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ABSTRACT. Here isinvestigated a class of non-compact surfaces without bound-
ary for which the homeomorphism problem is decidable in an effective way.
These surfaces, called equational, are characterized by three equivalent prop-
erties of global regularity concerning triangulations, infinite connected sums
and ideal boundary.

Here we investigate effective computability of the homeomorphism problem for
triangulable non-compact surfaces.

It is a well known fact that compact surfaces without boundary are classified
by two invariants : genus and orientability (see e.g. [Mas67]). Since these data are
computable from any triangulation, we have an algorithm to solve the homeomor-
phism problem in the compact case. In the case of non-compact surfaces without
boundary, the classification theorem states that two such surfaces are homeomor-
phic if and only if there exists a homeomorphism between their ideal boundaries
which conserves genus and orientability properties (Kerékjarto, Richards [Ric63]).
However, this result does not directly lead to an effective classification method.
The purpose of this paper is to give an algorithm which effectively decides, from
triangulations, whether two such surfaces are homeomorphic.

The method is based on the work of Pierce [Pie72] which investigates a special
kind of zero-dimensional compact metric spaces called finite type spaces. Pierce
showed that the existence of homeomorphisms between such spaces can be reduced
to the existence of isomorphisms between finite algebras. We restrict the study to
non-compact surfaces without boundary whose ideal boundary is a space of finite
type in the sense of Pierce.

A non-compact surface without boundary can be defined in several ways :
by a triangulation, by an infinite connected sum (Corollary 1.5) or by its ideal
boundary. Expressed at these various levels, the above restriction appears to be a
natural regularity condition :

e It is equivalent with the property of having triangulations which are equational
infinite hypergraphs. This means that they have triangulations which are defined
in a constructive way by a special type of inductions on hypergraphs (see [Cou90|
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or definition below ! ). Such a surface will be said to be equational. Let us note
that the notion of equational hypergraph extends those of context-free graph which
first appeared in [MS85].

e Treelike structures of zero-dimensional compact spaces (see Theorem 1.4 below)
will allow us to define the treelike connected sumi.e. the connected sum of infinitely
many compact surfaces performed along a tree. As a generalization of the fact
that every compact surface without boundary is a connected sum of spheres, tori
and projective planes, it will be showed that every non-compact surface without
boundary is a treelike connected sum of spheres, tori and projective planes. This
result is a new point of view of Richards’s results [Ric63|.

We will see that equational surfaces are the non-compact surfaces obtained from

treelike connected sum on regular trees i.e. trees with only finitely many subtrees
up to isomorphism (see Appendix). The notion of regular tree generalizes to trees
the property of ultimate periodicity for infinite sequences. This fact expresses the
property of being equational as a kind of global regularity.
o The work of Pierce [Pie72| generalizes the theorem stating that the Cantor space
is the only perfect, zero dimensional, compact, metric space. Following Pierce, a
zero dimensional compact metric space X is said to be of finite type if the powerset of
X, provided with the usual boolean operations (U, N, .¢, ), and also the closure and
the topological derivative has a finite sub-algebra. Under some technical hypothesis,
Pierce has showed that such a sub-algebra characterizes the homeomorphism class
of X.

Equational surfaces are those whose ideal boundaries are spaces of finite type.
For example, punctured surfaces (i.e. compact surfaces with only a finite number
of removed points) are equational.

Here is how our algorithm goes. First, the instances of the algorithm are
equational surfaces. Such a surface is given by an induction scheme defining an
equational triangulation. From it, we compute a regular tree defining the surface
by treelike connected sum; this tree is encoded by a special kind of automaton
called a Moore machine (cf Appendix). By a method inspired by Head [Hea86],
we then compute a finite Pierce algebra characterizing the homeomorphism class
of the ideal boundary. Eventually, we have to test the existence of isomorphisms
between finite algebras, which can be made in an effective way.

Let us remark that effective computability of the homeomorphism problem for
non-compact surfaces does not make sense in the general case since the cardinality
of the set of homeomorphism classes of non-compact surfaces without boundary is
at least 2% (Corollary 4.3).

1. The Classification of Non-Compact Surfaces.
1.1. Kerékjarto-Richards Theorem.

A region of a topological space X is a connected open subset of X. A closed
region is the closure of a region. We say that a subset is bounded if its closure is
compact. Let S denote a non-compact surface without boundary. Let us consider

1The reader could see that these induction schemes actually are equations in a certain magma
associated to the notion of graph (|Cou89, Cour96|).
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nested sequences P, > ... o P, o ... of unbounded regions of S such that : the
boundary of P, is compact for all n and for any bounded subset A of S, AnP,, =
for n sufficiently large. Two such sequences {P;};>o and {P/};>o are said to be
equivalent if and only if for all n there exists n’ such that P}, c P, and vice versa.
An equivalent class of such sequences is called an end of S. The set of ends of § is
denoted by B(S). Let U denote a region of S with bounded boundary and let U*
denote the set of ends represented by some sequences {F;};>¢ such that P, c U for
n large enough. Let B be the set of all such U*; B(S) endowed with the topological
structure of basis B is called the ideal boundary of S. Fundamental properties of
the ideal boundary can be found for instance in [AS60].

We now turn to the genus and orientability notions in the non-compact case,

which can be found in [Ric63, Mas67]. S is said to be of genus k € N if there
exists a bounded region A of genus k such that S \ A is planar. If such an integer
k does not exist, S is said to be of infinite genus. In the same way, S is said to
be finitely non orientable if S is not orientable and there exists a bounded region
A such that S \ A is orientable. If such a region does not exist, S is said to be
infinitely non orientable. A finitely non orientable surface is said to be of even type
of non orientability (respectively odd type) if any large enough bounded region is of
even genus (respectively odd genus).
Let p* be an end of S represented by a sequence {P;};>0; p* is said to be planar
(respectively orientable) if P, is planar (respectively orientable) for n sufficiently
large. Let B'(S) (respectively B"(S)) denote the set of non planar (respectively
non orientable) ends. B(S), B'(S) and B (S) are compact (see [AS60).

THEOREM 1.1 (Kerékjarto-Richards [Ric63]).
Let S1, Sy be two non-compact surfaces without boundary of the same orientabil-
ity and genus type in the sense of the previous definitions. Then S1 and Sy are
homeomorphic if and only if there exists an homeomorphism

f+(B(S1), B'(51), B"(S1)) = (B(S2), B'(S2), B"(52))
See [Ric63] for a proof.

1.2. The Treelike Structure of Non-Compact Surfaces Without Bound-
ary.

The ideal boundary is a zero-dimensional compact metric space. Theorem 1.4
below shows that such a space has a treelike nature. For instance, we can look at
the Cantor space as the set of infinite paths of a complete binary tree. This fact
leads us to consider a kind of treelike global structure on a non-compact surface
without boundary.

First, by defining the treelike connected sum, we shall define precisely what we
mean by “treelike global structure”. Then, we show that every non-compact surface
without boundary is a treelike connected sum (Corollary 1.5).

In an obvious way, we can associate to a tree ¢ a one dimensional simplicial
complex whose vertices are the nodes of ¢ and whose 1-simplexes make links be-
tween fathers and sons 2. Therefore, a tree can be seen as a topological space.
Now, imagine the tree thickened slightly; let us consider the surface S of the solid

2For notations, definitions and basics about trees, the reader is referred to the appendix at
the end of this article.
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obtained in this way. Then B(S) is homeomorphic to the space of infinite paths in
t (cf Appendix). Figure 1 shows an example, where ¢ is the complete binary tree.
The surface is homeomorphic to a sphere minus a Cantor set.

FiGURE 1. The “thickened” binary tree can be obtained by treelike
connected sum on a binary tree whose nodes are labelled by
spheres.

The following construction extends the idea of thickened trees. Let us consider
the set T of infinite deterministic trees of finite degree whose nodes are labelled by
compact surfaces without boundary, i.e. for such a tree ¢ and for w € Dom(t), t(w)
is compact surface without boundary. We assume that the surfaces labelling any
two distinct nodes of ¢ are disjoint. One associates to each tree t € T a non-compact
surface X(t) obtained by gluing together the surfaces associated to adjacent nodes
of t. The construction of X(¢) is as following :

Let A be the alphabet of t. For all w € Dom(t)\{e}, let fy, : D — t(w) be an
embedding of the unit disk D into the compact surface t(w). For all w € Dom(t)
and a € A such that w.a € Dom(t), let s% : D — t(w) also be an embedding. One

assumes that all these embeddings have pairwise disjoint images.
o o

Now, let t(w) denote the surface obtained after cutting out f,(D) and s% (D)
where w.a € Dom(t).

Let K = U t(w)
w € Dom(t)
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and let R be the equivalence relation on K generated by the pairs (x,2') such
that there exists z € S! = Fr(D), w € Dom(t) and a € A such that w.a €
Dom(t), fuw.a(2) = = and s%(z) = '.

We define X(t) = K/R.

We say that X(t) is obtained by treelike connected sum on t. One can verify
that the homeomorphism class of X(t) depends neither on the choice of the f,, nor
on the choice of the sg.

The following result describes the encoding of the ends of ¥(¢) by the infinite
paths of ¢. It can be readily checked.
For each path o = (wy)n>0 € Path(t), let e(«) be the end of X(t) defined by the
subsets P, made of all the pieces coming from the nodes of ¢,,, , the subtree of ¢ of
root w,,.

LEMMA 1.2. Let

o Path'(t) be the set of paths a = (wy)y such that VN e N3 n > N such that
t(wy,) is not planar,
o Path”(t) be the set of paths a = (wy,), such that VN e N3 n > N such that
t(w,,) is non orientable.
Then e : (Path(t), Path'(t), Path” (t)) — (B(3(t)), B'(X(t)), B"(X(t))) is a homeo-
morphism.

By Theorem 2.48 of [HY61], the ideal boundary is a metrisable topological
space. Moreover it is compact and zero dimensional [AS60].

THEOREM 1.3 (JHY61, Theorem 2.94]).

Let X be a compact, zero dimensional metric space. Then there exists a sequence
Uy, Uz, ..Uy, ... of finite coverings, each U, being a collection of disjoint sets of
diameter less than 1/n which are both open and closed and U,,11 being a refinement
of U,, for each n.

We can find the following theorem in [HY61, Theorem 2.95] in terms of inverse
limits. The proof is rewritten here in the tree framework. It shows how to encode
the points of a compact zero-dimensional metric space by the infinite paths of a
tree, which are objects of combinatorial nature.

THEOREM 1.4.
Under the hypothesis of the previous theorem, X is homeomorphic to the space of
infinite paths of a tree.

Proor.
Let Uy, Us,...,Uy, ... be a sequence of finite covering given by Theorem 1.3. Let
Uni,Un2, ..., Uk, denote the elements of U, (subsets of X). Let us consider
the tree ¢ whose nodes are the U, and whose edges are defined by relations
Un+1,i ¢ Up,i#» which are interpreted by stating that U, ; is the father of U, ;.
More precisely, we consider the tree ¢ without label whose domain Dom(¢) is a set
of finite sequences of positive integers :

Dom(t) = {lllgln | Un7l'n, C Un,1’1n71 C ... C U]_’[l}

There is an obvious one-to-one correspondence denoted by o between the elements
of Dom(t) and the U, associating l1ls...0,, to Up g, .



6 OLIVIER LY

Now, we can associate to any point @ € X the path p(z) = (wp)n>0 € Path(t)
defined by : Vn € N, x € o(wy) or, equivalently, {«} = (,>, 0(wy). It is easy to
see that p is a one-to-one mapping from X onto Path(t). Since the U, ; form a
basis for the topology of X, one can also verify that p is bicontinuous. O

ProposITION 1.1 (I. Richards [Ric63]).
Let X be a zero dimensional compact metric space and let X" ¢ X' be two closed
subsets of X. Then, there exists a non-compact surface S without boundary such
that B(S) ~ X, B'(S) ~ X' and B"(S) ~ X".

PRrROOF. We actually use the ideas of the proof of Richards, but here we seek
a surface obtained by treelike connected sum.

Let us consider a tree ¢ as given in the proof of Theorem 1.4, i.e. obtained from
a sequence of finite coverings of X. This tree is of finite but possibly unbounded
degree.

Here we construct a treelike connected sum over ¢. The labels of ¢ are defined
in the following way :
Let w € Dom(t),

o if g(w) N X" # () then #(x) is a projective plane,

o if o(w)NX'#0 and o(w) N X" =0, t(z) is a torus,

o if o(w) N X' =0, t(x) is a sphere.
Keeping the notations of Theorem 1.4 and Lemma 1.2, one can check that e o p :
(X, X' X") = (B(X(t)), B'(X(t)), B"(X(t))) is an homeomorphism. O

COROLLARY 1.5.
Every non-compact surface without boundary is a treelike connected sum of spheres,
tori and projective planes.

2. Equational Surfaces.

2.1. Definition.

This section is devoted to the introduction of the data structure (equational
hypergraph) which encodes the infinite triangulations which we investigate. This
allows us to deal with non-compact surfaces in a constructive way.

The main reference about equational hypergraphs is [Cou90].

DEFINITION 2.1 (Hypergraph).
Let A be a finite alphabet. Let n be an integer. A n-hypergraph over A is a tuple
G = (Vg,Eg,labg, vertg, sreg) where :

Ve is a set whose elements are called vertices.

E¢ is a set whose elements are called hyperedges, Vg NEg = 0.

labg : Eq — A defines a label for each hyperedge.

verte : Eq — V§ associates a finite sequence of vertices to each hyperedge
(V¢ denotes the set of finite sequences of elements of V). For all e € Eg,
the number of vertices appearing in vertg(e) is called the arity of e. For-
mally, vertg (e) can be the empty sequence. But for the purpose of encoding
triangulations, this will not append.

e srcg € V¢ is a tuple of n distinguished vertices called the sources of G.
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This definition extends the notion of pointed oriented graph. Edges are replaced
by hyperedges which are allowed to connect more than 2 vertices in a certain order;
this is encoded by vertg. The root is replaced by an ordered finite set of vertices
called sources which is encoded by srcg. Note that only hyperedges are labelled.

Let G = (Vg, Eq,labg, vertg, srce) be an n-hypergraph over A.

A sub-hypergraph of G is a k-hypergraph K = (Vg ,Eg,labg, verty,srck) such
that Vg ¢ Vg, Ex c Eg, labg = lab(;'|EK, for all e € Eg, VertK(e) is equal to
vertg(e) after deletion of vertices which do not belong to Vi and the sources of
K are those of G which are elements of Vg in the same ordering. The hypergraph
complement of K in G, denoted by G\K, is the sub-hypergraph of G defined by
Vax = (Vg\VK) U Vel‘tg(Eg\EK) and Eg\x = Eq\Ex where Vertg(Eg\EK) de-
notes the set of vertices which belong to some hyperedge of Eg\Ex. Two vertices
x,y € Vg are said to be connected if there is a sequence © = g, 21,....,2x = Y
of vertices such that for all i € [0,k — 1], there exists e; € Eg such that z; and
x;4+1 both appear in vertg(e;). G is said to be connected if every pair of vertices is
connected.

Graphs are usually interpreted as 1-dimensional simplicial complexes. We use
hypergraphs to encode simplicial complexes of any dimension. Basics about sim-
plicial complexes can be found for instance in [HY61, Chap. 5].

DEFINITION 2.2 (Simplicial complex associated to a hypergraph).
We associate to a hypergraph G an abstract simplicial complex Sg defined as
following :

e The set of vertices of S¢ is Vg.

e Each hyperedge e € E¢g gives rise to a simplex s, which is the set of vertices
appearing in vertg(e). We also add to Sg all the subsets of s, in order to
satisfy the heredity condition.

The topological space defined by S, i.e. the geometric realisation of S¢ (cf
[HY61)) is denoted by |G| and is called the geometric carrier of G.

Our definition of hypergraph is more complicated than the usual one, which
can be found for instance in [Ber73]. In fact, the ordering of vertices around a
hyperedge i.e. the ordering of vertg(e), the labels and the sources are not needed
when encoding simplicial complexes. However, this set of data is essential for
the construction of an equational hypergraph. Let us note that this definition is
particularly well adapted to software development.

DEFINITION 2.3 (System of hypergraph equations).
A system of hypergraph equations is a set of n equations

L = <U1 = Hla"'au’n = Hn>

where U = {uy, ..., u,, } is the set of unknowns; H; is a finite n;-hypergraph over the
alphabet {#} uU where n; is such that every hyperedge in the system labelled by
u; is of arity n;. Hyperedges labelled by # are called terminal and the others are
called nonterminal.

Figure 2 shows an example of such a system.
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FiGure 2. Example of system of hypergraph equations.

Here we represent a system of two hypergraph equations
(uy = Hy,us = Hy). Hj is represented on the left hand side. It
has 9 vertices represented as points, 11 terminal hyperedges of ar-
ity 3 and 2 nonterminal ones of arity 3 labelled by w;. The labels
of the terminal hyperedges are omitted. Its sources are the three
vertices at the bottom of the drawing. The numbers associated to
them define their ordering. The two nonterminal hyperedges, both
labelled by u; are represented on the top as kind of parachutes.
Their legs indicate which vertices they connect. The numbers writ-
ten in them describe the ordering of these vertices. This ordering
is essential as it encodes a gluing process. Finally, terminal hy-
peredges form a triangulation of a pair of pants. As they will be
eventually interpreted as simplexes, the orderings of their vertices
are not indicated in the drawing. H, is represented on the right
hand side. It has 3 vertices, 2 nonterminal hyperedges each of arity
3 and labelled by u; and no terminal hyperedge. It has no sources.
The canonical solution associated to us has only terminal hyper-
edges of arity 3. If we interpret them as 2-simplexes, then we get a
triangulation of the surface represented in Figure 1 i.e. the sphere
minus a Cantor set. This is an equational surface.

Here we keep the notations of Definition 2.3. A solution of L is a tuple
(Gy,...,Gyp) of n hypergraphs such that :

e (7; is a n;-hypergraph i.e. it has n; sources. G; is the solution associated to
Uyj-

e For all i € [1,n], (Gy,...,G,) satisfies the equation uw; = H;. This means
that if for all j € [1,n], we glue G; in H; in place of each hyperedge labelled
by u;, then we get a hypergraph isomorphic to G;. By gluing G in place of
a hyperedge e labelled by u;, we mean the following operation : let G be
an isomorphic copy of G;. For all k € [1,n;], we glue the kth source of G
on the kth vertex of e. Finally we delete e.

Note that the semantics of the terminal hyperedges and the nonterminal ones are
different. The former encode simplexes and the latter encode gluing operations.
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Solution of such systems are far from being unique. However we will see a way
to construct a canonical one.

Let €51, ..., €im,; denote the nonterminal hyperedges of H;. This notation fixes
an (arbitrary) ordering on the set of nonterminal hyperedges of H; : we say that e;;
is the jth nonterminal hyperedge of H;. Let [;; € [1,n] be such that e;; is labelled
by u,,. Let m = Max 1.
Let T; denote the deterministic tree labelled by [1, n] over the alphabet [1, m] defined
inductively by the two following properties :

e The root of T; is labelled by <.
o Let 1 be a node of T; labelled by ¢’ € [1,n]; then p has m; sons and if pu;
denotes the jth one, then Tj(u;) = ly;.
T; is called the ith syntactic tree associated to L. We remark that 7 is a regular tree
i.e. T; has only finitely many subtrees up to isomorphism (see Appendix). Indeed,
T; has at most n subtrees up to isomorphism.

We consider for every node p of T;, a hypergraph Fﬂ which is a copy of Hr, (,)
without its nonterminal hyperedges. We assume that the H, are pairwise disjoint.
We will glue the H, to each other following the edges of T;. Let R be the equivalence
relation on (J,, Vi, generated by the pairs (x1,@2) such that :

e if 1, po are the nodes of T; such that x; € VHM and a9 € VFM’ then p is
the father of ps,.
e Let j be such that ps is the jth son of p;. There exists an integer k such
that ;7 was the kth vertex of the jth nonterminal hyperedge of H,, and >
is the kth source of H,.
The hypergraph obtained from (J " H, after identification of R-equivalent vertices

is called the ith canonical solution of L. Its sources are, by definition, the sources
of H. where ¢ is the root of T;.

T ' T

FIGURE 3. Syntactic trees associated to the system of hypergraph
equations described in Figure 2.

DEFINITION 2.4 (Equational hypergraphs).
A hypergraph is said to be equational if it is a canonical solution of a system of
hypergraph equations.
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Fi1GURE 4. Construction of the canonical solution associated to us
for the system represented in Figure 2.

Here are represented some Fﬂ. To simplify the drawing, terminal
hyperedges have been omitted. Note that H. (in the center of the
drawing) is made of only 3 vertices (represented as white points).
The gluings follow the dashed lines.

Here we only are interested in equational hypergraphs defining triangulations
of surfaces in the sense of Definition 2.2 :

DEFINITION 2.5 (Equational surfaces).
A surface is said to be equational if it has a triangulation defined by an equational
hypergraph. Such a triangulation is said to be equational.

EXAMPLE 2.6. Every compact surface is equational.

EXAMPLE 2.7. Every surface obtained from a compact surface without bound-
ary by removing a finite number of points is equational.

An equational surface is defined by a system of hypergraph equations, which
is a finite set of data. Thus, the effective computability of the homeomorphism
problem for this kind of surface makes sense.

Corollary 1.5 shows that every non-compact surface without boundary has a

triangulation of bounded tree-width (the notion of tree-width appeared in [RS84]).
On the other hand, equational graphs are the graphs of bounded tree-width satis-
fying a certain regularity property which extends to graphs the regularity property
for trees (see [Cou90, Theorem 6.5]). From this point of view, the introduction of
equational triangulations appears to be natural.
Note that surfaces are locally compact spaces. So, the only hypergraphs in which
we are interested are of finite degree (i.e. there is a finite number of hyperedges
around a vertex). On the other hand, equational graphs of finite degree actually
are context-free graphs in the sense of [MS85].

2.2. Global Regularity of Equational Surfaces.

We need the notion of barycentric subdivision (see for instance [HY61]).
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LeMMA 2.8.
Let T be a simplicial complex defined by a system L of hypergraph equations. Then
we can effectively compute a system L' defining the barycentric subdivision T' of T'.

Each terminal hyperedge has to be subdivided. O

Let L = (u; = H;),.,., be a system of hypergraph equations. Let |H;| denote
the topological space associated to the simplicial complex obtained from H; after
deletion of nonterminal hyperedges.

LEMMA 2.9.
Let S be an equational surface, then S is homeomorphic to the geometric carrier
of the last canonical solution of a system L = (u; = H;);;, such that for all

i € [1,n], |H;| is a bordered compact surface.

Proor.
Let L = (u; = H;),-;-,, be a system of hypergraph equations defining a triangula-
tion of S. Let Gy, ..., Gy, be the canonical solutions of L. Let us assume that the
triangulation of S is encoded by G,.

Step 1 : Even if it means adding new equations, we can assume that the ver-
tices of each nonterminal hyperedge are pairwise distinct. Indeed, for instance, let
e be a nonterminal hyperedge labelled by u; whose second vertex is equal to the
first. Then we add a new unknown whose associated right member is obtained from
H; by gluing the first source with the second. Details are left to the reader.

Step 2 : We can transform L in such a way that there is no source in any nonter-
minal hyperedges of any H;. We define the order 1 development of H;, denoted by
D'(H;), to be the hypergraph obtained after the replacement of each nonterminal
hyperedge by the corresponding H;. Then, let D™(H;) be the order 1 development
of D"=Y(H;). Recall that G; is of finite degree. Let us consider a right member
H; of L and a source s of H;. The number of triangles i.e. terminal 3-hyperedges,
and more generally the number of terminal hyperedges of G; which contains s is
finite. So, there exists a minimal integer k, such that they are all in D*: (H;). Now,
suppose that s still is in a nonterminal hyperedge e of DF:(H;). Let u; be the
label of e. Then G; contains a source connected to no triangle; it is useless and we
can delete it. The system after transformation is still denoted by L (H; becomes
Dki(H;) where k; = max k,, maximum over all the sources of H;).

Step 3 : We can transform L such that any two distinct nonterminal hyperedges
have no common vertex. Assuming the result obtained in the previous step, we
only have to replace each H; by its order 1 development.

Step 4 : We can transform L such that each vertex of H; has a neighbourhood
homeomorphic to a disk or a half disk in |H;|. Let us consider a right member H;
of L and a vertex x having no neighbourhood homeomorphic to a disk or a half
disk.

If 2 does not belong to any nonterminal hyperedge and is not a source, then
all the terminal hyperedges in G; containing x already are in H;. Therefore, x has
a neighbourhood homeomorphic to a disk in |H;| which is a contradiction.
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If @ is a source, then x has to be glued on a vertex which is not a source and
which has no neighbourhood homeomorphic to a disk or a half disk. This vertex
fits in the next case.

Suppose that x belongs to a nonterminal hyperedge. Let us replace L by its

double barycentric subdivision. By step 3, there is a unique right member H; which
have to be pasted on x. Let s’ be the source of Hy which has to be glued on .
Let us consider the triangles which contain s’. We shall delete them from H; , and
paste them around x in H; and in every right member containing a nonterminal
hyperedge labelled by w;. After this, 2 will have a neighbourhood homeomorphic
to a disk in |H;|; and we will delete s’ from H; .
Let 7" be such a triangle; it has been created during the double barycentric subdivi-
sion. The other vertices of 7", which are denoted by a and b, have been also created
during this process. After deletion of 7", a and b become sources; note that they
could already have been sources. And they have neighbourhoods homeomorphic to
a half disk in [H;\T'| (cf. Figure 5). The proof is by induction on the number of
vertices having no neighbourhood homeomorphic to a disk or a half disk.

FIGURE 5

Step 5 : It remains to transform L such that each |H;| becomes connected. Since
S is assumed to be connected, we can assume that each G; is an infinite connected
hypergraph, even if it means separating it into several unknowns. Under this hy-
pothesis, H; is a connected hypergraph. Let us assume that |H;| is not connected
i.e. connectivity of H; is achieved using nonterminal hyperedges. Since |G;| is
connected, after enough developments of H;, all the sources belong to the same
component of | H;| whose underlying hypergraph is denoted by C;. Let K;i, ..., K,
be the connected components of H;\C;. We will replace H; by C; in the system
and add new unknowns w1, ..., w;;; and new equations of the form w;; = K;. Let
vij, ...,vzj be the vertices of the frontier between Kj; and C; i.e. Vg, n Vg, (k

depends on ¢ and j). We define the sources of Kj;; to be vij, ...,vfcj in that order

ie. srep; = (Wi, ..., vij). For each 1, j, we add to C; a new nonterminal hyperedge
eij with lab(e;;) = w;; and vert(e;;) = vy’ ...v’. We get a hypergraph still denoted

by C;. The new hyperedge e;; encodes the gluing of K;; on C;. Let srce, = srep;.
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Then, we replace the equation u; = H; by u; = C; and add to L the new equations
w;j = K;;. Kyj is a connected hypergraph; however |K;;| maybe not connected.
But all its nonterminal hyperedges are labelled on {us,...,u,}. Thus, we replace
any nonterminal hyperedge of K;; by its corresponding right member which is now
a C;. |K;j| becomes then a connected.

Even if the number of equation increased, the number of right members with non
connected geometric carrier decreased strictly. So, by induction, the system be-
comes as we desire. |

THEOREM 2.10.
A non-compact surface without boundary is equational if and only it is a treelike
connected sum on a regular tree.

Proor.

(i) («=) Let S be a surface defined by treelike connected sum on a regular tree t.
Recall that ¢ is labelled on the set of compact surfaces. Let A = (Q, 9, A, qo, ) be
the Moore machine 3 associated to t. For all ¢ € @, let H, be a finite hypergraph
encoding a triangulation of 7(¢g). For all ¢ # qo, let us cut out a disk in Hy, the
vertices of which will be the sources of H,. For each transition d(q,a) = ¢, let us
cut out a disk in H, and paste instead of it, a nonterminal hyperedge whose label is
ug - Eventually, we consider the system L = (uqg = Hg),(,- The precise definitions
of the sources and the hyperedges of H, can easily be written out.

(ii) (=) Here we use the method of canonical exhaustion [AS60].

For this we need the notion of regular neighbourhood which first appeared in [Whi39];
see e.g. [Hem76] for a modern approach. Let K be a simplicial complex, o a sim-
plex of K and 7 a (dim o —1)-dimensional face of o belonging to no other simplex of
K. The simplicial complex K \ {0, 7} is said to be obtained from K by elementary
collapsing. If L is a complex obtained from K after a finite sequence of elementary
collapsings, we say that K collapses to L (which is denoted by K \, L). Note that
|L| is a deformation retract of |K|. Let n > 0 be a non-null integer. Let T be a
simplicial complex whose geometric carrier |T| is a n-dimensional manifold and let
L be a subcomplex of T. We call regular neighbourhood of |L| in |T'| any simplicial
n-dimensional submanifold of |T'| of the form |K| where K is a subcomplex of T
and K N\, L. Generally, |K| is not a neighbourhood of |L| in the usual sense.

LemMma 2.11.
Let T and L be as above. Let T" and L" denote respectively the double barycen-
tric subdivisions of T and L, Let N(L",T") be the union of all the simplexes or
faces of simplexes of T" meeting a simplex of L". Then |N(L",T")| is a regular
neighbourhood of L" in T".

See [Whi39, Hem76]| for a proof.

Let us turn to the proof of (=). Let S be an equational surface defined by
a system L = (u; = H;),;,- Here we keep the notations of the construction of

equational hypergraphs. By lemma 2.9, we can assume that all the |H;| are bor-
dered surfaces.

3See Appendix for definition of Moore machines and their connection with regular trees.



14 OLIVIER LY

Step 1 :  Let us consider F; the sub-hypergraph of H; made of the sources of H;
and their 2-hyperedges (even if it means adding new hyperedges, we can consider
that any two vertices connected by an hyperedge are connected by a hyperedge of
arity 2). Since |H;| is a bordered compact surface, | F;| is made of pairwise disjoint
simple closed curves of the boundary. We will transform L such that each |F;| will
be made of only one simple closed curve.

Let 7 be an integer such that F;, contains at least two simple closed curves Cy
and Cs; let a be a simplicial path in H;, connecting C; and Cy (cf Figure 6). Let
K be a regular neighbourhood of C; ua uCy in H;,. K is homeomorphic to a pair
of pants; C1 and Cy are two components of its boundary; let C denote the third.
Let us consider Hj;, ,..., H;, the right members of L containing some nonterminal
hyperedges labelled by u;,. We will delete K from H;, and paste it on the H;; for
ji=1 ...k
Let us consider the sub-hypergraph H; obtained from H;,\K after the following
modification of the sources : the sources not contained in the interior of K remain
sources of H; and the vertices of C' become new sources, replacing the sources of
C1 and C3. It remains to paste & on H;, for j = 1,...,k. Let e be an hyperedge of
H;; labelled by u;,. Let v1,v2, ..., v, be the vertices connected by e i.e. verty, (e) =
v102...vy. Even if it means renumbering the vertices of e and the sources of Hj,,
we can assume that there exists m such that C; and C, have to be pasted on v,,,
Umn41,---,0n. After deleting e, we paste K on these vertices and add a new hyperedge
e’ whose vertices are vy, vs, ..., Um—1,V),, ..., U, Where v/, ,...,vl, are the vertices of
C in K in the same ordering than the one defined by sremy ; e’ is labelled by a
new unknown ugo. After doing this operation on each hyperedge labelled by wu;,,
the equation wj = H shall replace u;, = H;, in L. Eventually the number of
components of |F;| has decreased; the proof is by induction.

Let us remark that we already have a treelike connected sum. However, we will
show in the following step how to get a treelike connected sum of spheres, tori and
projective planes.

Step 2 :  We will construct an automaton encoding the regular tree defining

’

H.

20

FIGURE 6. Canonical exhaustion

the treelike connected sum. For all i € [1,n], |H;| is a bordered compact surface;
hence it is a sphere or a connected sum of tori and projective planes : |H;| =
Py # Py #...#P;,, where Py, is a torus or a projective plane for all p € [1,p;] and
Py, is a sphere with holes. Note that this decomposition is computable from H;.
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To construct the automaton, the idea is to associate to each H; a finite graph
(actually a chain) whose vertices are labelled by spheres, tori or projective planes.
Then we connect these graphs to each other according to the system L in order to
obtain the underlying graph of a deterministic finite automaton which encodes the
regular tree associated to the treelike connected sum. This automaton is provided
with an output over the set of three elements containing the sphere, the projective
plane and the torus.

Rigorously, Let e;1, ..., €;m, denote the nonterminal hyperedges of H;. Let l;; € [1, 7]
be such that e;; is labelled by u;,;. Let m = maxm;.

A=(Q,0,A,q,7) is defined by : !

o A=11,m].
e Q={Pp:1<i<n,1<p<p}.
e For 1 <p < p;, let §(Pip, 1) = Pipt1.
For all i € [1,n] and all j € [1,m;], §(Pp,,j) = Fi;;1-
® go=Pu.
o 7(P,p) is obtained from P;, by pasting disks on its holes.

We can verify that A actually define a regular treelike connected sum defining
S. O

3. Decidability.

3.1. Pierce’s Theorem.

In this part, X denotes a zero dimensional compact metric space. If Ac X, the
closure of A is denoted by A and its topological derivative is denoted by A’.

DEFINITION 3.1.
The powerset of X, which is denoted by P(X), provided with the usual boolean
operations (U, N, .¢), the O-arity operation (J, the closure and the topological de-
rivative is called an algebra. The smallest sub-algebra of P(X), denoted by U(X),
is called the topological boolean algebra of X. If it is finite then X is said to be of
finite type.

Let U be a sub-algebra of P(X). An atom of U is an element a € U such that for
allb e, bcaimplies b =a or b = 0.

PROPOSITION 3.1 ([Pie72]).
Let U be a non trivial finite sub-algebra of P(X). Suppose that U is generated by its
closed elements. Then there exists a finite sequence ) = AgcAyc...cA,_1cA, =X
of closed elements of U such that for i € [0,n—1], a; = Aix1 \ Ai is an atom of U.

See [Pie72, Cor. 3.18] for proof.

Here we study the form of the a; :
First, ap = A; is a closed atom. Thus it is compact and we have ay = §§ or ag.

o If af = () i.e. each point of ag is isolated, then, since it is compact, ag is a
finite set.

e If af, = ap then ag is homeomorphic to the Cantor set (cf [HY61, chap
2.15)).
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Now let us look at a; for ¢ > 0. If a; is closed, then we are in the previous case.
Thus, let us assume that a@; # a;; in particular, a; is not compact. Then we have
a; = aj, uaj, U...uaj; where jp <i.

o If a} = () then q; is thus a discrete countable set.
o If a} = a;, one can show that a; is the disjoint union of infinitely (but
countably) many Cantor sets (see [Pie72, thm 2.1]).

THEOREM 3.2 (|[Pie72]).
Let X, Y be two zero dimensional compact metric spaces of finite type. Let A and
B be finite sub-algebras of P(X) and P(Y) respectively. Suppose that A and B are
generated by their closed elements. Let p: A — B be an isomorphism such that for
all atoms p € A of finite cardinality, Card(p(p)) = Card(p).
Then there exists a homeomorphism ¢ : X = Y such that p(C) = p(C) for all
CeA.

3.2. Computation of Pierce Algebras.

Let A =(Q,0,A,qo,7) be the deterministic finite automaton as introduced in
the proof of Theorem 2.10. Let £“(A) denote the language of A¥ which is recog-
nized by A i.e. the set of infinite words of £(A) which can be associated to the
trace of an infinite path in 4 (see Appendix).

Our aim in this part is to compute the Pierce algebra of £¥(A) from the
structure of A. The idea, which is due to Head [Hea86], is to associate to each
state ¢ of A, the language of infinite words going infinitely many times through ¢ :
In(g) = {u € L(A) | u encodes a path in A

going infinitely many times through ¢ }
Before going further, we have to avoid some pathological situations. Let us delete
one at a time states ¢ # go such that In(q) = @; such states make no difference.
After deleting g, the labels of the transitions are taken in A" instead of in A : a pair
of transitions of the form d(q1,a) = ¢, 6(q,a’) = g2 is replaced by d(q1,a.a’) = go.
The automaton obtained after doing this is still denoted by A.

We associate to each subset Y c @), the language of £¥(A) defined by In(Y) =
U gey In(g). We would like this map to preserve boolean operations; it is obvious
that In(0) = 0, In(Q) = £L¥(A) and In(Y; uY3) = In(Y7) uIn(Y3); but we only have
In(Y1 nY2) ¢ In(Y7) nIn(Y2). We thus introduce the following definition :

DEFINITION 3.3.

Y c @ is said to be coherent if for all mutually accessible states p,q € (), we have

pgeYorpqgY.

A coherent subset is a union of strongly connected components of A.

For all coherent sets Y7 and Ya, In(Y; nY2) = In(Y1) nIn(Y2) and also In(Y) =
In(Y7)e.

We have to understand how In encodes topological operations. So, we introduce
the following operations :

o YE =1g€Q|Y is accessible from ¢}

o YD = {g€ Y| there are at least two distinct infinite words
of £¥(A) begining at q and going only through
states of Y }
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One can verify that for every coherent set Y, In(Y®) = In(Y) and In(Y?) = In(Y)’
(cf [Hea86]). Note that .X and .” are computable in an effective way. The set of
coherent subsets of Q (denoted by C) is a sub-algebra of (P(Q), u,n,.%,0, .5, .D).

ProprosITION 3.2 (|Hea86]).
In:(C,u,n,.9 0.5 Py (P(LY(A), u,n,.C0,7,.") is a morphism.
Since In is injective, (C, u,N,.¢,0,.% .P) is isomorphic to a sub-algebra of
P(LY(A)) of finite cardinality. Of course, this sub-algebra is computable from A.

3.3. The Homeomorphism Problem for Equational Surfaces.

Let L be a system of hypergraph equations defining a triangulation of an equa-

tional surface S. The proofs of Lemma 2.9 and Theorem 2.10 lead to an algorithm
for computing an automaton A = (Q, 9, A, go, 7) defining a regular tree ¢ such that
¥(t) is homeomorphic to S. The previous part shows how to compute from A some
finite sub-algebras of P(B(.S)). We will conclude that the homeomorphism problem
for equational surfaces is decidable.
Let N (respectively O) denote the smallest coherent subset of @ (recall that @ is
the set of states of A) containing all the states labelled by the projective plane
(vespectively the torus). Let e denote the homeomorphism between Path(t) and
B(S) defined in Lemma 1.2. £¢(A) and Path(t¢) are canonically homeomorphic (cf
Appendix). So we can consider e as a map from £¥(A) to B(S). We then have
easily the following facts :

o e(In(N)) = B"(S(1))

e ¢(In(Nu0)) =B'(X(t))

The following theorem states that the global regularity studied in the previous parts
is equivalent to the property of having a finite type ideal boundary.

THEOREM 3.4.
A surface S is equational if and only if the sub-algebra of P(B(S)) generated by
{B'(S),B"(S)} is of finite cardinality. Moreover, this sub-algebra is computable
from a system of hypergraph equations defining S and vice versa.

PROOF.
(i) We compute the (finite) sub-algebra of C which is generated by N and O. Recall
that C denote the set of coherent subsets of states of A. By Proposition 3.2, it is
isomorphic to the desired sub-algebra of P(B(5)).

(ii) Let U be the sub algebra of P(B(S)) generated by {B’(S),B"(S)}. Let us
consider a decomposition as given by Proposition 3.1 :

0 =AgcAc..cA, 1cA,=DB(5)

where a; = A;11\A; is an atom of U for all ¢ € [0,n — 1]. The proof is by induction
on n, the length of this decomposition, with the following induction hypothesis :
IH,, : We can compute a Moore machine 4 whose states are labelled by spheres,
tori or projective planes such that (£¥(A),In(N v O),In(N)) is homeomorphic to
(B(5), B'(S), B"(S)).

THp : let us assume that & = {0, B(S)}.
If B(S) is perfect, it is homeomorphic to the Cantor set. A4 is then made of two
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states denoted by gg and g with two distinct transitions whose origins and targets
are ¢ itself and one connecting go to ¢ (cf Figure 7). The details of the alphabet of
A are left to the reader.

If all the points of B(S) are isolated, then it is finite since it is compact. Let
¢ € N be its cardinality. A is made of ¢ + 1 states qo, .., qc, ¢ edges of origin ¢y and
targets ¢i, .., ¢c, and for j = 1..c, an edge of origin and target g; (cf Figure 7).

Q2 ) O ()

q0 q0

FIGURE 7

Let us assume now that IH,, is true.
By Proposition 1.1, (Ap—1, An—1 n B'(S), An—1 n B"(S)) can be considered as the
ideal boundary of a surface. So, by induction, we can construct an automaton
A" =(Q', 0", A, qy, 7") associated to it. If @,—1 = ap—_1, the construction is as
above. Thus, let us assume that @, 1 n A, 1 Z 0. Let C' = In_l(ﬁn,l nA,_1);it
is a coherent set of @'. Let C1,...,C}. denotes the strongly connected components
of C’ (one can verify that each component is actually made of only one state). Let
q be a new state, with one or two transitions of origin and target ¢ itself depending
on whether a/,_; = 0 or a!,_; = a,—1. Recall that if a,_; = 0, a,—1 is made of
isolated points and if a),_; = a,_1, it is made of Cantor sets. We then add s new
transitions connecting Cj, .., Cl to ¢. Let us consider a word u in In(C;). While it
reads u, A runs through C; and at any time it can move into ¢. Thus u is the limit
of a sequence of In(q).

As U is generated by {B'(S), B"(S)}, all its atoms are included in B'(S) (re-
spectively B"(S)) or disjoint from it. OQutputs of A can be easily defined according
to that. |

COROLLARY 3.5.
The homeomorphism problem for non-compact equational surfaces without boundary
is decidable.

The above discussion allows us to construct an algorithm deciding the home-
omorphism problem for surfaces which are of infinite genus. In the finite genus
case, one can compute in an effective way the genus and the non orientability type.
Thus, it is possible to construct a general algorithm. Details are left to the reader.

4. Examples of Non Equational Surfaces.

Here we give a method of construction of zero-dimensional compact metric
spaces which are not of finite type. In particular, this contruction gives examples of
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non equational surfaces. We will also show that the set of homeomorphism classes
of non-compact surfaces is not countable. This fact gives another proof of the ex-
istence of non equational surfaces.

We consider, in the unit interval I = [0, 1] of R, the Cantor set defined by

c={>_ ;f—Z D (2n)nz1 €{0,2}7}

n>1

and the set of midpoints of the intervals complementary to the Cantor set :

N

- x 1

K=/ E 3—Z+W : o =0and z;..xn € {0,2}}.
n=0

Let K1 = CuK, endowed with the topology induced by I. We also set Ko = C. We

will construct by induction a sequence (K,),>0 of zero dimensional subspaces of

I. Ky and K are already defined, let us assume that Ky, K1, ..., I{;, 1 are already

constructed.

For each isolated point « of K,_1, let us pick two points a < b such that [a, bjnK,,—1 =
{z} and @ = “£2. We consider now for all # € K,_; the sequence (yj ,)x>1 defined

by yre =2+ (71)‘“”2’—,6“. Let K,, = Ky—1 U {yk,» | © isolated in K,,_; and k& > 1}.

The following result can be readily checked.
LEmMmA 4.1. K|, = K, for alln > 1.

Let us consider for n > 1, D, the image of K, by the one-to-one increasing
affine function denoted by ¢, mapping [0, 1] onto
1 1 1 1
[ﬁ T 2n(ntl)'m + 2n(n+1)]'
Let @ be the map from {0, 1} into the set of zero dimensional compact metric
spaces defined by :

For b = (bn)nZO € {Ov I}Nv
@(b) = {0} u [ J{Dns1:n > 0and b, =1}

If T denotes the integer sequence defined by I,, = 1 for all n > 0. We have
®(I)" ¢ ®(I)" but ®(I)” is homeomorphic to ®(I)’. Thus the sequence of topological
derivatives of I is infinite which implies that ®(I) is not of finite type. This allows
us to construct a non equational non-compact surface (Proposition 1.1, Theorem
3.4).

We define the map A which associates a sequence of {0, 1} to each zero di-
mensional compact metric space X as following :
A(X) is constructed in two steps :

e Let us consider the sequence (X,),>o of topological spaces defined using X
by the following induction scheme :

Xo =X,
Xnt1 = X2\ X
o This sequence allows us to define A(X) = (b,)n>0 with

B {1 it X/ is not homeomorphic to X, 41,
n =

0 otherwise.
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Of course, if X and Y are homeomorphic then A(X) = A(Y).

PROPOSITION 4.1.
For all b = (by)n € {0,1}" such that for all N > 0, there exists n > N such that
b, =1, we have b= A(D())).

Proor.
Let 6 be the shifting operator on sequences defined by :
let b = (b,), € {0, 1} for all n >0, 6(b),, = bpy1-
Then ®(b)\®(b)" is homeomorphic to ®(5(b)).
Indeed :
&) ={0}uvU{D} 4 :n>0andb, =1}

={0}u U{pnt1(Kpns1)' :n>0and b, =1}

={0}uv U {¢n+1(K,'H_1) :n > 0and b, =1}.

Note that 0 € ®(b)’" because b is not ultimately always equal to 0.
According to lemma 4.1, we have :

2(b) = {0} u | J{on+1(Kn) :n > 0and b, = 1}

and ®(b)" ={0}u U {pn+1(Kp—1) :n>0and b, =1}

where K _; denotes the Cantor set.
Thus ®(0)\@(b)" = | {@n1(KnKy_1) :n > 0and b, = 1}

and @(b)\@(0)" = {0} u | {n+1(EnEKn1) :n > 0and b, = 1}.
It is then easy to see that

O { 0 ifn=0 ie K,=Ky=K_ ,=C.

Thus we get
L)\ 2(b)" ={0}u U{ent1(Ky):n>1andb, =1}

={0}u U {pnt2(Kpt1) :n > 0and bypyq = 1}.
The last space is homeomorphic to
2(5(b) = {0} u [ {¢nt1(Fns1) :n > 0 and bypg = 1}
Indeed, let us consider for all n, the one-to-one mapping

/(pn : 997L+2([0a 1]) — 9971+1([0a 1]) defined by /(pn = 90n+1991;-|1-2'

Let v = {tn s 1 2 0} s [ {ons2((0.1)) 0 2 0} — [ {nra ([0,1]) s 1 > 0},

Then we have ®(0(b)) = ¢(2(b)'\®(b)""). Recall that A(®(b)) is defined from the
following sequence of spaces :

Xo = ®(b)
Xir1 = X\ X
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By the above discussion we can see that for all £ > 0 :
Xy = o (@(5 (1)),
Thus A(®(b)) = 0 if and only if ®(6%(b))’ is homeomorphic to ® (651 (b)).
(54 (1) = {0} 0 U {pnss (Kns1)' s n > 0 and by = 1}

(4.1)
={0} u U{pnt1(Ky,) :n>0and bpyp, =1}

And
D) = {030 U {pner (Knsr) 1> 0and bras = 1}

={0}u U{en(Ky) :n>1and b4, =1}

Suppose that, in Formula 4.1, b, = 1. Then ®(6*(b))’ contains a Cantor set i.e.
1(Ko) which is not the closure of a sequence of isolated points. There are accu-
mulation points which are not limits of sequences of isolated points. This is not
true for ®(6%+1 (b)) and so, these spaces cannot be homeomorphic.

Now if by = 0, we get

(6% (0) = {0} v [J{pnr1(Kn) i n > Land byyy = 1},
which is homeomorphic to
(1 (1)) = {0} o [ {pn(Kn) 10 > L and by = 1)
Finally A(®(b))x = 0 if and only if b = 0. O

COROLLARY 4.2.
® is injective in the sense that ®(b) and ®(V') are homeomorphic if and only if
b=1"b.

By Proposition 1.1, we can associate to each ®(b) a planar non-compact surface.
Since the set of infinite sequence is not countable, we get

COROLLARY 4.3.
The set of homeomorphism classes of non-compact planar surfaces has at least
cardinality 2%°.

This proves again by a cardinality argument that there exist many non equa-
tional surfaces.

5. Perspectives

Since the notion of equational triangulation can be defined in the general frame-
work of polyhedra, several generalisations could be investigated :

1. Homeomorphism problem for equational non-compact bordered surfaces. Note
that there is no generalisation of Kerékjarto-Richards Theorem in this case.

2. Equational n-manifolds. For instance, the Whitehead manifold Whs has an
equational triangulation.

3. Constructive ways to define hyperbolic structures on non-compact manifolds.
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6. Appendix : Basic Definitions in Formal Language Theory

Here we give basic definitions in formal language theory dealing with the notion
of tree (see [HU79, Cou83| for more details).
Let A be an at most countable set (called an alphabet when it is finite) and let A*
(respectively A¥) denote the set of words i.e. finite sequences (respectively infinite
words i.e. infinite sequences) over A and ¢ the empty word. Let AT = A*\e.
Let wg,w; € A*. The concatenation of wy with wy is denoted by wg.wy and |wyg|
denotes the length of wg. We say that wq is a prefix of w; if there exists w € A*
such that w; = wg.w.

DEFINITION 6.1 (Labelled Deterministic Tree).
Let S be a set. A deterministic tree over A labelled by S is a map ¢ : Dom(t) — S
where Dom(t) ¢ A* such that :

e Dom(t) is prefix-closed i.e. every prefix of an element of Dom(t) is also in
Dom(t). The elements of Dom(t) are called the nodes of t; ¢ is called the
root of t. For all node w; # ¢, there exists a unique wg € Dom(t) and a € A
such that w; = wg.a. We say that wy is the father of wy.

e Every node of ¢ is of finite degree i.e. every node has a finite number of sons.

Let wg € Dom(t), the subtree t,, of t of root wg is the map which associates
the label ¢(wp.w) to each w such that wg.w € Dom(t).
An infinite path of t is an infinite sequence (wy,)n>0 of nodes of t such that wo = ¢
is the root and for all n > 0, w,, is the father of w,, ;. Let Path(¢) denote the set
of infinite paths of ¢. Note that infinite paths are encoded by words of A“. This
allows us to consider on Path(¢) the topology inherited from the product topology
of A¥. For any node x of t, let P, denotes the set of infinite paths going through
x. Then the topology of Path(t) is generated by {P, | ¢ node of ¢}.
Let t; and ty be two trees over A; and A, labelled by S; and S, respectively. We
say that t; and ty are isomorphic if there exists two bijections o4 : A; — As and
ogs : S1 — S such that, if o7 : A7 — Aj denotes the canonical extension of o4,
then 07 |pom(1,) is a bijection between Dom(t;) and Dom(tz) and t; = ogot; oo¥ L.
DEFINITION 6.2 (Regular trees).
A tree will be said to be regular if it has only finite number of subtrees up to
isomorphism.

Now, we will see that regular trees are in correspondence with a special kind
of automata called Moore machines [HU79, chap 2.7].

DEFINITION 6.3 (Moore Machine).
A deterministic finite automaton with output over S or (deterministic) Moore ma-
chine is a tuple A = (Q,J, A, qo, 7) where A is an alphabet, @ is a finite set called
the set of states; § : Q x A — @ is the transition map; qo € @ is called the initial
state; 7 : ) — S assigns an output to each state. Sometimes, 7(¢) is called the
label of ¢.

Let A be an automaton, we consider £(A) c A*, the language over A accepted
by A. In order to define it, we have to extend §. Let us consider the map 0 :

~

Dom(d) C @ x A* — @ defined by the following inductive rules :
o forall g € Q, 0(q,¢) =g,
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o forall ¢ € Q, w € A*, a € A such that §(¢,w) is defined : 6(¢q,w.a) =

6(d(q,w), a).
A state ¢ is said to be reachable if there exists a word w € A* such that ¢ = S(qg, w)
is defined. Unreachable states play no role in the behaviour of the automaton; so,
we will assume that all the states are reachable.
Let £L(A) = {w € A* | §(qo,w) is defined}. Such a machine can also be use to
deal with languages of infinite words in some constructive way. An infinite word is
recognized by A if all its prefixes are recognized :
L9(A) = {u = apay...ay... € A° | Yk >0 : 6(qo,aoa;...ax) is defined}. For an
overview on automata on infinite words, see for instance [Tho90].

Here we turn to the correspondence between regular trees and Moore machines.
Let ¢t be a regular tree over a alphabet A labelled by S. Let to = t,...,t,, be the
isomorphism classes of its subtrees. S is finite because its only elements which are
labels of nodes of ¢ are the t;(¢) for i = 0...n. We associate to ¢ the Moore machine
Ay =(Q,0, A, go, 7) defined by Q = {to, ..., tn}; 0(ti, a) = t; if and only if (¢;) = t;;
do = to; for all i, T(ti) = ti(é‘).

We obtain the converse by performing a kind of development of A; :
Let A = (Q,6, A, qo,7) deterministic finite automaton labelled over a set S. Let
L(A) be the language over A accepted by A. Let us define the A-tree t 4 associated
to A by :

e Dom(ta) = L(A) c A*. A
e For all w € Dom(ty), ta(w) = 7(6(qo, w)).

The reader can easily check that t4 is a regular tree and ¢t = ¢ 4,. Note that for a
regular tree ¢, £%(A;) and Path(¢) are canonically homeomorphic.
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