart cards like e.g. Java Card based smart cards (see [5]).

In this paper, we describe a technology which aims at integrating
counter-measures against fault injection attacks in any software in a semi-
automatic way.

Fault injection attacks consist in perturbing the smart card working at
run-time by some physical means. This can be achieved by punctual
modification of the physical environment of the card, for instance current
glitches on the VCC of the chip, electromagnetic variations, Eddy current
(see [4]), or laser emission. Such perturbations introduce errors in the
working of the chip. They perturb the processing of core data used by the
chip to execute its code (program counter, registers…). In particular, such
an attack modifies the control flow of the execution, and in this way can
make the smart card bypass some piece of code.

The technology presented here consists in securing the execution by
integrating run-time checking aiming at detecting control flow
inconsistencies. The principle is to dynamically maintain a history of the
execution, and to verify its consistency at some points indicated by the
developer.

The counter-measure enforcement is semi-automatic. It is integrated
in the compilation process as a pre-processor. The source code is tagged by
the developer to indicate the points not to be bypassed, typically the crucial
checking related to security (PIN code, firewall checking, etc), and also the
control point where he want some consistency checking to be enforced, for

2

instance just before delivering some asset (a certificate, field access across
contexts for Java Card, or more generally any APDU2 response). Moreover,
it allows the developer to parameterise the run-time checking in order to
specify some points of the program which must be passed or must not be
passed depending on the state of the smart card (personalization, post-
issuance, etc).

It must be emphasized that the counter-measures integrated by our
system must satisfy some strong constraints regarding dynamic space and
size of code overhead. Depending on the chip, they have indeed at their
disposal only a few number of bytes of RAM3, and the code overhead must
be within a few hundreds of bytes.

The rest of the paper is organized as follows: first, we describe the
general working of the technology, second we address the architecture of
the system, then we discuss some experiment result, finally we describe two
optimisation features of the system.

2. Principles

The technology consists of a pre-processor which takes a tagged
source code as entry and integrates to it an attack detection system.

2.1. The Detection System

The principle of the detection system is to maintain an history of
execution at run-time and to check the consistency of this history regarding
the control flow of the program at some points – the check-points -
determined by the developer.

As history of execution, we mean the list of the successive program
points which have been passed from the beginning. Due to performance and
space constraints, the maintenance at run-time of the full list is not possible.
So we consider only partial information about it:

First, the detection system does not consider all passed program points
but only a subset of them: the flags. Indeed, considering all program points
would need to insert some processing at each program point which is not
realistic: this would give raise to a too important increase of the size of the
code. Moreover, the performance in term of execution time would be too
much affected.

Second, the detection system can only consider the set of flags

2 Application Protocol Data Unit. A command sequence that can be send to the smart card
or returned by it.
3 usually less than 10 bytes.

3

appearing in the list instead of the full list it-self, and/or the length of the
list, i.e., the number of passed flags. Obviously, this allows to bound the
size of dynamic space used by the system: one bit per considered program
point plus a counter.

Defining the set of flags and the information the detection system
maintains about history of execution (i.e., the full list of passed flags, or just
the set of passed flags and/or the number of passed flags) actually
constitutes a compromise between space, performance and security. It does
not make sense to make the system automatically determine this; the
interaction of the developer comes here (see Section 2.2).

At each check-point p, the detection system checks the history against
the control flow of the program. This means that the pre-processor does a
static analysis which computes the set of all the lists of passed flags which
are possible when arriving at p, according to the control flow of the
program. And it uses this data to determine which controls must be enforced
at p.

On top of that, the detection system is refined by making the controls
of check-points depend on the state of the card. This means that depending
on the state of the card (e.g. the value of some variable), a check-point can
accept or reject some execution. The set of accepted/rejected executions is
defined by the developer, who also defines the conditions on the state of the
card under which the check-point accept or reject. This feature is needed
because some critical operations like for instance file creation are allowed
or forbidden depending on the state of the card (personalization, post-
issuance…).

Let us note that this method does not avoid any attack possibility, but
actually reduces the weakness of the software to a few and identified points:
the check-points.

2.2. The Pre-Processor

The pre-processor takes as entry a source code tagged by some
directives given by the developer and automatically inserts the pieces of
code constituting the detection system into it, according to the locations and
data provided by the directives. The developer defines a guideline for the
pre-processor by including directives into the source code to be protected.
Directives are of the following sorts:

• Starting Points: These directives indicate the program points where
the detection system must start recording history.

• Flags: These directives indicate the locations in the code to be
considered by the history.

4

• Check-Points: These directives indicate the locations in the code
where the check points must be enforced.

• Race Declarations: Such a directive specifies a family of executions –
a race - together with a dynamic condition which determines whether
execution of the family in question must be accepted or not. The
family of accepted execution is defined with the flags directives. For
each flag, the developer can specifies that the executions of a given
family can / must / must not pass this flag or that only executions of a
given family are allowed to pass this flag.

A starting point is replaced by a piece of code resetting the data
structure used by the detection system to store the execution history. A flag
is replaced by a piece of code updating this data structure. A check-point is
replaced by a piece of code enforcing the controls. And a race declaration is
replaced by a piece of code which activates or deactivates the race in
question.

3. Architecture of the Pre-Processor

This section presents the global architecture of the pre-processor. We
present the main ingredients used to construct the detection system.

The pre-processor is made of four global components: a C language
parser, a control flow analysis module, a path analysis module, a detection
system module, and the kernel. All these components have been developed
with Ocaml language (see [8]).

1. The C language parser is a classical component of compilers (see [1]).

2. The control flow analysis module is in charge of computation of the
control flow graph of each function of the program. Control flow graphs are
the main objects used by the static analysis on which is based the
construction of the detection system.
This module uses a classical technique based on graph grammars (see e.g.
[6]). This consists in generating the control flow graph by applying a vertex
replacement grammar along a run on the term representing the considered
function. Let us note that we used inductive data types to represent semantic
of the program under the form of terms. And we used pattern matching to
generate recursively control flow graphs, all of this in a pure functional
style.
Let us note that the system cannot address function pointers in general.
Indeed, the use of this feature makes the control flow graph not computable4
in general. However, we can address some use of it: for instance, the use of

4 In the sense of computability theory.

5

a constant function pointer referencing functions of a constant array. In such
a case, all the control flow graphs of the functions of the array are included
in parallel in the control flow graph of the function using the pointer. And
the transition of the control in one of these functions, which must replace
the function call encoded by the function pointer, is considered as non-
deterministic. Therefore, we get a non-deterministic transition system for
the control flow graph.

3. The path analysis module is central in the system. It is in charge of the
computation, for each check-point p, of the set of the lists of passed flags
which can occur when arriving at p. Let us note that it is not in charge of the
computation of the real information needed by the detection system. Indeed,
this information only is partial information about this set of flag lists and is
managed by the detection system module.
The first task of the path analysis module is to extract the sub-graph of
directives from the control flow graph of the program. This task implies in
particular an exploration of successive function calls where some directives
can be inserted. It also implies the analysis of loops where some directive
may occur. The insertion of a directive in a non-constant loop is forbidden.
Indeed, taking into account such directives would implies to take into
account flag paths of non constant lengths. The verification of the
consistency of such paths would involve some more complex mechanism
like for instance an encoding of path by rational expressions. And the
consistency checking would need too much resources. So, after extraction of
the sub-graph of directives, the only loops occurring are constant, and must
be declared as that by the developer, who must also give the number of
turns5. These loops are developed, in order to finally get the directive graph
to be a DAG.
From this graph, and for each check-point p, the system computes all the
paths starting at some start directive and ending at p. Let us note that, if any
execution of the function follows one of these paths, some of these paths
could however not correspond to any execution. Indeed, we only consider
the underlying graph structure of the control flow graph which actually is a
transition system. Therefore, the computation of the paths does not consider
the conditions of transitions based on data. However, let us note that the set
of paths corresponding to real executions of the system is not computable in
general.
This set of path is then parted according to execution families defined by
race declarations. This consists in selecting for each race all the paths which
are admitted according to additional conditions specified into flag

5 Let us note that the problem of determining whether a loop has a constant number of turn
is undecidable in general. However, it would be possible to develop an upper layer which
would analyse the loops of the program and decide for some of them of some restricted
forms whether it is constant or not.

6

directives.
Finally, one gets as output of this processing a hash table associating to each
check-point a pair made of the set of flag paths which are admitted when no
race is activated and a hash table associating to each race r the set of
admitted flag paths which are admitted when r is activated.

4. The detection system module takes this data to construct the actual
detection system. The output of this module is a collection of pieces of code
to be inserted into the original source code. These pieces of code are of the
following kinds:

(i) Declaration of the dynamic data structures to be used by the
detection system. Depending on which detection option has been
chosen, this may consists of a stack recording flags, or a counter
and/or an array of bits.

(ii) Definition of static data to be used by the detection system. This
concerns the stack protection mode. It consists of all the arrays of
flags used for checking the consistency of the current stack.

(iii) Resetting the dynamic data at starting points.

(iv) Updating the dynamic data for each flag. For instance, if the counter
option has been chosen, this consists in incrementing the counter.

(v) Enforcing the control at check-points. From the data computed by
the path analysis component, one constructs the controls to be
enforced for each check-point. These controls may simply be
verifications of the value of the counter. Or else they can be
checking the stack against some flag static array.

5. The kernel manages the working of the pre-processor at a upper level.
The pre-processor can enforce several distinct detection systems on the
same project, each being associated to a particular function. Indeed, the
different features of the system embedded on the card may not need the
same levels of protection. Beside, some specific low level functions may
need their own detection system, to be enforced in parallel with the
detection systems of the upper level functions. For instance, this is the case
of the DES function. The kernel is in charge of organizing the different
detection systems.

7

 cfprotect.h

foo.c

Parser

Control
Flow

Analysis

Kernel

Detection

System

Counter

Stack

Set

foo_protected.c

Path
Analysis

4. Optimization

This section presents two optimisations aiming at increasing the level
of confidence into the detection system, and also at adapting the detection
system to the constraints of the smart card environment.

4.1. Balance Algorithm

This optimisation concerns the counter detection mode. Let us
consider a check-point p. The different admitted paths ending at p may have
different length. This implies that the control enforced by p has several
distinct values. This fact presents a disadvantage. If the number of possible
values for the counter is comparable to the values themselves, then
probability of that some control flow error gives raise to a valid counter
value at p increases. And thus the detection system may miss number of
attack. This situation is not acceptable.

The solution consisted in considering a weight associated to each flag,
and adding the value of this weight to the counter when a flag is passed, the
weights being determined in order to make the counter value unique at each

8

check-point (see example page 9).

However, depending on the graph of directive, this balance is not
always possible. And one actually may have to insert some additional flag
directives into the source code. Again, there is a compromise to do between
the number of possible counter values at check-points and the number of
new inserted flags which increase the size of the code of the detection
system.

4.2. Dynamic Memory Sharing

Here we consider an optimisation of the amount of dynamic memory
used by the detection system.

The enforcement of several detection systems into the same embedded
system implies that each of them has its own dynamic memory at its
disposal. But some detection systems may never be involved at the same
time, and therefore could share the same dynamic space.

Regarding that, the kernel computed a partition of the set of detection
system into parts made of detection systems which never occur at the same
time. Such a partition can be computed from the control flow graphs. And
attributes a bloc of dynamic memory to each part, to be used by all the
detection systems of the part.

5. Example

Here we give out an example of the processing. The entry of the pre-
processor is the following piece of code, tagged by directives. Directives
have the form:

#pragma CFP funid <directive>

Where funid is the identifier of the function to be protected, and
<directive> is the actual directive, here it takes the following form:

• counter|set|stack protection: the detection mode (line 7).

• start: the beginning of the detection (line 8)

• flag: a flag (line 15,26 and 31)

• verify: a check-point (line 19).

9

/**/ 1
/* Control Flow Protection: Example */
/**/

void process (int entry) { 5

#pragma CFP process counter protection
#pragma CFP process start

 if (cond1(entry)) { 10
 action1(entry);
 }

 if (cond2(entry)) {
#pragma CFP process flag 15
 action2(entry);
 }

#pragma CFP process verify
 return; 20
}

/**/

int action1(int entry) {
#pragma CFP process flag

25

 if (cond11(entry))
 return action11(entry);

#pragma CFP process flag

30

 return action12(entry);
}

/**/ 35
/**/

10

Here is the output of the processing:
#include "cfprotect.h" 1
/**/
/* Control Flow Protection: Example */
/**/
 5
void process (int entry) {

#if CF_PROTECTION_PROCESS==1
__PROCESS_RESET(1);
#endif 10

 if (cond1(entry)) {
 action1(entry);
 }
#if CF_PROTECTION_PROCESS==1 15
else { __PROCESS_INCR(2); }
#endif

 if (cond2(entry)) {
#if CF_PROTECTION_PROCESS==1 20
__PROCESS_INCR(1);
#endif
 action2(entry);
 }
#if CF_PROTECTION_PROCESS==1 25
else { __PROCESS_INCR(1); }
#endif

#if CF_PROTECTION_PROCESS==1
if (!((__PROCESS_VERIFY(4)))) 30
 { __PROCESS_ERROR; }
#endif
 return;
}
 35
/**/

int action1(int entry) {
#if CF_PROTECTION_PROCESS==1
__PROCESS_INCR(1); 40
#endif

 if (cond11(entry)) {
#if CF_PROTECTION_PROCESS==1
__PROCESS_INCR(1); 45
#endif

return action11(entry);
}

#if CF_PROTECTION_PROCESS==1
__PROCESS_INCR(1); 50
#endif
 return action12(entry);
}

/**/ 55
/**/

Here the detection system uses a counter. Directives have been
replaced by the corresponding pieces of code constituting the actual
detection system. We do not give out the definitions of __PROCESS_RESET,
__PROCESS_INCR, __PROCESS_VERIFY which are straightforward. They are
included in a new file generated during the processing (cfprotect.h)

11

included at line 1.

Let us note that the optimisation described in Section 4.1 led to the
insertion of new flags at lines 15, 25 and 44.

6. Experiment

The system has been experimented on a smart card chip. The
embedded software has been designed especially for this experience. It
consists in a basic arithmetical computation involving several successive
constant loops. The computation is requested by an APDU, and the result is
returned as an APDU.

We choose to enforce the detection system in the stack mode. This is
the strongest detection mode, but also the most expensive regarding
dynamic and static space and execution time. It is actually dedicated to the
very crucial parts of the embedded software.

The experiment has consisted in perturbing the computation by laser
emissions. For each execution, the following scenarios are possible:

1. The result is correct and the system did not detect any perturbation

2. The result is not correct and the system detected a perturbation.

3. The result is correct and the system detected a perturbation.

4. The result is not correct and the system did not detected a perturbation.

As a result of the experiment, it turned out that, among the executions
leading to an erroneous result, approximately 80% correspond to a
perturbation that was successfully detected by our protection system (this is
scenario 2). Equivalently, approximately 20% correspond to a perturbation
that was not detected (this is scenario 4).

Cases 1 and 2 correspond to what is expected of the detection system. The
case 3 may occur if the laser emission perturbed the detection system itself
without perturbing the computation. For instance, the laser emission may
make the chip bypass a flag. There are two explanations for the case 4: first,
the laser emission has been sufficiently precise to perturb a single operation
without perturbing the detection mechanism. Second, the laser emission
perturbed all the check-points after having introduced an error.

7. Conclusion

The technology presented in this paper contributes to improve the
smart card development methodology regarding the state of the art of fault
injection attacks.

12

13

It provides a solution which allows the developer to determine and to
enforce compromises regarding the following constraints with very limited
additional development costs:

• Maximize the resistance level of the embedded software.

• Minimize the overhead regarding the size of embedded code.

• Minimize the amount of dynamic memory allocated to the detection
system.

• Minimize the overhead of execution time.

Furthermore, the use of directives to specify the detection system is
well adapted to a modular development process. Indeed, the generic aspect
of directives allows to specify the protection independently for each module
of a software without taking into account protections of other modules and
of the upper and the lower layers. The integration and the organization of
the resulting detection systems is the charge of the pre-processor which does
it automatically. So, this technology allows a modular and distributed
process for the development of counter-measures.

8. References

[1]. A. Aho, R. Sethi, J. Ullman, Compilers. Addison-Wesley, 1986.

[2]. E. Biham, A. Shamir, Differential Fault Analysis of Secret Key
Cryptosystems. In Proceedings of CRYPTO'97, Lecture Notes in Computer
Science, Vol. 1294, Springer, pp. 513-528, 1997.

[3]. D. Boneh, R. DeMillo, R. Lipton, New Threat Model Breaks Crypto
Codes. Bellcore Press Release, September 25th, 1996.

[4]. D. Boneh, R. DeMillo, R. Lipton, On the Importance of Checking
Cryptographic Protocols for Faults. In Proceedings of EUROCRYPT'97,
Lecture Notes in Computer Science 1233, Springer, pp. 37-51, 1997.

[5]. Z. Chen. Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Addison Wesley 2000.

[6]. J. Engelfriet and G. Rozenberg. Node Replacement Graph
Grammars. In Handbook of Graph Grammars and Computing by Graph
Transformation. G. Rozenberg Ed. World Scientific 1997.

[7]. J.-J. Quisquater, D. Samyde, Eddy Current for Magnetic Analysis
with Active Sensor. Proceedings of E-Smart 2002.

[8]. The OCAML Language. http://www.ocaml.org.

