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Abstract. A graph G is δ-hyperbolic if for any four verticesu, v, x, y of G

the two larger of the three distance sumsdG(u, v) + dG(x, y), dG(u, x) +
dG(v, y), dG(u, y) + dG(v, x) differ by at mostδ, and the smallestδ > 0 for
whichG is δ-hyperbolic is called the hyperbolicity ofG.
In this paper, we construct a distance labeling scheme for bounded hyperbolicity
graphs, that is a vertex labeling such that the distance between any two vertices
of G can be estimated from their labels, without any other sourceof information.
More precisely, our scheme assigns labels ofO(log2 n) bits for bounded
hyperbolicity graphs withn vertices such that distances can be approximated
within an additive error ofO(log n). The label length is optimal for every
additive error up tonε. We also show a lower bound ofΩ(log log n) on the
approximation factor, namely everys-multiplicative approximate distance
labeling scheme on bounded hyperbolicity graphs with polylogarithmic labels
requiress = Ω(log log n).
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1 Introduction

It is well-known that a metric space(V, d) embeds into a tree metric if and
only if the 4-point condition holds, that is, for any 4 pointsu, v, x, y of V the
two larger of the sumsd(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x)
are equals [1]. More generally, if the two larger sums differby at mostδ, then
the metric space is said to beδ-hyperbolic. Introduced by Gromov [21, 20],
δ-hyperbolic spaces arise naturally in the area of geometricgroup theory. In
a certain extend hyperbolicity measures the deviation fromtree-likeness. And
thus, it appears in a natural way as a generalization of the study of trees in metric
graph theory [4, 5, 13], classification theory [8], phylogenetic analysis [29], and
Gauber dynamics also known as Gibbs samplers [25].

A graph G = (V,E) is δ-hyperbolic if (V, dG) is a δ-hyperbolic metric
space, wheredG is the shortest-path metric ofG, associating to each pair of
vertices the length of a shortest path connecting them. Thehyperbolicityof G is
the smallestδ > 0 for which G is δ-hyperbolic. The graphs considered in this
paper are unweighted, simple, and connected.

⋆ Supported by the project “PairAPair” of the ACI Masses de Données.



0-hyperbolic graphs are precisely the block graphs [5, 12, 24], i.e., graphs
in which every2-connected subgraph is a clique, and chordal graphs, i.e.,
the graphs containing no induced cycles of length larger than three, are2-
hyperbolic [7]. It is not difficult to see from the definition that graphs of diameter
D are(2 ⌊D/2⌋)-hyperbolic.1-hyperbolic graphs have been partially character-
ized in [26], and recently a full characterization has been given in terms of a
convexity condition and forbidden isometric subgraphs [3].

This paper deals with the problem of the distance computation and dis-
tributed abilities ofδ-hyperbolic graphs. Commonly, when we make a query
concerning a set of nodes in a graph (adjacency, distance, connectivity, etc.), we
need to make a global access to the structure. In our approach, the compromise
is to store the maximum of information in a label associated with a vertex to
have directly what we need with a local access. Motivation oflocalized data-
structures in distributed computing is survey and widely discussed in [18].

We are especially interested in the distance labeling problem, introduced by
Peleg in [30]. The problem consists in labeling the verticesof a graph in order to
compute or estimate the distance between any two of its verticesx andy using
only the information stored in the labels ofx andy, without any other source
of information. The main parameters taken into account whendesigning a so-
lution is the maximum label length (in bits) assigned by the labeling. More for-
mally, an(s, r)-approximate distance labeling schemeon a given graph family
F is a pair〈L, f〉, L is called thelabeling function andf thedistance decoder,
such that, for everyG ∈ F and for allx, y ∈ V (G): L(x,G) ∈ {0, 1}∗, and
dG(x, y) 6 f(L(x,G), L(y,G)) 6 s · dG(x, y) + r. If s = 1 andr = 0,
then we shortly deal with a distance labeling scheme (or DLS). Also, an(s, 0)-
approximate DLS is calleds-multiplicative, and a(1, r)-approximate DLS is
calledr-additive.

Related works for distance labeling.The main results on the field are that gen-
eral graphs support an (exact) distance labeling scheme with labels ofO(n)
bits [19], and that trees [2, 30], bounded tree-width graphs[19], distance-
hereditary graphs [16], bounded clique-width graphs [10],some non-positively
curved plane graphs [9], all support distance labeling schemes withO(log2 n)
bit labels. Since0-hyperbolic graphs are block graphs, which are distance-
hereditary, it follows that this class supports aO(log2 n) bit label DLS.

TheO(n) bit upper bound is tight for general graphs (simply by counting
the number ofn-vertex graphs), and a lower bound ofΩ(log2 n) bit on the label
length is known for trees [19], implying that all the resultsmentioned above
(including0-hyperbolic graphs) are tight as well since all of them contains trees.
Recently, [17, 6] showed an optimal bound ofO(log n) bits for interval graphs,



permutation graphs, and their generalizations (circular-arc graphs and cicurlar
permutation graphs).

Other results concern approximated distance labeling schemes. For arbitrary
graphs, the best scheme in date is due to Thorup and Zwick [34]. They propose
a (2k − 1)-multiplicative DLS, for each integral parameterk > 1, with labels
of O(n1/k log2 n) bits. Moreover,Ω(n1/k) bit labels are required in the worst-
case for everys-multiplicative DLS withs < 2k + 1. In fact, this result relies
to a 1963 girth conjecture of Erdös [14] proved fork = 1, 2, 3 and5. However,
for all the other values ofk, the results of [27] implies that theΩ(n1/k) lower
bound is true fors < 4k/3 + 2.

In [15], it is proved that trees (and bounded tree-width graphs as well) enjoy
a (1 + 1/ log n)-multiplicative DLS with labels ofO(log n · log log n) bits, and
this is tight in terms of label length and approximation. They also design some
O(1)-additive DLS withO(log2 n) bit labels for several families of graphs in-
cluding: the graphs with bounded longest induced cycle, and, more generally,
the graphs of bounded tree-length, i.e., that admit a Robertson-Seymour tree-
decomposition in bags of bounded diameter (see [11]). Interestingly, it is easy
to show that every exact DLS for these families of graphs needs labels ofΩ(n)
bits in the worst-case (e.g., considering some chordal graphs, namely the split
graphs [15]).

Recently, the graphs with doubling dimensionα have been considered, i.e.,
the graphs for which, for everyr, each ball of radius2r can be covered by at
most2α balls of radiusr. It generalizes Euclidian metrics and bounded growth
graphs, and includes many realistic networks. After several successive improve-
ments [22, 32, 28], the best scheme in date, due to Slivkins [31], is a (1 + ε)-
multiplicative DLS withO(ε−O(α) log n · log log n) bit labels. This is optimal
for boundedα by combining the results of [28] and the lower bound of [15] for
trees. Finally, in [33], it is shown that planar graphs enjoya(1+ε)-multiplicative
DLS with labels ofO(ε−1 log3 n) bits (see also [23]).

Our results. From the above list of results, it is clear that0-hyperbolic graphs
enjoy an (exact) DLS withO(log2 n) bit labels, and that moreover every DLS
for 2-hyperbolic graphs requires some labels ofΩ(n) bits. Again, some chordal
graphs, that are all2-hyperbolic, requireΩ(n) bit labels [15].

Our first contribution is a lower bound on ans-multiplicative DLS for
bounded hyperbolicity graphs. We construct a family of bounded hyperbolic
graphs for which, for every integerk > 1, everys-multiplicative DLS with
s < 2 log k + O(1) requires some labels ofΩ(n/ log k)1/k bits. In particu-
lar, for k = Θ(log n/ log log n), it implies that anys-multiplicative DLS using
labels of any poly-logarithmic length requiress = Ω(log log n).



On the positive side, we construct forδ-hyperbolic graphs anδ log n-
additive DLS with labels ofO(log2 n) bits. The label length is optimal since
everyr-additive DLS for trees, and thus forδ-hyperbolic graphs for everyδ > 0,
requiresΩ(log2(n/r)) bit labels [19]. In the full version, we show that any poly-
log label DLS for bounded hyperbolic graphs requiresr = Ω(log n), proving
the optimality of the approximation of our scheme.

Due to the lack of space, proofs appear in the full version.

2 Pyramidal Construction

Our lower bound combines several ingredients. First we showhow to construct
from any graphG a graphP , called thepyramid of G, such that: 1)G is a
subgraph ofP ; 2) P has bounded hyperbolicity (i.e., bounded by some constant
independent ofG); and 3)dP (x, y) > 2 log dG(x, y)−O(1) for all x,y in G. In
particular the girth ofP is at least the log of the girth ofG.

LetG be a graph. LetD denote the diameter ofG. Let us consider⌈log D⌉+
1 copies ofG denoted byG0, G1, . . . , G⌈log D⌉. Let us consider a new graph
constructed as follows: we start from the disjoint union of the Gi’s. We add
some new edge as follows: First, for any vertexv of G, let us denotevi the copy
of v in Gi. For anyi = 0, . . . , ⌈log D⌉ − 1, let us add an edge betweenvi and
vi+1. Such an edge shall be said to be vertical. Second, by induction, let us add
a new edge between any two vertices ofGi, let sayvi

1 andvi
2, if their copies in

Gi−1, vi−1
1 andvi−1

2 , are at distance2. Such an edge but also any orginal edge
of someGi’s shall be said to be transversal. The graph that we obtain isdenoted
by P (G), it is called thepyramidgraph ofG, G0 is called thebaseof P (G).

Lemma 1. There exists a constantK such that for anyG, the hyperbolicity of
P (G) is at mostK.

Geodesics ofP (G). Here we consider the shape of geodesics ofP (G) in order
to prove thatdP (G)(x, y) > 2 log dG(x, y)− O(1) for all x,y in G. The succes-
sive steps of this study are presented here along the following propositions. For
any vertexv of P (G), let us call theheightof v the uniquei such thatv ∈ Gi,
it shall be denoted byh(v). For any two verticesv1 andv2 of the same heighth,
we denotedGh

(v1, v2) the distance betweenv1 andv2 in the subgraph ofP (G)
generated by the vertices ofGh. We denote byDGh

the maximum ofdGh
. If p

is a geodesic, i.e., a shortest path, thenℓ(p) denotes its length.

Proposition 1. Let v1 and v2 be two vertices ofG. Then dGh
(vh

1 , vh
2 ) =

⌈

dG(v1, v2)/2
h
⌉

. In particular DGh
6

⌈

D/2h
⌉

.



Proposition 2. Letp be a geodesic ofP (G) which only uses transversal edges.
Thenℓ(p) 6 5.

Let us consider a pathp = v0v1 . . . vt of length t. Let us consider the se-
quence of respective heights :h0h1 . . . ht. We say thatp is increasing(resp.
decreasing) if the sequence of heights is increasing (resp. decreasing).

Proposition 3. Let p = v0v1 . . . vt be a geodesic ofP (G). Let us assume that
h(v0) > h(vt). Then there exists a vertexvi of p such thatv0 . . . vi is increasing
andvi . . . vt is decreasing.

We consider a special kind of geodesic that we callstraightgeodesic. These
are those having the following shape: first, it starts by using a sequence of verti-
cal edges; second, it carries on by a sequence of transversaledges; and finally it
uses a sequence of vertical edges.

Proposition 4. For any geodesicp, there exists a straight geodesicp′ with same
extremities. Moreover,p is totally included into a5-neighbourhood ofp′ and
conversely.

Proposition 5. Let x and y be two vertices ofP (G). Let p be such a straight
geodesic betweenx andy. Let us assume thath(x) 6 h(y). Letx′ be the copy
of x in Gh(y). Leth be the minimal of the lengths of the vertical parts ofp Then
log(dGh(y)

(x′, y)) − 3 6 h 6 log(dGh(y)
(x′, y)) − 1

The following proposition compares distances ofP (G) with those of theGi’s.

Proposition 6. Let x and y be two vertices ofP (G) with h(x) 6 h(y). Let
x′ be the copy ofx in Gh(y). Thenh(y) − h(x) + 2 log(dGh(y)

(x′, y)) − 3 6

dP (G)(x, y) 6 h(y) − h(x) + 2 log(dGh(y)
(x′, y)) + 4.

In particular, for all x, y ∈ G, 2 log(dG(x, y)) − 3 6 dP (G)(x, y) 6

2 log(dG(x, y)) + 4.

Proposition 7. If p and p′ are two geodesics with same extremities, thenp is
totally included into a11-neighbourhood ofp′ and conversely.

Sketch of the Proof of Lemma 1Let us be given with3 verticesx, y and z
of P (G) (see Fig. 1). We consider3 geodesicspxy, pyz and pxz connecting
respectivelyx andy, y andz, andx andz. By the criterion of Rips (cf. [20]), it
suffices to show that there exists a constantK ′, independent ofx, y andz, such
thatpxz is included into theK ′-neighbourhood ofpxy ∪pyz. First, let us assume
that pxy, pyz andpxz are straight. We claim that in this casepxz is included
into a5-neighbourhood ofpxy ∪ pyz. Let us consider the notations indicated in
Figure 1. Let us look at vertices ofpxz case by case:
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Fig. 1.Rips’s Criterion.

– Vertices ofpxz which are located betweenx anda belong also topxy.
– Without loss of generality, let us suppose thatpxy is higher thanpyz. Vertices

betweena andb are at distance at most3 from pxy. Indeed, ifa is higher
thanb, it is true seeing that the segmentab is totally included intopxy. If b is
higher thana, one can verify the previous claim by applying Proposition 5.

– By Proposition 2, vertices betweenb andd are at distance at most5 from b,
and therefore at most8 from a.

– Vertices betweend andg are within a distance at most3 from d and therefore
at most11 from a.

– Vertices betweeng andf are at most at distance5 from the segmentec,
because of the length ofef which is at most5.

– Finally, vertices betweenf andz belong topyz.

We conclude thatpxz is totally included into the11-neighbourhood ofpxy∪pyz.
The general case wherepxy, pyz andpxz are not straight can be obtained

from the above discussion by applying Proposition 4: we get that in general,pxz

is included into the21-neighbourhood ofpxy ∪ pyz 2

3 Distance Labeling Lower Bound

We consider the conjecture of Erdös according to which for any pair of integers
k > 1 andn > 1, the maximal number of edges of a graph of girth2k + 2 with
n vertices isΩ(n1+1/k) (see [14]). It is true fork = 1, 2, 3, 5; it is also true if
we consider graphs of girth4k/3 + 3 (see [27]). In the following, for anyk and
n we shall consider a graphGn,k of girth 4k/3 + 3 with n vertices and with
maximal number of edges equal toΩ(n1+1/k).

We consider subgraphs defined by subsets of edges: given a graph G, a
subsetE of edges ofG defines a subgraphH whose vertices are the vertices of
G and whose edges are the elements ofE.



Proposition 8. Let us fixk > 1 andn > 1, and let us consider a subgraphH
of Gn,k. Let us considerP (H) the pyramid graph ofH, and a pair(x, y) made
of two vertices of the base ofP (H) which are connected by an edge inGn,k.
Then eitherdP (H)(x, y) = 1 or dP (H)(x, y) > 2 log(4k/3 + 2) − 3.

Theorem 1. For n > 1 and k > 1, there exists a familyFn,k of graphs
of bounded hyperbolicity withO(n log k) vertices for which every(s, r)-
approximated distance labeling scheme such thats + r < 2 log(4/3k + 2) − 3
requires labels ofΩ(n1/k) bits.

In particular, for k = Θ(log n/ log log n), every s-multiplicative DLS on
n-vertex bounded hyperbolic graphs with poly-log label length requires
s = Ω(log log n).

Proof. Let us consider the familyFn,k of the pyramid graphs of the connected
subgraphs ofGn,k. By maximality of the number of edges, it is not difficult to
see thatGn,k has diameterO(k). We restrict ourself to connected subgraphs of
diameterO(k) by fixing some shortest path spanning tree inGn,k. Observe that
pyramid graphs that we obtain haveO(n log k) vertices. By Lemma 1,Fn,k is
of bounded hyperbolicity. Let us be given with an(s, r)-approximated distance
labeling scheme〈L, f〉 for Fn,k.

For each H ∈ Fn,k, let us denote by SH the word
L(1,H)#L(2,H)# . . . #L(n,H) obtained by concatenation of the la-
bels of all the vertices of its base. We suppose that the vertex set ofGn,k is
{1, 2, . . . , n}. Besides, we use a special symbol# as delimiter.

Let us assume thatmaxH∈Fn,k ,x∈V (H){|L(x,H)|} < c ·n1/k for some con-

stantc > 0. It follows that the number of words forFn,k is at most2c·n1+1/k
. Be-

cause|Fn,k| = 2|E(Gn,k)−(n−1)| > 2c′·n1+1/k
for some suitable constantc′ > 0.

This implies, forc < c′ that there exists a pairH1 andH2 of distinct graphs
of Fn,k such thatL does not distinguishH1 andH2, i.e., SH1 = SH2. Let us
choose a pair of vertices(x, y) of Gn,k such that(x, y) is an edge of the base
of H1 but not of the base ofH2. If such a pair does not exist, we exchangeH1

andH2. If we cannot find such a pair, this means thatH1 = H2 which is a
contradiction.

SH1 = SH2 impliesL(x,H1) = L(x,H2) andL(y,H1) = L(y,H2); and
thusf(L(x,H1), L(y,H1)) = f(L(x,H2), L(y,H2)).

Besides, by definition of 〈L, f〉, we have dH1(x, y) 6

f(L(x,H1), L(y,H1) 6 s · dH1(x, y) + r and dH2(x, y) 6

f(L(x,H2), L(y,H2) 6 s · dH2(x, y) + r.



All together we getdH2(x, y) 6 s · dH1(x, y) + r. But dH1(x, y) = 1 by
assumption, anddH2(x, y) > 2 log(4k/3 + 2)− 3 by Proposition 8. Finally we
gets + r > 2 log(4k/3 + 2) − 3.

By contraposition, we have thus proved that for anyk and anyn, s + r <
2 log(4k/3 + 2) − 3 implies thatmaxH∈Fn,k ,x∈V (H){|L(x,H)|} > c · n1/k. 2

4 Tree Approximation and Distance Labeling

This section is devoted to the proof of Theorem 2. It is based on the classical
result about approximation of hyperbolic metric spaces by real trees (cf. e.g.
[20, Thm. 12, p. 33]. We set up a combinatorial version of thisresult based on
the same method of proof.

We use the characterization of hyperbolicity in terms of Gromov prod-
uct. Let G be a connected finite graph. Letx, y and w be vertices ofG.
One defines theGromov productof x and y regardingw to be (x|y)w =
1
2(|x − w| + |y − w| − |x − y|) where |u − v| denotesdG(u, v). Let G be
a connected undirected finite graph. Then the hyperbolicityof G is equal to
2maxx,y,z,w∈G{min{(x|z)w, (z|y)w} − (x|y)w} (see [20]).

Proposition 9. Let X be a finite0-hyperbolic metric space with integral dis-
tances; letD be the diameter ofX. Then there exists a mappingσ : X → T
whereT is a tree of at most2(|X| − 1) · D nodes such that for any pair(x, y)
of elements ofX, dT (x, y) = 2dX(x, y).

Let G be a connected undirected finite graph. Let us fix a vertexw0 of
G. In the following, |x − w0| shall be denoted by|x| for any vertexx of G,
it shall be called the length ofx (regardingw0). Following [20], let us de-
fine (x|y)′ = max{min26j6ℓ{(xj−1|xj)w0} wherex1, . . . , xℓ denotes any se-
quence of vertices. And from this, let|x − y|′ = |x| + |y| − 2(x|y)′.

Lemma 2. Let δ be the hyperbolicity ofG. Then for any pair of verticesx and
y of G, we have|x − y| − δ log n 6 |x − y|′ 6 |x − y|

Then we consider the equivalence relation defined byx ≡ y if and only if
|x− y|′ = 0. And the metric space whose elements areG/ ≡ provided with the
distanced′([x]≡, [y]≡) = |x − y|′. We have the following property:

Lemma 3. (G/ ≡, d′) is a0-hyperbolic metric space.

Theorem 2. The family ofδ-hyperbolic graphs withn vertices have aδ log n-
additive distance labeling scheme withO(log2 n) bit labels.



Proof.Let us be given withG aδ-hyperbolic graph withn vertices. We consider
the mapping chainG

π
−→ G/ ≡

σ
−→ T whereG

π
−→ G/ ≡ is defined as above

andG/ ≡
σ

−→ T as in Proposition 9 (let us recall thatG/ ≡ is 0-hyperbolic).
SinceT is a tree, there exists an exact distance labeling scheme〈LT , fT 〉

using labels of length0(log2 |T |) (cf. [19]). By Proposition 9,|T | 6 2(n − 1)2

because|G/ ≡ | 6 n. So, labels used by〈LT , fT 〉 are of lengthO(log2 n).
Besides we have|x − y| − δ log n 6

1
2dT (σ ◦ π(x), σ ◦ π(y)) 6 |x − y|.

Finally, let us defineL(x,G) = LT (σ ◦ π(x)) and f(ℓ1, ℓ2) =
1
2fT (ℓ1, ℓ2) + δ log n. Then 〈L, f〉 satisfies the conditions of the Theo-
rem. 2

References

1. Richa Agarwala, Vineet Bafna, Martin Farach, Mike Paterson, and Mikkel Thorup. On the
approximability of numerical taxonomy (fitting distances by tree metrics). In7th Symposium
on Discrete Algorithms (SODA), pages 365–372. ACM-SIAM, January 1996.

2. Stephen Alstrup, Philip Bille, and Theis Rauhe. Labelingschemes for small distances in
trees. In14th Symposium on Discrete Algorithms (SODA), pages 689–698. ACM-SIAM,
January 2003.

3. Hans-Jürgen Bandelt and Victor D. Chepoi. 1-hyperbolicgraphs.SIAM Journal on Discrete
Mathematics, 16(2):323–334, 2003.

4. Hans-Jürgen Bandelt, A. Henkmann, and F. Nicolai. Powers of distance-hereditary graphs.
Discrete Mathematics, 145:37–60, 1995.

5. Hans-Jürgen Bandelt and Henry Martyn Mulder. Distance-hereditary graphs.Journal of
Combinatorial Theory, Series B, 41:182–208, 1986.

6. Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-structure for comparability
graphs. Research Report RR-1343-05, LaBRI, University of Bordeaux 1, 351, cours de la
Libération, 33405 Talence Cedex, France, February 2005.

7. Gunnar Brinkmann, Jack H. Koolen, and Vincent Moulton. Onthe hyperbolicity of chordal
graphs.Annals of Combinatorics, 5(1):61–65, 2001.

8. Peter Buneman. The recovery of trees from measures of dissimilarity. Mathematics in
Archaeological and Historical Sciences, pages 387–395, 1971.

9. Victor D. Chepoi, Feodor F. Dragan, and Yann Vaxes. Distance and routing labeling schemes
for non-positively curved plane graphs.Journal of Algorithms, 2005. To appear.
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