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Abstract. We consider the inequatiof A C BX whereA, B and X are for-
mal languagesX is unknown. It has been proved in [9] that/f is a regular
language then the maximal solution is also regular. Howeferproof, based on
Kruskal’s Tree Theorem, does not give any effective corsion of the solution.
Here we give such an effective construction in the case wHesad B are both
finite and are such thahaxyec g |b| < mingea |a|. Moreover, the complexity of
our construction is elementary.
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Introduction

Language equations arise in a natural way in computer sei¢mt us just think
about Arden’s lemma for instance, or context-free langaageich are compo-
nents of the least solutions of systems of polynomial equati

However, even very simple questions may appear very diffi¢tdr in-
stance, one can think about the equatidh = LX where X is unknown;
this is the long-standing Conway problem which asks whetiemaximal lan-
guage commuting with a given rational language is alsomatior not ([2], see
also [6, 1, 4,5]).

Many advances have been done in this domain this last feve yga#, 5]).
But Conway'’s problem has got a solution very recently, dst@enegative solu-
tion. It has been proved in [11] (see also [3]) that theretexdfinite languagel.
such that the maximal solution &f L = L X is not recursively enumerable even
for some finiteA and B. In addition, many natural classes of formal languages
have got characterizations in terms of equations (see g2, 1

In [9], it has been proved that the maximal solutionoft C BX is regular
if B is regular, whatever is. But the situation is tight: if one imposes 6
to be contained in some given star-free language, then ti@mabsolution of
X A C BX can become non recursively enumerable (see [8]). This idatiza
of the negative result of [11]. Besides, the proof that theimal solution of
XA C BX is regular is based on the Kruskal's Tree Theorem (see [7i3. |



non constructive, i.e., it does not give any effective cartgion of the maximal
solution.

In this article, we give such aeffective constructiomm the case wherel
and B are both finite and are such thatix,c g [b| < minge4 |a|: we set up
an algorithm to construct an automaton recognizing the malxsolution of
XA C BX. Moreover, the complexity of our algorithm is elementary.

Like in [9], our proof takes the point of view of games. We ddies a game
with two players: the attacker and the defender. Positibtisecgame are words.
The game consists of a succession of turns as follows: fisgttacker chooses
aworda € A and appends it ta, wherew is the current position of the game.
If w.a has no prefix inB then the attacker wins and the game stops. Otherwise
the defender chooses a prefixwiz which belongs ta3, and cuts it fromw.a,
driving the game to a new positidiw.a for next turn. The defender wins if the
game consists of infinitely many turns. Membership of the imaksolution of
XA C BX can be translated into the existence of a winning strategyhi®
defender (see [9)]).

The main ingredient of our proof is a shrinking lemma for wetdving a
winning strategy, it shall be detailled in the text (see Bec?). The hypothesis
on lengths of words off and B is used only for it.

The author wants to thank Professor G. Sénizergues for \&pfuh dis-
cussions; and the anonymous referee for indicating larmgeldications of the
proof.

Preliminaries

In all the paper)’ is a finite alphabetd and B are finite languages over such
that

max |b| < min |a
beB acA

Letw be aword, we denote By | the length ofw. Letwv be a prefix (respectively
a suffix) of w. We denote by\w (respectivelyw/v) the unique word’ such
thatw = vv’ (respectivelyw = v'v).

The set of finite sequences of elementsdofs denoted byl'4, this is the
completeA-determinitic tree. “A-deterministic” because each nods tine and
only one son associated to eacle A; the edge associated to this son can be
considered ag-labeled. The empty sequence, i.e., the root, is denoted by

1 The GameofXA C BX

In a classical way, the equatiofA C BX can be translated into the game
framework as follows.



We are supposed to be given with two languageand B. We consider a
game with two playersAttackerandDefender. The game consists in a possibly
infinite sequence of turns. At the beginning of each turn,gbsition of the
game is a word. One turn on a positiengoes as follows:

1. Attackerchooses a word € A and appends it to the right af.

2. If no prefix ofw.a does belong td, thenDefenderdooses, the game stops
andAttackerwins. OtherwiseDefenderchooses a prefikof w.a belonging
to B and erases it fromv.a. And the game continues in the positibyw.a.

So, Attackerwins if he manages to blocRefender; and Defenderwins if the
game consists of an infinite number of turns in which he nexesds. We say
that Defenderhas a winning strategy on a wotd if he has a strategy which
makes the game starting ancontinue forever whatevekttackerdoes.

Lemma 1 (Equation and Game).A wordw belongs to the maximal solution
of XA C BX if and only if Defender has a winning strategy.

Proof. See [10].

2 A Shrinking Lemma on Attacker's Strategies

2.1 The Shrinking Lemma

Let us denote by the set of strict prefixes of words @f, including the empty
word. Let us consider a word. We say that some € S is accessible through
w by Defenderif w can be written a$,...b,,s where all theb;'s are words of
B. The set of all elements & which are accessible through is called the
visibility of Defenderthroughw. It is denoted by Viéw).

Remark 1.1f Vis (w) = () thenAttackerhas a winning strategy om. But the
converse is false. Suchwais said to baerminal

Definition 1 (B-relation). Let us be given with two words and w’. We say
that w and v’ are B-related which is denoted by « g w/, if there exist 4
wordswy, v2, v3 andv), such that:

e w = vjveuz andw’ = vy vhus.
e Foranys € Vis(vy), Vis(svg) = Vis(sv}).
[ ] ‘1)1| 2 Nl.

where we define

o (Milae 4 |af) (maxpe Ibl)(

mMinge A |a| — MaXpep |b|



Let us note thats is superfluous in this definition. We just keep it for con-
venience of notations.

Remark 2.For any two wordsw andw’, w < p w' implies that Vigw) =
Vis(w').

Lemma 2. The relation< g is a right congruence of finite index over the set of
words of length greater thafv; .

Proof. To see that—p is a right congruence, only transitivity is not straight-
forward: Letw < p w’ andw < p w”. Let us note according to the previous
notations:

— w = vyvy andw’ = vyvh (here we omis which is supposed to be added
at the right ofv,).
— w' = 192 andw” = 0,7}
Let us assume that;| > |vi|. Therefore; is a prefix ofw”. Let us pick
somes € Vis(v;). Then Vigsvy) = Vis(svh). Let S = Vis(s.(v1\v1)). Then
Vis(sv}) is the union of all the Vigsts) for 5 € S. Besides, ang € S be-
longs also to Visv;). And so, by assumption, is)vs = Vis(s)vh. Thus,
Vis(svs) is the union of all the Viéswh) for 5 € S, which is in turn equal to
Vis(s(vq1\v1).9%). This proves that andw” are B-related with, = (v;\v07).75.
To verify that« p is of finite index, it suffices to note that any sufficiently
large word is equivalent to a shorter word, prefix of it, andot@inded length.
To get that, one uses a simple counting argument, based dadhiats is a
finite set and therefore has a finite number of subsets.
Let us mention that the congruence is computable.

Let o be a strategy fod ttacker (respectivelyDefender) over a worcw. A
finite o-sequence of playis the game is a finite sequence of plays
(a1,b1), (ag,b2), ..., (an, by) WhereAttacker (respectivelyDefender) has play-
ed according t@. This means that eaceh of the sequence has been chosen ac-
cording to the previous; for j < i ando. Theb; are unspecified and variable.

A strong strategyfor Attacker(respectivelyDefender) is a strategy in the
game modified in such order thAttacker (respectivelyDefender) can play
several words ofl (respectivelyB) at the same turn. Formally, a strong strategy
for Attacker(respectivelyDefendel) is a strategy in the game defined by the pair
(A, B) (respectively(A, BT)) instead of(A, B). Let us note that ifAttacker
has a winning strong strategy, then he has a winning strategy this is the
same thing foDefender. Indeed, provided with a winning strong strategy, one
can win in the normal game by maintaining a (FIFO) queue ofgld/e just use
the concept of strong strategy in order to be more confatalblen describing
winning strategies.



Lemma 3 (Shrinking Lemma). Let us be given with twa@-related wordsw
andw’, and a strategy for Attacker ovenv. Then there exists an integérand
a strong strategy’ for Attacker overny’ with the following property: Whatever
the plays ofDefender, by followingo’, in less thanL turns:

— Either Attacker wins

— Or he drives the game from’ to a new wordv’ such that there exists a
non-void finiteo-sequence of plays driving the game franto a new word
v which is B-related tov'.

The integerL and ¢’ depend o, w andw’.

Before going into its proof, let us state the main consege@fithis result:

Theorem 1. Letw andw’ be twoB-related words. Themitacker has a win-
ning strategy over if and only if he has one on’'.

Proof. Indeed, let us suppose thattacker has a winning strategy over. We
can construct a winning strategy ovet as follows:

Lemma 3 provides us a strategy and an integet.. Let Attacker start
playing according to this strategy. According to the Lemaitgr a finite number
of turns, less that.:

— Either Attacker wins. That is what we wanted amnd stops here.

— Or else, he drives the game to a warfdand the lemma provides us
sequence of plays driving the game framto a hew wordv; which is B-
related tov].

The strategw is still winning over this new word;, we then start again the
process with the words; andv}. And so on.

Following that, we construct a sequengevs, ..., vg, ... of words which
are positions of a play in the game whetéacker follows o. Let us note that
each paim;, v; 1 are separated by at least one turn, and in fact, several turns
In particular, when the game arrives to the wojd at leastk turns have been
played. Besides, let us observe thatas a winning strategy o ttacker, is fi-
nite. This implies that there exists an intedey such thatAttacker wins for
sure in less thai,, turns fromw. Thereforefk is also bounded by, . This im-
plies that our process stops after at mbgtcycles, which means thatttacker
wins within at mostZ,, cycles.

In the proof of Lemma 3 we need the following concept:

Definition 2 (Waiting Loop). Letw be a word. We definewaiting loopto be a
decompositionv = wywowsw, of w in 4 factors such that for any € Vis(wy),
Vis(swq) = Vis(swows) andws not empty.



Lemma 4 (Waiting Loops and B-Relation).Let w be a word, and letv =
wrwowsw, be a waiting loop such thatv;| > N;. Thenw is B-related to any
word of wywaw3wy.

Proof. So, letw’ = w1w2w§w4 for some integek. According to the notations
of Definition 1, let us define; = wy, v2 = wows, vy = wewh andvg = wy.
First, let us note thdw,| > NV is true, it is an hypothesis of the lemma.

We prove that for any € Vis(v;), Vis(sve) = Vis(svh) by induction onk.
Fork = 0, there is nothing to prove: this is the hypothesis of the lemioet us
thus suppose that it is true for sorhe> 0. By induction, we just have to prove
that for anys € Vis(v;), Vis(swowk) = Vls(sw2w§+1).

Solets € Vis(v). Lets’ € VIS(SZUQZU?)) Letus show that' € Vis(swowh ™).
Letby,...,b, € B be such thab ...b,s' = swow}. Letn’ be the greatest
index such thab, ...b, is a prefix ofswy. And lets” = by...b,\swo; '
belongs to Vissws ). Besides, by assumption, Visvs) = Vis(swaws). There-
fore, there exist#/, ...,/ , such that! ...V ,\swows = s”. Finally, we ob-
tain that

b/l ... b;wbn’-kl Lbps' = swgwgwlg = 5w2w§+1

which means that’ € Vis(swow} ™). That is what we wanted. The converse is

similar.

Existence of waiting loop is given by the following simplesuit based on a
simple counting argument based on the fact that visibikig sire subsets 6f.

Lemma5 (Existence of waiting loops, Version 1)For any WOI’dw and any
prefixw; of w such that the length ab, \w is greater tharQ'S‘ there exists a
waiting loop of formw = wywswswy.

We actually will use a more precise version:

Lemma 6 (Existence of waiting loops, Version 2)Let w be a word, and let
w = cics...c, be a decomposition ab into n factors, where the;’s are
words. Letn; be such that, —ny > 2/5”. Thenw has a waiting loopw =
wiwewswy such thatw; = cjey ... ¢, and the otherw;’s are concatenations
of somer;’s. Formally: fori = 1,...,4, w; = ¢y, 41 .. cn,;, Whereng, ng, n3
andny are such that < nqy < ng < n3 < n,ng=0andnyg = n.

Proof ( of Lemma 3).

We describe the strategy from w’ turns after turns. In order to do that,
we describe a gam@ whereDefender's plays are generic, and doing that we
describe turns after turns hottackerhas to play. During this description, we
shall uses as anoracle to which we provide plays dbefenderand which tells
us whato suggests foAttacker’s plays.



First of all, let us observe thdlefender must play at least— — ol - turns
before completely erasing, (here we keep notations of Def|n|t|on 1 where
w = vivavg andw’ = vyvhus). And besides, from the definition @f; and the
fact thatminge 4 |a| > maxye [b| we get:

Ny Ny

> + 202157 4 1) (1)
maxpep [b] ~ mingea [al

Let us define ,
N} = Tmax |b|(2°]" 4+ 1)7
beB

There are 3 stages in the strategy:

1. Informally, the first stage starts at the beginning and goasdil the word ob-
tained by concatenating all plays Aftackeris sufficiently long, actually more
than Ny + V7.

According to the preliminary remark, during this stage yplaf Defender
remains intov;, becauses, is supposed to be great enough (see below). For
these plays thus, there is no difference betweesndw’ which both havey,
as a common prefix. The§l can be considered as a gagienw andAttacker
follows o.

So, precisely, the first stage consists of thdirst plays of the game
(al, bl), ((12, bg), ey (am,bm) wheren; is such tha.tal(lg R am,l\ < N+
N{ < |ajaz...an,|. Let us note thak,, i.e., the moment at which Stage 1
ends, depends on the plays@&fenderand ono which tells Attackerhow to
play. However, we can say thai < (N; + Ni)/ minge 4 |a| + 1. This implies
that

Ny

minge 4 |a|

N- b
ny < 1 n maxpes | |(2|5t2+1)

. : +2187 41
Mminge |a]  mingea |al

Together with Equation 1 of the preliminary remark, one canctude thatul
has not been totally erased, and even more than that: It neratieasg!® 2 +1
turns before that this means that there exists a woodl length greater than
maxpe |b|(2|5‘ + 1) such thaty; = bybs ... by, v. In particular, this justifies
the fact thatAttackercan uses to play during this stage.

2. In Stage 2 Attackerlooks for a waiting loop Formally: Attackerplays ac-
cording too until Turn ny such that there exists, such that

[war ... ap, |[an,+1- - - apyllang 11+ - - an,)e

is a waiting loop. We chooses to be minimal for this property Thanks to
Lemma 6, because the length ofs greater thamaxye s [b].(2/57° + 1), we



are sure that, occurs before) has been totally erased. In particulatfacker
can still uses to play during this stage.

3. During Stage 3Attackerno longer followss. He plays the sequence

Any 41, - - - Gny IN l0OP until Defenderhas almost erased, i.e., until Turnn;
which is such tha(b; ... b,,)\v1.v5, € Vis(v1.v5) whereb,,41,...,b,, are

all the plays ofDefenderduring Stage 3. In the followingp; ... by, )\v1.v} is
denoted bys’. Let us note that at this poinfittackermay be inside the loop,
i.e., he maybe playing somg with n, + 1 < i < ngo. Then whatever the plays
of Defender, Attackerfinishes the current loop. This drives the game to some
Turnny such that,, = ay,.

Let us note that whil&ttackeris finishing his loop, which takes at most
91512 + 1 turns, it may happen thddefendererasesvs and starts erasing the
first plays ofAttacker, i.e., the plays of Stage 1. However, Stage 1 above ensures
that the firstr; plays ofAttackermake a word of length greater tha® + V.
Therefore Defendemust leave at least a word of lenghy from a,as .. . ay, .

Now, the succession of plays which have been done is

(alubl)u (a27b2)7' LIS (a’n17bn1)7° L) (anéubné)v v

co(@ngsbng)y oy (g bng )y - - -y (Any s by ).

Letn} be the greatest integer such that< n%, < nzand(b; ... bné)\vl c
Vis(v1). In the following (b; ... b,,; ) \v1 is denoted by. We have that
(bnyg1 -+ - bng)\s.v5 = &' Therefores’ € Vis(s.v5). Besides, by the definition
of B-relation, Vigs.v}) = Vis(s.vs). Therefores’ € Vis(s.vz), and thus there
existby, ..., by, such thab; ...b,,s = s.vs.

Now, let us consider the gangeon w defined as follows: in this game, we
consider the sequence Defenders plays defined by

DL Bags ey bug Bty By Dyt b

Let us consider the sequenceAttacker’s plays corresponding to it according
too: ay,...,an wherem' = ns +m+nys —ns+ 1. The firstny playsa;’s are
exactly thea;'s that we have been just defined fgrin Stages 1 and 2, since in
these stage#ttackeractually usedr.

Let us go back to the definition of on the gamej’. Let us recall that we
are at Turnny + 1, andAttackeris going to play. We define his play to be the
concatenation ofi,,,+1 ... a,y, let us denote it by, ;. Let us recall that we
defines’ as a strong strategy. This means tAttackerplays inG’ just like if it
were inG. Letb,, 1 be the next play oDefender.



Now, let us observe thatif’ has not been totally erased, it remains the same
word in G and inG’ to complete the pass, which {&; ... b,,b,,+1)\w’, let us
denote it byu.

The description of’ ends here. To conclude, let us remark that if at some
point, Defendercannot play any more because the current word has no prefix in
B, thenAttackerwins the game anda’ ends.

It remains to show that the positions of the gareand §’ are B-related
words. To see that, we apply Lemma 4.

Let us suppose that’ has not been totally erased and that it remains the
word u defined as above. Altogether, we get §ra position of form:

w1 w2

ua1ag ... apy Ap41 an/2

*
w3 w4y

v (@pgr e ang) Qg1 Gng) o (Apg g - Gny) Gg g a,, (2

Wherevy € an,+1- .. @y (any 11 -- - an,) ™. IN G we get a position of form:

— —/
UALA2 - - - py Qg1 - - - Gt Gl ] === Gy Gpg g - - - Gy 3)
—— ——

w1 w9 w3 w4

The wordsw, ws, ws andw, defined above satisfy by construction the con-
dition of Lemma 4. They have been indeed chosen just in omleonstruct a
waiting loop. In addition, as we have seen during the desonpf o/, if w’ has
been totally erased, then this part remaining fropas, . . . a,,, is still of length
greater thanVvy.

To conclude the proof, we have to give a bound on the numberms tvhich
have been2done. Observe that during the 3 stages of plagan be erased and
at most2/°I” + 1 turns can be played after (in order to end the loop). Thisgive
the following bound:

/
A
min|b|
beB

3 Effective construction of the solution

To conclude, we consider the right congruence of Lemma 2wwels of length
greater thanVy. It can be extended easily to a right congruence over all svord
by setting any word of length less thayy equivalent to itself only. One gets
a new right congruence which still is of finite index. By Thewr 1, any two



congruent words both belong in the greatest solutiod & C X B or both do
not.

Let us consider an automaton associated to it; and let ustgbke largest
subset of states of this automaton such that if we considesét as the set of
final states; then we get a language which is solutiod &f C X B.
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