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Abstract. Here we deal with the question of definability of infinite
graphs up to isomorphism by weak monadic second-order formulae. In
this respect, we prove that the quantifier alternation bounded hierarchy
of equational graphs is infinite. Two proofs are given: the first one is based
on the Ehrenfeucht-Fraissé games; the second one uses the arithmetical
hierarchy. Next, we give a new proof of the Thomas’s result according to
which the bounded hierarchy of the weak monadic second-order logic of
the complete binary tree is infinite.

Introduction

Logic is by now a classical mean in theoretical computer science to describe
complexity issues; it has been used in many areas, for instance effective com-
putability (cf. [20]), descriptive complexity (cf. [7,15]), or else formal language
theory (cf. [16]).

This paper deals with the question of definability of infinite graphs up to
isomorphism by logical formulae. The graphs which are studied here are equa-
tional graphs which have been introduced in [4] as models of program schemes.
Such a graph is the inductive limit of a sequence of finite graphs generated by a
deterministic hyperedge replacement grammar (cf. [5,21]). They extend strictly
context-free graphs which have been introduced in [14] as configuration graphs
of pushdown automata. Note that these kinds of graphs generalize the concept
of regular trees; such a tree is defined as the tree of all the runs of a finite state
automaton (see [3]).

We deal with monadic second-order formule on graphs (MS-formula for
short) which are the logical formulae which deal with graphs as relational logical
structures using individual and set variables ranging over vertices and edges.
We consider the weak monadic second-order logic (WMS logic for short) which
consists in interpreting the MS-formulae by considering set variables as ranging
over finite sets of vertices and edges. WMS logic is a classical extention of the
first-order logic. It is a variation of the well-known monadic second-order logic
(MS-logic for short) (cf. [21,8]). The monadic second-order logic is related to
the concept of equational graphs because of the two following results: first, one
can decide in an effective way whether a given equational graph satisfies a given



MS-formula according to MS-logic, which is also true for WMS-logic (cf. [4], for
generalizations cf. [21,2]). Second, the equational graphs are exactly the graphs
of bounded tree-width (cf. [17]) which are definable up to isomorphism by MS-
formulee (cf. [5]) according to MS-logic. Note that these results generalise the
fundamental results of [1] and [18,19] where MS and WMS were studied in the
contexts of infinite words and infinite trees.

The present work is motivated by the conjecture of [5] according to which
any equational graph is definable up to isomorphism by a formula of WMS-logic.
This is true if one considers MS-logic (cf. [5]); let us note that this implies that
the isomorphism problem for equational graphs is decidable. Concerning WMS-
logic, some steps have been ever raised: the conjecture has been firstly proved
to be true for context-free graphs (cf. [22]), and then for the equational graphs
which have covering trees of finite degree (cf. [23]).

Here, we investigate equational WMS-definable graphs through the study of
the quantifier alternation bounded hierarchy. A graph is said to be in the n-
th level of the bounded WMS-hierarchy if there exists a WMS-formula which
defines it up to isomorphism and which has n — 1 alternations of existential and
universal unbounded quantifiers. One says that the hierarchy is infinite if for
each integer n, the n-th level is strictly included in the n + 1-th one. The main
result of this paper is the following;:

Theorem 1. The bounded WMS-hierarchy of equational graphs is infinite.

In order to see how this theorem fits in existing works, let us now mention
some results about hierarchies relating to monadic second-order logical systems.
Firstly, the bounded MS and WMS-hierachies of languages of infinite words, i.e.
the one successor theory, are finite, which follows from [1] and [12]. Next, the
bounded MS-hierarchy of languages of infinite binary trees, i.e. the two succes-
sors theory (MS2S for short) is also finite, which follows from Rabin’s Theorem
(cf. [18], see also e.g. [9] for further results), while the weak one (the bounded
WNMS2S-hierarchy) is infinite (cf. [24], see also [13]). Concerning definability of
graphs up to isomorphism, it follows from the results of [5] that the bounded
MS-hierarchy of equational graphs is finite. Theorem 1 shows that the situation
is different when considering WMS-logic, even though it follows from [22] that
the bounded WMS-hierarchy of context-free graphs is finite and stops at most
at the fifth level.

As we mentioned above the best result concerning the conjecture of WMS-
definability of equational graphs has been raised in [23]. The WMS-formulae which
are constructed in this work have unbounded numbers of quantifier alternations;
Theorem 1 shows that one can not get away from this fact: equational graphs are
hard to define up to isomorphism by using weak monadic second-order formuleae.

We give two proofs of Theorem 1. The first one is based on an extention to
WNMS-logic of the classical technique of Ehrenfeucht-Fraissé games [8,10]). The
method is similar to the well-known construction used to show that FO(LFP)
is strictly more expressive than FO(T'C) (see e.g. [6]). The second one is based
on infinity of arithmetical hierarchy (see [20]). It allows us to recover the fact
that WMS2S-hierarchy is infinite, which is deserved in [24] where it was proved



using arithmetical hierarchy as well together with Rabin’s Theorem (cf. [18]).
The first proof is in some sense stronger than the second one because the graphs
which are constructed in it have covering trees of finite degree, which is not true
for the second proof. But in other respects, this last one allows us to recover
the result of [24] without using Rabin’s Theorem, which does not seem to be
possible with the game-based proof.
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to thank the reviewers for their work which led to important improvements of
this paper.

1 Preliminary

For an introduction to monadic second-order logical systems, the reader is
refered to [6, 8], cf. also [21, chap. 5].

We deal with labelled directed multi-graphs (graphs for short), i.e. tuple
(V, E,vert, A, lab) where V is an at most countable set whose elements are the
vertices; F is the set of edges; vert: E — V x V is the map defining the target
and the origin of each edge. Vertices and edges are labelled by elements of A
according to the map lab: V UE — A. Such a graph is represented by a logical
relational structure (D, (Dgy)aea,inc) where D =V U E; foralla € A, D, C D
is a unary relation on D defining elements labelled by a and inc is a ternary
relation defining incidence in the sense that (z,y,z) € inc if and only if z € E
is an edge of origin y € V and target z € V. In order to simplify notations,
the relational structure associated to a graph G is still denoted by G. We con-
sider monadic second-order formule on graphs. These formula are constructed
using individual variables (usually denoted by latin letters z, y, z,...) and set
variables (usually denoted by greek letters «, 3, ...). Atomic formule are of the
forms # € a or @ C B or inc(x,y, z) or else x € D, with a € A. Syntax is not
restricted: we allows existential and universal quantifiers over individual and set
variables, conjunctions and negations. The semantics of such formula differs in
the monadic second-order logic and in the weak monadic second-order logic: in
the former one set variables range over all the subsets of the domain, while in
the last one they range over finite subsets only.

Remark 1. What we call here MS-logic of graphs is usually denoted by MS--
logic in order to distinguish it from MS;-logic in which quantifications are done
over vertex sets only (cf. e.g. [21]). MS;-logic deals with simple graphs; such a
graph is encoded by a relational structure whose domain is its set of vertices
only, instead of the union of its set of vertices and its set of edges as we consider
here. MS, is more expressive than MS;. This is why we have chosen to prove
Theorem 1 for MSs. As we shall see, it is true for MS; as well (see Remark 3).

A formula is said to be in prenex form if it is of the form Q1 X;...Q, X, ¥
where for each i, Q); € {3,V}, the X;’s are variables and ¢ does not contain any
quantifier. Any formula can be put in prenex form in an effective way (cf. e.g. [8]).



Let a and ( be some set variables; let (e, 8) be a formula with a and 3
as free variables. The quantifier over « in the formula Ja¢(a, 8) Vag(a, )
respectively) is said to be bounded if this last formula is equivalent to Ja (a C
B A pla, ) Va(a C B = ¢(a,B)) respectively). In this case it is denoted by
Ja C B ¢(a) Va C B ¢(a) respectively). A formula in which all the quan-
tifiers are bounded is said to be bounded. As stated by next Lemma, bounded
quantifications can always be put after the unbounded ones (cf. [13] for a proof).

Lemma 1. Let ¢¥(a, 8,7) bela formula, thenlwe have:
e Ja CBVyY(a,B,7) =Vy Ja C BV Cv ¥(a,B,7)
e JaC B3vY(a,B,7) =3vIa C B(a, B,7)

o VaCBVyy(a,B,7) =VyVaC (e fiy)
eVaCpB3vY(a,B,y) =3y VaC B3Iy Cy ¥(a,B,7)

A formula is called a X,-formula (a II,-formula respectively) if it has the
form Ele VXZ an ip(Xl, Xz, ceey Xn) (\V/Xl Eng 3Xn ip(Xl,Xz, cees Xn)
respectively) where 1) is bounded. The above lemma implies that any formula is
equivalent to a X,-formula (a IT,-formula respectively) for a suitable n.

This classification of formulae provides a classification of definable graph prop-
erties, i.e. the properties which can be expressed by logical formulae. What we
call here a graph property is formally a class of graphs, for instance the class of
all the connected graphs. Let G*» (GI» respectively) denote the set of families of
graphs which are WMS-definable by some X, -formula (by I1,-formula respec-
tively). Note that for all n > 0 : G¥» UG C G¥»+1 N GH=+1 This classification
of WMS-definable graph families, i.e. the sequence G**, is called the bounded
weak monadic quantifier alternation hierarchy.

™

2 Ehrenfeucht-Fraissé Games

2.1 Ehrenfeucht-Fraissé Games for Weak Monadic Second-Order
Logic

Let G = (V, Eg, vertg, A, labg) and G' = (Vgi, Egr, vertg:, A, labg') be two
A-labelled graphs. Let @ and @' be some finite parts of G and G’ respectively,
i.e. finite subsets of vertices and edges. We call partial isomorphism between
a and o' a one-to-one mapping ¢ : @ — & which preserves the adjacency, i.e
Y a,z,y € a: vertg(a) = (z,y) if and only if vertg:(c(a)) = (o(z),0(y)), and
the labels, i.e. V a € a : lab(a) = lab(o(a)). We shall identify such a mapping
with its graph, i.e. the subset of (Vg U E¢) % (Ve U Eg) which encodes it. If
o and ¢’ are two partial isomorphisms, we say that o extends ¢’ if o' C o as
subsets of (Vg UEg) X (Ve U Eg:). The set of partial isomorphisms between two
finite parts @ and &' is denoted by PartIsom(a, &').

Let A and B be two players, a session in the FEhrenfeucht-Fraissé game as-
sociated to the pair of graphs (G,G') goes on as follows : at the first round,
A chooses a finite part @; of G, and then B replies with a finite part @} of G' to-
gether with a partial isomorphism oy € PartIsom(ay,@)). At the second round,



A chooses a finite part @, of G' and B replies with a finite part as of G together
with a partial isomorphism oy € PartIsom(a; U @z, @) U @) which extends oy;
and so on, A chooses finite parts alternatively in G and G’ and B extends the
isomorphism as A goes along. The game stops when B can not find a good an-
swer. We say that B has a strategy of order n if he can play the first n rounds
whatever choices A makes.

The following results show the classical link between this game view point
and logic.

Lemma 2. Let G and G' be two graphs and let ¥(aq, ..,ay) be a bounded for-
mula. Let ai,...,a, (&4,...,a, respectively) be some finite parts of G (G' re-
spectively) and let o € Partlsom(|Ja;,Ja;) be a partial isomorphism which
exchanges &; and &; for all i, then we have (G, @y, .., &) E ¥(aa,...,a,) if and
only if (G',al,....a)) Ev(a,...,an)

Lemma 3. Let G and G' be two graphs such that B has a strategy of order n in
the Ehrenfeucht-Fraissé game associated to (G, G"); then for all X,-formula ¢,
G = ¢ implies that G' |= .

2.2 First Proof of Theorem 1

This section is devoted to the proof of Theorem 1.

We begin by defining two sequences of graphs (Gn)n>1 and (G),)n>1 such
that for all n > 1, G,, and G}, are not isomorphic and B has a strategy of order
n in the Ehrenfeucht-Fraissé game associated to (G, G?,).

Let us set V = (Z)* i.e. the set of finite sequences of integers, and E =
(Z)*x{r,t}, where (Z)* denotes the set of finite non empty sequences of integers,
r and ¢ are two symbols (r like radial and ¢ like transversal); let us consider the
mapping vert : E — V x V defined as following;:

— Ve= ((x1,.,21),7) € E, vert(z) = (w1, -, x1—1), (X1, -, T1—1,T1)),
— Ve = ((x1,..,21),t) € E, vert(z) = ((x1, -, 1), (1, .., 1 + 1)).

Let A be a set; let Z(A) denote the set of A-labelled graphs whose vertex
set, edge set and edge mapping respectively are V, E and vert. Let G € Z(A)
and zg € V, we denote by G(z9) the graph of Z(A) defined by : Vz € VUE :
labg(-y)(2) = labg(z0.2), where zg.z denotes the concatenation of zg and z if
2z € V, and by abuse of notation (zg.u,r) or (zo.u,t) if z = (u,7) € E or
z = (u,t) € E respectively.

G, and G!, are now defined as elements of Z({0,1}). First, all edges are
labelled by 0: for all n > 1 and for all e € F, let labg, (e) = labg: (e) = 0. The
labels of vertices are defined inductively as following:

— For all z € V, let labg,(2) =0
_[1if z=(0),
— For all z € V, labg, (2) = 0 otherwise.
— For n > 2, G, is defined from G!,_; as following: labg,(()) = 0 and Vz € V
such that |z| =1: Gp(2) = G,_;.



— For n > 2, G, is defined from G,,_; and GJ,_; as following: labg, (()) = 0,
Vz € V \ {(0)} such that |z] =1 : G, (2) = G),_; and G,((0)) = Gp_1.

Gho1 Gh_1 Gy Gh1 Gno1 Gy
NN NS NN NS
--—0——=0—=0"—-- ---—=0——=0——=0—~--
\(’j/ \(’j/

G G

Lemma 4. For alln > 1, B has a strategy of order n in the Ehrenfeucht-Fraissé
game associated to (Gn,GY,).

Sketch of proof. (induction on n)

e Case n = 1: Let a3 C Vg, U Eg, be the choice of A in the first round of the
game. All the elements of &; are labelled by 0 and the unique element of Ve UEG,
labelled by 1 is (0) € Vg ; so B performs a shifting on the left of m = min{z; €
Z | 3zy, .., x; such that (zy,..,x;) € @} first level vertices; more precisely he uses
the one-to-one mapping A\, : V. — V defined by A\, ((z1,..,21)) = (x1 — m +
1,..,z;) which extends in a natural way to V U E to define an automorphism of
(V, E, vert) which shall be still denoted by A,,; B then chooses @) = A(a;) and
01 = /\T_nl |541'

e Case n > 1: Suppose now that B has a strategy ¢ of order n — 1 relatively to
(Gn-1,G,_1); we will then define a strategy of order n relatively to (G, G%,).
The first round proceeds exactely like in the case n = 1; if @; C Vg, U Eg,, is
the first choice of A , we define m, A, @) and o; as above.

Let us consider a;, C Vg U Eg: the second choice of A which we divide into two
parts @, = {(21,..,2;) € &b |21 # 0} and @5 = {(21,..,2;) € & |z = 0}. For
@, B uses the above shifting \,, : let @} = \-1(ay ) and ol = /\;nl|&,21 Ua;. For

@y, let us remark that G/ ((0)) = G,,_1 and G,,((m—1)) = G',_,, so @y induces
a finite part of G,,_; which can be considered as the first choice of A in the game
associated to (Gp_1,G!,_,) then, ( gives a answer, i.e. a finite part a3 C G/,
and a partial isomorphism which induce a finite part a3 of the subgraph of G,
of root (m — 1) (the subset of G,, of words of which (m — 1) is a prefix) and a
partial isomorphism o € PartIsom(a3,ay ).

Finally a} U a3 and o3 U 03 is a correct answer of B .

For the succeeding rounds, B uses in the same way the strategy ( in the
game relative to the pair (G,((0)), Gn((m —1))) and A, in the rest. Since ¢ the
strategy of B of order n — 1, intervenes in the second and later rounds, the above
method gives a strategy of order n.

Since G, and G!, are not isomorphic, the preceding lemma together with
Lemma 3 proves the next result:



Lemma 5. For all n > 1, G,, is not definable up to isomorphism by a X, -
formula.

We have now to see that G,, is indeed WMS-definable up to isomorphism,
which is stated by next Lemma.

Lemma 6. There exists a MS-formula @, such that for any graph G, G = &,
according to WMS-logic if and only if G is isomorphic to G,,; moreover, there
exists N > 1 such that for alln > N, ®,, can be constructed to be X, .

Because of the lack of space, Proof is omited (cf. [11]).

Hence, for all n > N, the isomorphism class of G, belongs to G¥n+1\G*
which proves that the bounded weak monadic quantifier alternation hierarchy is
infinite. To conclude the proof of Theorem 1, it remains to show that the bounded
hierarchy is still infinite when restricted to isomorphism classes of equational
graphs. This is true seeing that the G,,’s actually are equational. Equational
graphs can be seen as canonical solutions of systems of graph equations (cf.
[5]). The lack of space makes impossible to construct in details such systems for
the G,,’s. Nevertheless, we give the main ideas: first, we have to note that the
graph which is made of one vertex of infinite degree which is connected to all the
vertices of an infinite linear graph is equational; let us denote it by G. Then, the
equations defining Gy say that it is obtained by gluing one copy of itself on each
vertex of G except the root, i.e. the vertex of G of infinite degree. On the other
hand, G is obviously equational as it is obtained from G; by modifying the label
of only one vertex. Then, the equations defining G,, and G, are constructed by
induction from those defining G and those defining G,,_; and G.,_, by following
the definition scheme given above. For instance, G, is obtained by gluing a copy
of G,_, on each vertex of G except the root (cf. [11] for more details).

Let us note that instead of constructing directly such systems of graph equa-
tions, one can notice that the G,’s are of bounded tree width (cf. [17]) and
WDMS-definable, as we saw in Lemma 6. In view of the results of [5], this implies
that they are equational.

Remark 2. Transversal edges of G, are useless in the proof of Theorem 1. How-
ever, they give the existence of a covering tree of finite degree, which, to some ex-
tend, is meaningful because of the following: the equational graphs with covering
trees of finite degree have been proved to be WMS-definable up to isomorphism
(cf. [23]); but the numbers of quantifier alternations of the formulse which are
constructed in this proof are not bounded. We have thus shown that one can
not get away from this fact.

Remark 3. Let us note that MS;-logic (see Remark 1) gives rise to another
bounded quantifier alternation hierarchy. In this respect, it turns out that our
construction also shows that this hierarchy is also infinite. First, one can verify
that a MS;-formula can be translated into an MS,-formula, adding at most one
quantifier alternation. Therefore, in view of Lemma 5, G,, can not be defined up
to isomorphism by a MS;-formula with less than n — 1 quantifier alternation.
Second, one shows that G,, is MS;-definable.



Remark 4. The bounded weak monadic quantifier alternation hierarchy differs
from the weak monadic quantifier alternation hierarchy (weak monadic hierarchy
for short) which is defined in an analogous way by considering first-order formule
instead of bounded formulza. In this respect, one shows that there exists a fixed
integer k such that for all n, the isomorphism class of GG,, belongs to the k-th
level of the weak monadic hierarchy. Indeed, the formula @,, given in Lemma 6
actually consists in the conjunction of a fixed weak monadic formula ¢ which
defines the family Z({0,1}), and a first-order formula ¢,, which checks the labels
of G,. So, the level of @,, in the weak monadic hierarchy is the one of @, which is
fixed. We hence obtain that the k-th level of the weak monadic hierarchy contains
instances beyond any given level of the bounded weak monadic hierarchy.

3 Arithmetical Hierarchy and Graph Hierarchy

3.1 Arithmetical hierarchy

For basics about effective computability, the reader is refered to [20].

Let 7* : (N)* — N be a Godel numbering of finite integer sequences, i.e. a
bi-recursive one-one mapping (cf. [20, p. 70] for such a construction); as usually,
7*((21, ..., xx)) shall be sometimes denoted by < @1, ...,z >.

Let (M:X);>0 be a Gddel numbering of the set oracle Turing machines. For
any A C Nand i > 0, let f# : WA C N — {0,1} be the partial function
computed by MFX with A as oracle, where WA = {z € N|M;X stops on the
instance z using A as oracle } and Vo € WA, fA(x) = 0 if and only if MX give
0 on the instance x using A as oracle. Classical Turing machines are identified
with oracle machines with (} as oracle. For all k, f,? and W,? shall be denoted by
fr and Wy, respectively; fy is called the k-th recursive partial function. Let Rec
denote the set of all the recursive functions.

Let Xarith he the set of subsets of N of the form {k|3kiVks...3ky fi, (<
ki, ks, ...,kn, k >) = 1} for any fixed ig. We also consider 127" which denotes
the set of subsets of N of the form {k | Vk1Jk2... 5k fio (< k1, k2, ..., kn, k >) = 1}
for any fixed io. U, yarith is called the arithmetical hierarchy.

Let us consider the jump operation which associates to any subset A C N the
set A’ ={z € N|z € WA}. For all n > 1, let A" = (A"!)" where A° = A. We
then consider the sequence (0"),>0, which is called the sequence of jumps.

Let A and B be two subsets of N, let us recall that B is said to be recursive
in A if and only if its characteristic function is equal to f,f for some k. B is said
to be recursively enumerable in A if and only if there exists k& € N such that
B =W

The proofs of the two following results can be found in [20].

Lemma 7. For alln > 1, B € X" jf and only if B is recursively enumerable
in (™.
The next result implies that the arithmetical hierarchy is infinite, i.e. for each
n Earith C Eam’th_

) n = n+1

Lemma 8. For alln > 0, 0"+ is not recursive in Q7.



3.2 Second Proof of Theorem 1

The first part of this second proof consists in constructing a sequence (ty)n>1
of recursive trees such that ()" is reducible to the problem of being isomorphic
to t,,. The second argument is that the problem of determining whether a recur-
sive tree satisfies a X, -formula according to weak monadic second-order logic is
recursive in (" (see Lemma 10 bellow). Seeing that ¢,, is constructed in order to
be equational and WMS-definable up to isomorphism, Theorem 1 follows.

Let us make precise what we shall call a recursive tree. Let T be the set of
trees of the form T = (Vy, Ep, Edgr, {0,1}, laby) where

— Vr € (N)* is prefix closed, i.e. ¢ € Vy and y <j,cy 2 implies y € Vi;
— Er is a copy of Vin{() };

— For ¢ = (w1, ...,xn) € Ep : Edgr(x) = (21, -y Tn—1), (€1, .-, Tp));

— laby : Vo U Er — {0,1} and labT|ET =0.

For T € T and z¢ € Vi, let T'(zg) be the subtree of T' of root xg: T'(zg) € T,
Vi(ae) = {2 € (N)* |mo.w € Vr} and Vo € Vi(yy), labp,)(x) = labr(zo.z).
Let us consider for any partial function f : Dom(f) C N — {0,1} the element
Tr(f) of T°° defined as following: Vr(y) is the greater subset of Dom(f o7*) =
7*~!(Dom(f)) which is prefix-closed; and for all z € Vv : laby s (x) =f o 7*(x).

Definition 1 (Recursive Trees). A recursive tree is an element of T of
the form Tr(f;) for some i where f; denotes the i-th recursive partial function.
Let T; = Tr(f;) denote the i-th recursive tree.

For each tree t € T°° let us consider the set of integer RecIsom(t) = {i € N|T;
is isomorphic to t}.

Let us turn to the construction of (t,),>1. We need for that an auxilliary
sequence (t;,)n>1 of trees. First, for all n € N, V;, =V, = (N)*; then

1if z = (i) for any even integer i
— Vo €V, laby, (z) = {0 otherw(is)e
— laby =0
— For n > 1, t,,4, is defined by: lab;,,,(()) = 0 and Vz € V;, ., such that
|z| = 1: tyy1(x) =ty if © = (i) with ¢ even and t,,4;(x) = t], otherwise.
— For n > 1, #;,, is defined by: lab;;  (()) = 0 and Vz € V;;  such that

|o| =1:t,,(x) =ty
Lemma 9. For alln > 1, ™ is recursive in RecIsom(ty,).

Proof. Let B(n,i) C N be the i-th set of the n-th level of the arithmetical
hierarchy, i.e. {k|3k1Vka...3kn : fi(< k1,k2,...,kn,k >) = 1}. Let us consider
the following induction hypothesis :

HR,,: there exists a computable recursive function p,, such that Vi,k € N : p,(<
i,k >) € Reclsom(t,) U Reclsom(t!) and pn(< i,k >) € Reclsom(t,) iff k €
B(n,i). In other words, for all n there is an algorithm which associates to any
pair i,k € N an algorithm which computes a tree which is isomorphic to t, or
t! and is isomorphic to ty, if and only if k € B(n,1).



It follows from Lemma 7 that there exists an index i,, such that §™ = B(n, i,,).
Therefore, HR,, implies that " is Turing reducible to RecIsom(t,) by the func-
tion py, 1 k — p(< iy, k >). This implies the lemma.

e Proof of HR;: Here we describe the algorithm which computes T, (i x>):

Instance : z € (N)*
if |z| # 1 then labr(z) =0
else let x1,z2 € N be such that z = (< @1, 72 >)
if z; = 0 then laby(z) =0
1if M; stops and not give 0
before the zoth calculus steps
on<z; —1,k>
0 otherwise

else laby(z) =

p1(< i,k >) is then defined to be the index of the tree which is described by this
algorithm. Because of the lack of space, we shall omit the proof that p; indeed
satisfies HR;.

e Let us suppose that HR,, is true.

We begin the proof of the induction step with some preliminaries: Let i, k € N;
we have B(n + 1,2) = {k | Elk'1Vk'2...§k'n+1 : fz(< kl,kg,...,kn+1,k >) = ].}
Let us consider the integer set B(n +1,i) = {< k, k1 >| sz...gkn+1 s fil<
ki, kg, ...;kny1, k >) = 1}. Note that B(n + 1,i) = {k | 3k, :< k,ky >€ B(n +
1,4). This is the complement of an integer set B(n, d(i,n)) which belongs to the
n-th level of the hierarchy; note that §(i,n) is computable. Therefore, it follows
from HR,, that < k,k >€ B(n + 1,4) if and only if p,(< 8(i,n), < k,k >>) €
RecIsom(t!,).

Let us now describe the algorithm computing 775, . (<ir>) :

*

Instance : © = (x1,...,x;) € (N)
if 2 = () then labr, s, () =0
Let 211,212 € N be such that z; =< 11,212 >

if 217 = 0 then labT_n+1(<l.‘k>)(:U) = laby, ((x2, ., x1)) (1)

P
else labr, . cins) (@) = 10bT, (imy chmyy 155y (@2, 20)) (i)

First, (i) guarantees that there are infinitely many sub-trees of level 1T} | (<i 5>)
which are isomorphic to t,,.

Second, (ii) guarantees by induction that each sub-tree of level 1 is isomorphic
to t,, or to t),. One verifies that if there is at least one sub-tree of level 1 which
is isomorphic to ¢!, then there are infinitely many one.

Now T}, ., (<i.k>) is isomorphic to t,41 if and only if at least one of its sub-
trees of level 1 is isomorphic to t),. This is true if and only if there exists x11 # 0
such that pn(< 6(i,n),< k,z11 — 1 >>) € Isom(t]), which is equivalent, by
using preliminaries, to k € B(n + 1,1).

Because of the lack of space, we state the next lemma without proof.

Lemma 10. The problem of determining whether a recursive tree satisfies a
Yn-formula according to weak monadic second-order logic is recursive in (™.



It follows from the previous lemma that whatever n > 1 is, there is no X,,-
formula which defines ¢, 11 up to isomorphism. Indeed, the existence of such a
formula would be a contradiction with Lemma 8. On the other hand, like in sec-
tion 2.2, t,, is equational and it is WMS-definable. We shall omit to prove that it
is WMS-definable. The construction of some systems of graph equations which
define the t,,’s can be performed by using the ideas of section 2.2. First, transver-
sal edges are no longer considered here. And even if the definition schemes of
the t,’s and the ¢/,’s are slightly different from the ones of the G,’s and the
G!’s, they mainly follow the same idea. And one can verify that the idea for
the construction of the systems which define the G,’s applies here as well to
construct some systems defining the ¢,,’s. Theorem 1 then follows.

3.3 Thomas Theorem

Here we deal with labelled complete binary trees, i.e. mapping ¢ : {l,r}* — {0,1};
their set is denoted by Tj,£({0,1}). In the context of the weak monadic second-
order logic of the binary tree (WMS2S for short), the usual concept of bounded
quantifier is different: following [24] and [13], bounded quantifiers are indeed
those of the form Ja <prep B... or Voo <ppey B... where <oy denote the prefix
ordering of {l,r}*. This defines an other concept of bounded hierarchy. However,
one verifies that levels are the same.

In [24], it is proved that the WMS2S bounded hierarchy is infinite, i.e. The-
orem 2 below; the proof involves infiniteness of arithmetical hierarchy together
with Rabin’s theorem (cf. [18]). By using the tools introduced in the preceding
section, we give an alternative proof of this result which does not use Rabin’s
theorem.

Theorem 2 (Thomas 82). The bounded WMS2S hierarchy is infinite.

Proof. Let A: {l,r}* — N* be the mapping defined as follows: for any «1, .., 41,
A(l®rpl®2p lPtpl®41) = (xq,..,27). A allows us to consider a mapping from
Ting({0,1}) to T°°, which shall be still denoted by A, defined as following:
for t € Ting({0,1}), Vay = (N)* and for any wi,..,2;, labyy(21,..,71) =
t(l®rrl®2r. 0% r). A contracts all the left edges of t. We also consider the par-
tial converse A~! defined on the set of trees of 7> whose domains are equal to
().

Let us set 7, = {t € T37({0,1}) | A(t) is isomorphic to t,}. We will see
that the tree family 7, is definable, but not at a lower level than the n-th of
the hierarchy. Let p, be the Turing reduction of §"™ to Reclsom(t,) which has
been constructed in the proof of Lemma 9; let us note that for each integer k,
Vr, o = (N)* and thus A='(T),, () is defined. Now, for each integer k, we have:

n (R)
k € ™ if and only if A7Y(T,, (x)) € Tn-

On the other hand, one can verify that the family 7,, can be WMS2S-defined by
a Xy-formula ,, for a suitable £. Then k € §" if and only if A~Y(T), ) = n.
By a result similar to Lemma 10, one verifies that this last predicate is recursive
in (¢, which implies that £ > n. Theorem 2 is proved.
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