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Abstract. A graph G is §-hyperbolic if for any four vertices:, v, z,y of G
the two larger of the three distance sums(u,v) + da(z,v),da(u, z) +
da(v,y),dc(u,y) + da (v, x) differ by at mostd, and the smallesi > 0 for
which G is 6-hyperbolic is called the hyperbolicity @f.

In this paper, we construct a distance labeling scheme fandbed hyperbolicity
graphs, that is a vertex labeling such that the distancedmstany two vertices
of G can be estimated from their labels, without any other soofdaformation.
More precisely, our scheme assigns labelsQifflog? n) bits for bounded
hyperbolicity graphs wittm vertices such that distances can be approximated
within an additive error ofO(logn). The label length is optimal for every
additive error up ton®. We also show a lower bound d&2(loglogn) on the
approximation factor, namely everg-multiplicative approximate distance
labeling scheme on bounded hyperbolicity graphs with jpgjgtithmic labels
requiress = 2(loglogn).
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1 Introduction

It is well-known that a metric spac@/,d) embeds into a tree metric if and
only if the 4-point condition holds, that is, for any 4 pointsv, z,y of V' the
two larger of the sumd(u,v) + d(z,y),d(u,z) + d(v,y),d(u,y) + d(v,z)
are equals [1]. More generally, if the two larger sums difigrat mosts, then
the metric space is said to ehyperbolic Introduced by Gromov [21, 20],
d-hyperbolic spaces arise naturally in the area of geomgtocip theory. In
a certain extend hyperbolicity measures the deviation fr@®e-likeness. And
thus, it appears in a natural way as a generalization of thiy gif trees in metric
graph theory [4, 5, 13], classification theory [8], phyloggo analysis [29], and
Gauber dynamics also known as Gibbs samplers [25].

A graphG = (V, E) is é-hyperbolicif (V,dg) is a d-hyperbolic metric
space, wheré; is the shortest-path metric @f, associating to each pair of
vertices the length of a shortest path connecting themhyperbolicityof G is
the smallest > 0 for which G is §-hyperbolic. The graphs considered in this
paper are unweighted, simple, and connected.
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0-hyperbolic graphs are precisely the block graphs [5, 1R,i2, graphs
in which every2-connected subgraph is a clique, and chordal graphs, i.e.,
the graphs containing no induced cycles of length largen tiaee, are2-
hyperbolic [7]. Itis not difficult to see from the definitiohdt graphs of diameter
D are(2 | D/2])-hyperbolic.1-hyperbolic graphs have been partially character-
ized in [26], and recently a full characterization has bemergin terms of a
convexity condition and forbidden isometric subgraphs [3]

This paper deals with the problem of the distance computadiod dis-
tributed abilities ofé-hyperbolic graphs. Commonly, when we make a query
concerning a set of nodes in a graph (adjacency, distanoagctiity, etc.), we
need to make a global access to the structure. In our apprtsecbhompromise
is to store the maximum of information in a label associatdith & vertex to
have directly what we need with a local access. Motivatiofooélized data-
structures in distributed computing is survey and widescdssed in [18].

We are especially interested in the distance labeling propintroduced by
Peleg in [30]. The problem consists in labeling the vertwies graph in order to
compute or estimate the distance between any two of itscesttiandy using
only the information stored in the labels ofandy, without any other source
of information. The main parameters taken into account wd®signing a so-
lution is the maximum label length (in bits) assigned by #igeling. More for-
mally, an(s, r)-approximate distance labeling schemea given graph family
Sisapair(L, f), L is called thdabeling function andf the distance decoder
such that, for every? € § and for allz,y € V(G): L(z,G) € {0,1}", and
da(z,y) < f(L(x,G),L(y,G)) < s-dg(x,y)+r.Ifs=1andr =0,
then we shortly deal with a distance labeling scheme (or DA&)p, an(s, 0)-
approximate DLS is called-multiplicative, and &1, r)-approximate DLS is
calledr-additive.

Related works for distance labeling.he main results on the field are that gen-
eral graphs support an (exact) distance labeling schentelabels ofO(n)

bits [19], and that trees [2,30], bounded tree-width grafit#], distance-
hereditary graphs [16], bounded clique-width graphs [$6ine non-positively
curved plane graphs [9], all support distance labeling mesewithO (log? n)

bit labels. Since0-hyperbolic graphs are block graphs, which are distance-
hereditary, it follows that this class support&éog® n) bit label DLS.

The O(n) bit upper bound is tight for general graphs (simply by caumti
the number of.-vertex graphs), and a lower bound@flog® n) bit on the label
length is known for trees [19], implying that all the resutteentioned above
(including 0-hyperbolic graphs) are tight as well since all of them cimsté&rees.
Recently, [17, 6] showed an optimal bound®flog n) bits for interval graphs,



permutation graphs, and their generalizations (circatargraphs and cicurlar
permutation graphs).

Other results concern approximated distance labelingsebeFor arbitrary
graphs, the best scheme in date is due to Thorup and Zwick T84}y propose
a (2k — 1)-multiplicative DLS, for each integral parameter> 1, with labels
of O(n'/*¥1og? n) bits. Moreover,2(n'/*) bit labels are required in the worst-
case for every-multiplicative DLS withs < 2k + 1. In fact, this result relies
to a 1963 girth conjecture of Erdos [14] proved foe 1,2, 3 and5. However,
for all the other values of, the results of [27] implies that th@(n'/*) lower
bound is true fos < 4k/3 + 2.

In [15], it is proved that trees (and bounded tree-width bsaps well) enjoy
a (14 1/logn)-multiplicative DLS with labels o (log n - log log n) bits, and
this is tight in terms of label length and approximation. Yiaéso design some
O(1)-additive DLS withO(log® n) bit labels for several families of graphs in-
cluding: the graphs with bounded longest induced cycle, amate generally,
the graphs of bounded tree-length, i.e., that admit a Retyxei$eymour tree-
decomposition in bags of bounded diameter (see [11]). dstagly, it is easy
to show that every exact DLS for these families of graphs sidsduels of(2(n)
bits in the worst-case (e.g., considering some chordalhgrapamely the split
graphs [15]).

Recently, the graphs with doubling dimensiermave been considered, i.e.,
the graphs for which, for every, each ball of radiu@r can be covered by at
most2* balls of radiusr. It generalizes Euclidian metrics and bounded growth
graphs, and includes many realistic networks. After ségerecessive improve-
ments [22, 32, 28], the best scheme in date, due to Slivkibk [8a(l + ¢)-
multiplicative DLS withO(s=9(®) log n - loglog n) bit labels. This is optimal
for boundedx by combining the results of [28] and the lower bound of [15] fo
trees. Finally, in [33], it is shown that planar graphs ergdy+-<)-multiplicative
DLS with labels ofO (s~ log® n) bits (see also [23]).

Our results. From the above list of results, it is clear tltahyperbolic graphs
enjoy an (exact) DLS witlD (log? ») bit labels, and that moreover every DLS
for 2-hyperbolic graphs requires some labelggf:) bits. Again, some chordal
graphs, that are all-hyperbolic, require’2(n) bit labels [15].

Our first contribution is a lower bound on aamultiplicative DLS for
bounded hyperbolicity graphs. We construct a family of lmch hyperbolic
graphs for which, for every integér > 1, every s-multiplicative DLS with
s < 2logk + O(1) requires some labels a®(n/logk)Y/* bits. In particu-
lar, for k = ©(log n/loglogn), it implies that anys-multiplicative DLS using
labels of any poly-logarithmic length requires= (2(loglogn).



On the positive side, we construct forhyperbolic graphs am log n-
additive DLS with labels o (log? n) bits. The label length is optimal since
everyr-additive DLS for trees, and thus féthyperbolic graphs for every > 0,
requiresf2(log?(n/r)) bit labels [19]. In the full version, we show that any poly-
log label DLS for bounded hyperbolic graphs requires: 2(logn), proving
the optimality of the approximation of our scheme.

Due to the lack of space, proofs appear in the full version.

2 Pyramidal Construction

Our lower bound combines several ingredients. First we dmwto construct
from any graphG a graphP, called thepyramid of G, such that: 1)G is a
subgraph ofP; 2) P has bounded hyperbolicity (i.e., bounded by some constant
independent of7); and 3)dp(x,y) > 2logdg(z,y) — O(1) forall z,y in G. In
particular the girth ofP is at least the log of the girth @f.

Let G be a graph. LeD denote the diameter 6. Let us consideflog D]+
1 copies ofG denoted byGo, G, ..., Gpe p)- L€t Us consider a new graph
constructed as follows: we start from the disjoint union leé &;'s. We add
some new edge as follows: First, for any vertesf G, let us denote’ the copy
of vin G;. Foranyi = 0,..., [log D] — 1, let us add an edge betweehand
v+l Such an edge shall be said to be vertical. Second, by imohydét us add
a new edge between any two verticeshf let sayvi andwi, if their copies in
Gi_1, v\t andvi !, are at distance. Such an edge but also any orginal edge
of someG;’s shall be said to be transversal. The graph that we obtaleristed
by P(G), it is called thepyramidgraph ofG, Gy is called thebaseof P(G).

Lemma 1. There exists a consta such that for any, the hyperbolicity of
P(G) is at mostK'.

Geodesics oP(G). Here we consider the shape of geodesic®@F) in order
to prove thatlp() (v, y) > 2logda(z,y) — O(1) for all z,y in G. The succes-
sive steps of this study are presented here along the foltpptiopositions. For
any vertexv of P(G), let us call theheightof v the uniquei such that € G,
it shall be denoted bk (v). For any two vertices; andv, of the same height,
we denoteig, (v1, v2) the distance betwean anduw; in the subgraph oP (G)
generated by the vertices 6f,. We denote byD, the maximum ofdg, . If p
is a geodesic, i.e., a shortest path, th@rn denotes its length.

Proposition 1. Let v; and v, be two vertices ofG. Thendg, (v, vh) =
[de:(v1,v2)/2"]. In particular D¢;, < [D/2"].



Proposition 2. Letp be a geodesic aP(G) which only uses transversal edges.
Then/(p) < 5.

Let us consider a path = vgv; ... v; of lengtht. Let us consider the se-
guence of respective heightsiyh; ... h;. We say thatp is increasing(resp.
decreasiny if the sequence of heights is increasing (resp. decreasing

Proposition 3. Letp = wvgv; ... v, be a geodesic oP(G). Let us assume that
h(vo) = h(v¢). Then there exists a vertexof p such thaty .. . v; is increasing
andw; ..., is decreasing.

We consider a special kind of geodesic that we sia#lightgeodesic. These
are those having the following shape: first, it starts by gisisequence of verti-
cal edges; second, it carries on by a sequence of transeeiges; and finally it
uses a sequence of vertical edges.

Proposition 4. For any geodesip, there exists a straight geodegicwith same
extremities. Moreovey is totally included into a-neighbourhood of’ and
conversely.

Proposition 5. Let x andy be two vertices of’(G). Letp be such a straight
geodesic betweenandy. Let us assume that(x) < h(y). Letz’ be the copy
of z in Gy, (. Leth be the minimal of the lengths of the vertical partgafhen

log(dGh(y)(x/vy)) —3<h< log(dGh(y)(x/ay)) -1
The following proposition compares distances/4iz) with those of the7;’s.

Proposition 6. Let z and y be two vertices of?(G) with h(x) < h(y). Let
z’ be the copy of in Gy,(). Thenh(y) — h(z) + 2log(dg,,, (z',y)) — 3 <
dpa(z,y) < h(y) — h(z) + 2log(da,,, (', y)) + 4.

In particular, for allz,y € G, 2log(da(z,y)) — 3 < dp)(r,y) <
2log(dc(z, y)) + 4.

Proposition 7. If p and p’ are two geodesics with same extremities, thas
totally included into al 1-neighbourhood of’ and conversely.

Sketch of the Proof of Lemma [Let us be given with3 verticesz, y and z

of P(G) (see Fig. 1). We conside} geodesics,,, p,. andp,, connecting
respectivelyz andy, y andz, andx andz. By the criterion of Rips (cf. [20]), it
suffices to show that there exists a constinhtindependent of, y andz, such
thatp,. is included into thek’-neighbourhood of.,., U p, .. First, let us assume
that p,,, p,. andp,. are straight. We claim that in this cape, is included
into a5-neighbourhood of,, U p,.. Let us consider the notations indicated in
Figure 1. Let us look at vertices pf.. case by case:



<

Fig. 1. Rips’s Criterion.

— Vertices ofp,. which are located betweenanda belong also tg,,,.

— Without loss of generality, let us suppose thgtis higher tharp, .. Vertices
betweena andb are at distance at mo8tfrom p,,,. Indeed, ifa is higher
thanb, itis true seeing that the segmeuttis totally included intq,,. If bis
higher tharu, one can verify the previous claim by applying Proposition 5

— By Proposition 2, vertices betweérandd are at distance at mostfrom b,
and therefore at mostfrom a.

— Vertices betweer andg are within a distance at mo3from d and therefore
at mostl1 from a.

— Vertices betweery and f are at most at distance from the segmentc,
because of the length eff which is at mosb.

— Finally, vertices betweeyfi andz belong top,..

We conclude thap, . is totally included into thé 1-neighbourhood of,, Up,..
The general case whefg,, p,. andp,. are not straight can be obtained

from the above discussion by applying Proposition 4: welggtin generalp,..

is included into the1-neighbourhood o, U p,. O

3 Distance Labeling Lower Bound

We consider the conjecture of Erdods according to which myr@air of integers
k > 1andn > 1, the maximal number of edges of a graph of gitth+ 2 with
n vertices is2(n'*+1/%) (see [14]). Itis true fok = 1,2,3,5; it is also true if
we consider graphs of girth%: /3 + 3 (see [27]). In the following, for any and
n we shall consider a grapfi,, ;, of girth 4k/3 + 3 with n vertices and with
maximal number of edges equal &{n't1/%).

We consider subgraphs defined by subsets of edges: giverph @raa
subsetF of edges of7 defines a subgrapH whose vertices are the vertices of
G and whose edges are the element&’of



Proposition 8. Let us fixk > 1 andn > 1, and let us consider a subgrapti
of G, 1. Let us conside’(H ) the pyramid graph of, and a pair(z, y) made
of two vertices of the base &f(H) which are connected by an edged@, .
Then eithed p (g (7, y) = 1 or dp(gy (v, y) > 2log(4k/3 +2) — 3.

Theorem1l.Forn > 1 and k > 1, there exists a family§,, , of graphs
of bounded hyperbolicity wittO(nlogk) vertices for which every(s,r)-
approximated distance labeling scheme such thatr < 2log(4/3k +2) — 3
requires labels of2(n!/*) bits.

In particular, fork = O(logn/loglogn), every s-multiplicative DLS on
n-vertex bounded hyperbolic graphs with poly-log label kengequires
s = 2(loglogn).

Proof. Let us consider the famil§, ;, of the pyramid graphs of the connected
subgraphs otx,, ;.. By maximality of the number of edges, it is not difficult to
see that7,, ;, has diamete© (k). We restrict ourself to connected subgraphs of
diameterO(k) by fixing some shortest path spanning tre&in,. Observe that
pyramid graphs that we obtain hagn log k) vertices. By Lemma 15, ;. is

of bounded hyperbolicity. Let us be given with &nr)-approximated distance
labeling schemgL, f) for §,, k.

For each H € Snk let us denote by Sy the word
L(1,H)#L(2,H)#...#L(n,H) obtained by concatenation of the la-
bels of all the vertices of its base. We suppose that the wege of G,, ;; is
{1,2,...,n}. Besides, we use a special symHohs delimiter.

Let us assume thataxyeg, , cev(m)i|L(z, H)|} < c¢-n'/* for some con-
stantc > 0. It follows that the number of words @, ;. is at mosee™ /" Be-
causeF,, x| = 21Z(Gnr) (=Dl > 9¢n'*/* for some suitable constant > 0.
This implies, forc < ¢ that there exists a paiff; and H, of distinct graphs
of ¥, 1 such thatL does not distinguisti/; and H», i.e., Si, = Sp,. Let us
choose a pair of verticels, y) of G, ;, such that(z, y) is an edge of the base
of Hy but not of the base offs. If such a pair does not exist, we exchange
and H,. If we cannot find such a pair, this means tii&ét = H, which is a
contradiction.

Sw, = Su, implies L(z, H,) = L(x, Hy) andL(y, H,) = L(y, H2); and
thUSf(L(.T, H1)7 L(yu Hl)) = f(L($7 H2)7 L(yu HQ))

Besides, by definiton of (L,f), we have dy,(z,y) <
f(L(val)vL(%Hl) < s - dHl(:C?y) + r and dHQ(x7y) <
f(L(x, Hs), L(y, Hy) < s - dp,(x,y) + 7.



All together we getly, (z,y) < s-dm, (z,y) + r. Butdmy, (z,y) = 1 by
assumption, andy, (x,y) > 2log(4k/3 + 2) — 3 by Proposition 8. Finally we
gets +r > 2log(4k/3 + 2) — 3.

By contraposition, we have thus proved that for &gnd anyn, s + r <
2log(4k/3 + 2) — 3 implies thatmax g, | zevmn{|L(z, H)[} = c- nl/k. O

4  Tree Approximation and Distance Labeling

This section is devoted to the proof of Theorem 2. It is basethe classical
result about approximation of hyperbolic metric spacesdai trees (cf. e.g.
[20, Thm. 12, p. 33]. We set up a combinatorial version of thsult based on
the same method of proof.

We use the characterization of hyperbolicity in terms of iGow prod-
uct. Let G be a connected finite graph. Let y and w be vertices ofG.
One defines th&romov productof = and y regardingw to be (z|y), =
$(jz — w| + |y — w| — |z — y|) where|u — v| denotesdg; (u,v). Let G be
a connected undirected finite graph. Then the hyperbolwity= is equal to
2maxy y . wee{min{(z|z)w, (2|y)w} — (z]y)w } (s€e [20]).

Proposition 9. Let X be a finiteO-hyperbolic metric space with integral dis-
tances; letD be the diameter oX. Then there exists a mapping: X — T
whereT is a tree of at mos2(| X| — 1) - D nodes such that for any pair, y)
of elements oKX, dr(z,y) = 2dx (z,y).

Let G be a connected undirected finite graph. Let us fix a vetigof
G. In the following, |z — wo| shall be denoted byz| for any vertexz of G,
it shall be called the length of (regardingwg). Following [20], let us de-
fine (z|y)’ = max{minsc;</{(zj—1|7;)w, } Wherez,...,z, denotes any se-
quence of vertices. And from this, let — y|" = |z| + |y| — 2(z|y)’.

Lemma 2. Let be the hyperbolicity ofs. Then for any pair of vertices and
y of G, we havgz — y| — dlogn < |z — y| < |z —y|

Then we consider the equivalence relation definedcby y if and only if
|z —y|" = 0. And the metric space whose elements@ye= provided with the
distanced'([z]=, [y]=) = |z — y|". We have the following property:

Lemma 3. (G/ =, d’) is a0-hyperbolic metric space.

Theorem 2. The family of§-hyperbolic graphs wit: vertices have a log n-
additive distance labeling scheme wiitflog? n) bit labels.



Proof. Let us be given withz a §-hyperbolic graph with: vertices. We consider
the mapping chaid¢? —— G/ =-2 T whereG —— G/ = is defined as above
andG/ =-% T as in Proposition 9 (let us recall th@y/ = is 0-hyperbolic).
SinceT is a tree, there exists an exact distance labeling schémefr)
using labels of length(log? |T'|) (cf. [19]). By Proposition 9|T| < 2(n — 1)?
becausdG/ = | < n. So, labels used byL, fr) are of lengthO(log®n).
Besides we havier — y| — dlogn < 2dr(oom(z),0 0 m(y)) < |z — yl.

Finally, let us defineL(z,G) = Lp(oc o w(x)) and f(l1,02) =
2fr(l1,6) + dlogn. Then (L, f) satisfies the conditions of the Theo-
rem. 0
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