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1. Introduction

This paper investigates the problem of rigidity for non compact hyperbolic 3-manifolds with non
finitely generated fundamental group. The study is restricted to ¢reelike manifolds (cf Definition 1
below) which are shown to be characterized by their fundamental group up to isometry in the sense
that two such manifolds are isometric if and only if they have isomorphic fundamental groups.

Sullivan showed in [Sul81] that, if the action of a discrete group of hyperbolic motions I' on the
sphere at infinity is conservative then the quotient manifold H" /T" is Mostov-rigid i.e. any pseudo-
isometry between H" /T" and an other hyperbolic manifold is homotopic to an isometry. McMullen
gave in [McM96] a sufficient condition for the conservativity of this action (see also [MT98]) : the
action of [' on the sphere at infinity is conservative if the injectivity radius of the quotient manifold
is uniformly bounded. Our aim is to investigate constructions of pseudo-isometries for a class of
non compact manifolds satisfying this criterion.

A non compact hyperbolic manifold is said to be treelike if it can be cutted into pieces along
pairwise disjoint separating incompressible surfaces such that the following conditions are satis-
fied. The pieces have to be compact, prime and acylindrical; their number must be finite up to
homeomorphism and finally, their sizes have to be uniformly bounded. This last condition will
get a precise statement in Definition 1. These assumptions together with Theorem of Thurston
about compacity of the Teichmiiller spaces of acylindrical compact 3-manifolds [Thu86] allows us
to control deformations of treelike manifolds. Constructions of pseudo-isometry make an extensive
use of this control.

Section 3 is devoted to the construction of examples of treelike manifolds. It describes how to
get such manifolds by gluing infinitely many hyperbolic compact 3-manifolds with totally geodesic
boundaries.

The main theorem appears in section 4. It states that two treelike hyperbolic manifolds are
homotopically equivalent if and only if they are isomorphic. The proof needs several steps. The
first one consists in Lemma 6 : given an isomorphism between the fundamental groups of a couple
of treelike hyperbolic manifolds, one can construct a homotopy equivalence inducing it which is
k-lipschitz for some constant k£ > 0. This lemma together with a technical result obtained in second
step allows to use a standard construction of pseudo-isometry in the third step. Conclusion comes
in the fourth step with the use of Theorem of Sullivan and the criterion of McMullen.
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3. Treelike Decomposition

Definition 1 (treelike decomposition)
Let M be a complete hyperbolic 3-manifold without boundary. M is said to be treelike if



e There exists a geodesic triangulation of M such that lengths of edges vary in a compact
interval not containing zero.

e This triangulation also satisfies the following condition :
There exists a system of pairwise disjoint separating incompressible surfaces {S,}, which
cuts M into simple pieces in the sense that :
There exists a finite number of bordered compact triangulated 3-manifolds My, ..., M, such
that for all component C' of M\ |J, Su, there exists a simplicial homeomorphism ¢, : C—
M, ¢y where «(C) € [1,n].

e For all component C of M\ |J, Sy, C is acylindrical.

4. Example

This section is devoted to the construction of examples of treelike hyperbolic 3-manifolds.
Lemma 1 is due to D. Epstein and I. Rivin [ER].

LemMMA 1. — Let N be a prime acylindrical compact 3-manifold whose boundary components
are incompressible surfaces of genus greater than two, then N can be endowed with a complete
hyperbolic structure with totally geodesic boundary.

Proof. — Let N be the closed 3-manifold obtained by gluing two copies of N along their
boundary, with respect to the identity.

N is a Haken manifold. Thus, by the uniformization theorem of Thurston, N can be endowed
with a complete hyperbolic structure. Let p : H® — N define this structure.

Let us consider 7 : N — N the homeomorphism exchanging the two copies of N. Let B be a
component of the boundary of the copies of N in N. Let P be a plane embedded in H® which is a
lift of B. Let ¥ : H® — H® be the lifting of 7 which fix P pointwise. Let us note that 72 = Idys.
By theorem 11.6.1 of [Rac94], 7 is a pseudo-isometry.

By Mostov’s Theorem the extension of 7 to the sphere at infinity denoted by 7°° : S2 — S2 is
a Moébus transformation. Since 7 is of order two, 7°° is a symmetry. So, the limit of P is a circle
at infinity. It defines a hyperbolic plane P’. It remains to deform P in P’ I'-equivariantly in order
to induce a deformation of B into a totally geodesic surface.

We claim that p(P') is a compact surface. To see that, we first show that the action of H on P’
is cocompact, where H is the stabilisator of P. To prove this last assertion, we show that there
exists K such that for all x € P, dgs (z, P') < K and for all 2' ¢ P, ds (2', P) < K.

Let us note that H also stabilizes P'. Let o € P. Let us pick zj, € P’ be such that dgs (zo,zj) is
minimal. Since B is compact and B = P/H, there exists R > 0 such that for all « € P, there exists
h e H such that dys (2o, h(z)) < R. Then,

dys (z, ™" (x5)) = dus (h(), xp)
< ds (M), o) + dps (w0, 7()
< R+ dys (zo, xp)

Let K = R + dys (0, (). The first assertion is proved.
Let 2’ € P'. Let v be the geodesic of H® intercepting P’ perpendicularly in z'. yn P # 0, let
xeyn P. Easily :

st(iL”,,P) < d]HI3($’7:U) = d(P,iL”) <K

Let us now prove that the action of H on P’ is cocompact. To do that, we prove that there exists
K > 0 such that Yz}, 2} e P' there exists h e H such that dys (h(z]),2}) < K. Let 21,25 € P'. Let



z1,x2 € P be such that dgs (z;,
we have :

%) is minimal. Let h € H be such that dgs (h(z1),22) < R. Then

k3

dgp (W(z7),25) < dwp (h(27), h(21)) + dis (h(21), 22) + dpe (22, 75)
<dg(z,21) + R+ K
<2K+R

It remains to prove that each point of p(P') has a neighborhood homeomorphic to a disk, with
respect to the topology induced by .
Let 2’ e p(P') and &' e p~1(z') n P'. Let D be an open disk of P’ containing Z'. Let us suppose
that for all elementary neighborhood V of 2/, there exists z,, e p(P') n'V which is not in p(D). Let
us consider V, the component of p~!(V) containing . Let 2, ep~'(z,)n V. For V small enough,
VP =VnD and thus z, ¢ P'. Therefore, there exists v, € I'\H such that Z, e, (P'). Let us
consider the family P of all the hyperbolic planes obtained as image of P' by some 7, .

o If the family P is finite, then there exists eI’ such that v = v, for V varying in a topological
basis of elementary neighborhood of z’. In this case v(P') intercepts P’. Then, v(P) also
intercepts P transversally, which is impossible since B is a surface.

e Let us assume that P is infinite. The above argument shows that two I'-translated of P’ are
either equal or disjoint. Therefore, there is an infinity of pairwise disjoint plane of the form
vy (P'). Since the action of H on P is cocompact, for V' small enough, there exists v, eI
such that v (2') € v, (P') and dgs (71, ('), 2,) < R. If we choose V' small enough to be in
a ball of radius € > 0 around z', then v, (Z') stays in a bounded neighborhood of #'. By
compacity, there exists a sequence (V}) of elementary neighborhoods such that (7"/k @)k
converges. But the action of I' is properly discontinuous, this is a contradiction.

The claim is proved.

Therefore, even if it means deforming slightly B, there exists a geodesic triangulation of N such
that B and p(P') are simplicial. This triangulation is lifted in H*> by a '-equivariant triangulation
for which P and P’ are simplicial. This triangulation allows us to define, tetrahedron after tetra-
hedron, an isotopy of N deforming B in p(P').

O

Now, given a prime acylindrical compact 3-manifold N with m > 1 incompressible boundary
components of genus greater than 2, we can construct a treelike non compact hyperbolic manifold.
By the above lemma, N can be endowed with a hyperbolic complete metric with totally geodesic
boundary. For each boundary component B of IV, let us consider a copy of N, denoted by N, .
Let us glue N, on N along B regarding to the identity of B. We get a manifold with m(m — 1)
boundary components. Then we do again the operation on it, and so on. The reader can check
that this process leads to the construction of a treelike non compact hyperbolic manifold.

Let us note that the fundamental group of the manifold obtained in this way may be not finitely
generated.

5. Main Theorem

THEOREM 1. — Let M, M' be two treelike complete hyperbolic 8-manifolds. Then every isomor-
phism between w (M) and 7 (M') is induced by an isometry.
The proof of Theorem 1 involves several steps. But before beginning, we have to fix some notations.

Let M be a treelike complete hyperbolic 3-manifold. Let {S,},, M; and ¢, be like in Definition
1. Let {Bj;}1 < j <v; be the components of the boundary of M.
Let S, c C, then ¢, |s, defines an isomorphism between the triangulations of S,, and of a boundary
component of one of the M;. But there is only a finite number of B;;. So there is a finite number
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of Sy, up to isomorphism of triangulations. Let {T}}1 < k < m be a family of representatives of the
S, given with a family of simplicial homeomorphisms {9, : Su = Ty | u}.

Let i, j, u and C be such that ¢ (S,) = Bjj. Then ¢y, 0 ¢, " |p,; : Bij = Tyyu) is a simplicial
homeomorphism. Let us note that the number of simplicial homeomorphism between two trian-
gulated surfaces is finite up to homotopy. Therefore, even if it means adding new representative
of component of M\ |J, Su, namely new M;, we can consider that 1), o 80071|B,-j neither depends
on u nor on C} let it be denoted by g;;.

For each k e [1,m], let us choose a vertex xj of the triangulation of T}. For each pair 4, j, let
k € [1,m] be such that B;; is mapped onto Ty, by g;j, we then define z;; = g;; 7 (z).
Let t; be a simplicial tree in M; of root @ connecting x; to the other x;;. Actually, we construct
t; in such a way that it is a star centered at z;0 and that, apart for the z;;, it is included in the
interior of M;. Let us consider a spanning tree of the 1-skeleton of T},. It induces via gigl a spanning
tree of the 1-skeleton of each B;;. Let s; be a spanning tree of the 1-skeleton of M; which contains
these trees and ¢;. By using ' for each component C' of M\|J, Sy, the family {s;}; defines a
spanning tree of the 1-skeleton of M, let us denote it by s. For each C, let z, = w;l(act(c)o). Let
us choose one component Co of M\ |J, Su, let us call it the root component of M. A priori, there
is not any canonical choice for Cy. The union of the family {wgl(ti)}c, denoted by ¢, is called
a spine of M and for any component C, x, is called a node of t. Let us note that the spine of
M is far from being canonical, however two spine of M have homeomorphic spaces of ends which
actually are homeomorphic to the space of ends of M.

Even if it means adding new representatives of component, we can assume that if C' # C' then
T, # T,

Since ¢ is a tree containing z, , 71 (M,t) is canonically isomorphic to 71 (M, z¢,). On the other
hand, for each component C, there is a canonical homomorphism induced by <p;1 of m1 (M, ¢y, Tu(c)0)
into 71 (M, t). Let I'; denotes 71 (M;, x40). Let us then consider the resulting homomorphism

jC : FL(C) — 7T1(M, Z‘CO)

Since S, is incompressible, we have the following fact :

LEMMA 2. — j. is an injection.
Step 1

Let I', I” be two discrete subgroups of hyperbolic elements of Isom H? such that M = H? /T" and
M' = HP /T are treelike complete hyperbolic manifolds. Let ® : [' — I'" be an isomorphism.

This part is devoted to the proof of Lemma 6 i.e. the construction of a homotopy equivalence
from M to M' which is k-lipschitz for some constant k.

Let us keep the above notations regarding the treelike decomposition of M. Let A; denote the
generating subset of I'; defined using s; and the edges of the 1-skeleton of M; not belonging to s;.
Let us consider the function m; which associates to each faithful representation p of I'; the point
m;(p) e H* which minimizes the following function :

Q@) = E, dis (@, p(0)(@))

LeMMA 3. — my; is well defined and continuous regarding to the algebraic topology of the space
of faithful representations of T';.



Proof. — For the existence of a minimum, we use the fact that d,(z) goes to infinity as  goes
to infinity. Indeed, if d, stays bounded around a point of OHP, this point is then a fixed point
for all the elements of p(I';). Thus, p(I';) is a group of euclidian similarities. On the other hand,
let us remark that we can assume that OM; # ); for otherwise M would be just M; (we assume
that M is connected) and then M would be a closed hyperbolic manifold and Theorem 1 follows
from Mostow’s Theorem [Mos68]. Now, boundary components of M; are incompressible surfaces
of genus greater than two. And their fundamental groups are represented as groups of euclidian
similarities, which is impossible. Unicity follows from the fact that d, is strictly convex. m;(p) is
well defined.

Let us fix a faithful representation pg of I';. First, there exists a small neighborhood V' of pg such
that m;(V) is included in a compact set of H?. To see that, let us note that, in the completion
of the ball model H? u %, the axe of p(a) for a fixed a e A (c;) moves continuously with respect
to p, regarding the Hausdorff topology, and so do the translation length along it. Thus, picking
V small enough, the fix points of some pair of p(a) remain far from each other in S2. And the
translation length along the axes remains large enough. Therefore, for D > 0 and p e V, a point
« far enough from m;(pg) is at a distance greater than D from the axe of at least one of the
p(a), which makes us sure that dgs (z, p(a)(z)) is large enough. Thus, m;(V') stays in a bounded
neighborhood of m;(pg), let W denote the closure of such a neighborhood. Let us observe that the
variation, regarding p, of the sum of the translation distance functions of the p(a) for a € 4,
restricted to the compact W is continuous for uniform topology. Thus, the variation of the point
realizing the minimum of it i.e. m;(p) is also continuous, which completes the proof.

O

Let us pick an element Z, H? in the fiber of z,. Together with the covering map H? — M,
this defines a holonomy map H : m(M,z, ) — L. Let C' be a component of M\J, Sy, let
po = ®oH o j,, this is a faithful representation of I,y in Isom H’. Let & = m,(p.)-

LEMMA 4. — There exists k1 > 0 such that VC1, Cy such that C1 N Cs £0 :

digs (&, &) < b

Proof. — Let us consider two components C; and Cs such that C; N Cy # 0. Let K =
m1(C1 U O, ). As above, there is a natural injection jx : K — n(M,z, ). Forie{1,2}, <p;1
induces an injection j/ of I',¢,) into K. We have j,. = jk oj/, .

The function defined by

p— ds (my(cy)(p o dg, ) mu(es) (pode,))

from the space of faithful representations of K to R, is continuous by Lemma 3. Obviously, it is
invariant by conjugaison and then, it define a continuous function

d: AH(K) —» R,

Where AH(K) denotes the Teichmiiller space of K endowed with the algebraic topology. Let us
note that C; U Cy is acylindrical. Therefore, by Thurston’s Theorem [Thu86] AH(K) is compact
and thus, d is bounded.

Finally, the number of such triple (K, T,(¢,),,(c,)) arising like above is finite up to isomorphism
and for each pair of intercepting components C; and C5, ® o H gives rise in a canonical way to a
faithful representation of K = m (C; U Cs, ., ). The conclusion follows.
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LEMMA 5. — There exists ky > 0 such that VO, Va e A, () :
dss (&, p () (&) < hy
Proof. — From Lemma 3, it follows that the function

p — dgs (m,(c) (p), pla) (myey(p)))

is continuous on the space of faithful representation of I',(.) and invariant by conjugaison. We use
again Thurston’s Theorem.
O

We now construct an homotopy equivalence f between M and M' which is k-lipschitz for some
constant k. First, we define f on the 1-skeleton M) of M.

e Image of the nodes of the spine of M :
Let p' : H? — M’ a covering map associated to the hyperbolic structure of M'. For all
component C, let f(z.) = p'(Z,).

e Image of the spine of M :
Let e be an simple path of ¢ connecting z, and z,, where C; and C, are components such
that C1 n Cy # (). The length of e has a lower bound, which is independant of e. By Lemma
4 the distance between Z, and I, is bounded in H?. We then choose p'([&, 2, ]) for the
image of e, where [Z/, ,5:’02] denotes the geodesic segment between :E’Cl and :E’Cz. Clearly, f|.
can be defined to be lipschitz for a constant not depending on e.

e Image of s :
Let z be a point of s. As s is a tree containing ¢ which is also a tree, z is connected to ¢
within s by a unique path. We define f(z) to be the image (defined in the previous item) of
the other extremity of this path. Actually, we do not do more than retracting s to t. Again,
the restriction of f on each edge of s can be construct to be lipschitz.

e Let us now consider an edge e of M) not belonging to s. Let 1 and z» be its extremities.
Let C be a component such that e c C. Let o ¢ A,(¢) be the element of ', o) associated to
¢ (e). Let & denote the geodesic segment [Z, , p.(a)(Z.,)]. The image of e by f is defined to
be the concatenation [f(z1), f(z,)]p'(€')[f(z,), f(z2)]. The fact that f can be constructed
to be lipschitz follows from Lemma 5.

It is easy to check that the commutative diagram of Figure 1 commutes, making us sure that f is
going to be an homotopy equivalence inducing ®.

The construction of f on M), keeping the lipschitz property, is now easy. Each 2-simplex s comes
from an M; for some i, and its boundary -, is mapped by f to a piecewise geodesic loop 75 of
uniformly bounded length. As this loop is null homotopic, it is lifted in H® by a piecewise geodesic
loop 7. of the same length. This last loop bounds a disk D of bounded “size” in H*. We define
f(s) to be the image p'(D) of this disk in M’. The “size” of s is bounded bellow in the sense that
the lengths of all its edges are bounded below. So, f|s can be constructed to be lipschitz. In order
to do that in a precise manner, one can define D to be a union of some totally geodesic triangle of
bounded length and do a similar decomposition of s. Details are left to the reader.

The construction of f on M®) follows the same ideas.

Let us verify that f is k-lipschitz for some constant k. Let x,y ¢ M. let v be a geodesic segment,
between z and y. Let x¢9 = z,x1,...,2; = y be a decomposition of v in small geodesic segments



H H'

T (M, z¢,) m (M, f(zc,))

(ar)- £

T (M(1)7 93()0)

Figure 1:

[zi, ziy1] such that each [z;,x;41] lies in a simplex of the triangulation of M. We have :

-1

d(z,y) =Y d(zi,zit1)

i=0

By construction, the restriction of f on each simplex is k-lipschitz. Thus

d(f(wi), f(zit1))

And then

Eventually, we have the following result :

LemMMA 6. —
Let M and M' be complete hyperbolic 3-manifolds without boundary. Let us assume that M is
treelike. Then every isomorphism between w1 (M) and w1 (M') is induced by a k-lipschitz homotopy
equivalence from M to M' for some k > 0.

Step 2

LEMMA 7. — Let M and M' be complete hyperbolic 3-manifolds without boundary. Let us assume
that M is treelike. Let f : M — M' and g : M' — M be k-lipschitz homotopy equivalences for
some k > 0 such that f o g induces the identity on the fundamental group of M. Then there exists
1 >0 such that for all x e M : dy(z,90 f(z)) <.

Proof. — Let © e M. Let v be a non null homotopic loop containing . Let I(y) denotes the
length of . Let us note that there exists a number I; > 0 independent of x such that we can
always find such a v such that I(y) < ;.

g o f(x) belongs to g o f(). By the assumptions, g o f(v) is freely homotopic to 7. Let
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H :[0,1]> - M be an homotopy from g o f(v) to 7.

Let us assume that - is separated from g o f(vy) by several pairwise disjoint surfaces of the decom-
position of M : Sy, ... Sy,,.- Then, on each S,,, H draws a loop ~; which is freely homotopic to 7.
Since each M; is acylindrical and « is non null homotopic, it can not be more than one such S,,.
Therefore there exist two components C; and Cy such that C; nCy # 0, yn C; # 0 and
go f(7)nCy # 0. Since diameters of components of M\ U, Su are bounded, there exists a number
lo > 0 independent of x such that dy(y,9 0 f(7)) < la. Let us recall that, I(y) < l; and thus
lgo f(v)) < kL.

Finally dy(z, g0 f(z)) <4 + kz% + ls.

O

Step 3

DEFINITION 2. —
Let X be a metric space. f: X — X is said to be a pseudo-isometry if and only if there exist two
numbers &k and [ such that for all z,y e X,

k™t (2,y) =1 < d(f(2), f(y)) < kd(z,y)

LEMMA 8. — Let M = H3/T, M' = H3/I” be two treelike complete hyperbolic 3-manifolds
without boundary. Let ® : m (M) — w1 (M') be an isomorphism. Then there exists a homotopy
equivalence f between M and M' which induces ® and which lifts to a pseudo-isometry of HE.

Proof. - Let f: M — M and g : M' — M be k-lipschitz homotopy equivalences as
constructed in the proof of Lemma 6 such that g o f induces the identity on the fundamental
groups. Let F': M x [0,1] = M be a homotopy from g o f to idy. Let f, § be lifts of f and g.
By the covering homotopy theorem F lifts to a map F': H® x [0,1] — H® such that Fy=3f. We
have that pF1 Fyp = p. Therefore F1 e I'. Even if it means replacing § with F g and F with
F 1F, we can assume that F; = idgs. On the other hand, F' is I'-equivariant. Indeed let ceT.

pF(o xid) = F(p xid)(o x id)

F(po x id)
F(p xid)
= pF

Hence, there exists o’ € I’ such that F(o x id) = ¢'F. As F| = idgs, we have 0 = ¢’.

Now, we have that for all z,y ¢ H® :

d(z,y) < d(z,§f(z)) + d(§f(2). 3f (y)) + d(Gf(y).y)

Since f and g are k-lipschitz, f and § also are k-lipschitz. And by lemma 7, there exists [ > 0 such
that d(z,§f(x)) and d(y, gf(y)) are less than I. So, we have :

d(z,y) <1+ kd(f(z), f(y)) +1

And then ol
k~td(z,y) — % < d(f(x), f(y)) < kd(z,y)



Step 4

By Sullivan’s Theorem [Sul81], if the action of I' on the sphere at infinity is conservative then
every I'-equivariant pseudo-isometry is homotopic to an y-equivariant isometry by a I'-equivariant
homotopy. On the other hand, by Theorem 5.11 of [MT98], the action of I' on the sphere at
infinity is conservative if and only if the injectivity radius of H? /T is uniformly bounded. This last
condition is obviously fulfilled by treelike manifolds. Theorem 1 is proved.

O
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