
Plan

• Structure d’une BD relationnelle

• Algèbre relationnelle

• Calcul relationnel

1

Structure d’une BD relationnelle

Les données sont structurées en tables (relations)

Etant donnés les ensembles A1, . . . An, une relation r

est un sous ensemble de A1 ×A2 × · · · ×An.

Une relation est un ensemble de n-uplets (ou tuples)

de la forme 〈a1, . . . an〉 avec ai ∈ Ai.

Exemple : On a trois ensembles : Nom, Num Cte et

Rue avec

Nom = {Durand, Dupont, Dupond}
Num Cte = {123, 124, 235 , 226}
Rue = {Neuve, vieille, Courte }

Alors

{ 〈 Dupont, 123, Neuve 〉,
〈 Dupont, 124, Neuve 〉,
〈 Dupond, 235, Neuve 〉,
〈 Durand, 123, Vieille 〉 }

est une relation sur Nom × Num Cte × Rue

2

Schéma de relation

Une table est une relation (au sens mathématique)

qui a un nom

A1, . . . , An sont des attributs

R(A1, . . . , An) est un schéma de relation.

R est le nom du schéma de la relation.

On note Att(R) pour désigner l’ensemble des attributs

de R

L’arité de R est la cardinalité de Att(R)

Le domaine de Ai (noté dom(Ai)) est l’ensemble des

valeurs associées à Ai. Cet ensemble peut être fini ou

non

3

Instance de relation

Emp Nom Num Cte Rue

Dupont 124 Neuve
Dupond 235 Neuve
Durand 123 Vieille

Att(Emp) = {Nom,Num Cte,Rue}
Arité(Emp) = 3

Dom(Num Cte) = les entiers naturels (infini)

Dom(Nom) = châınes de moins de 20 caractères (fini)

4

Langages de requête

Langages qui permettent d’interroger la BD

(i) Langages relationnels “purs”

• Algèbre relationnelle

• Calcul relationnel par n-uplet

• Calcul relationnel par domaine

(ii) Langages pratiques

• SQL (Structured Query Language)

• QUEL (Query Language)

• SEQUEL (Structured English as a Query Lan-

guage)

• QBE (Query By Example)

5

Algèbre relationnelle

Six opérations de base

1. Projection

2. Sélection

3. Union

4. Différence

5. Produit cartésien

6. Renommage

Certaines sont unaires d’autres sont binaires

6

Projection

Notation : πA1,...,Ak
(r) où

r : nom de relation et

∀1 ≤ i ≤ k Ai ∈ Att(r).

Le résultat de cette opération est une relation avec k

colonnes

Projection (Exemple)

On veut extraire les noms des employés de la relation

¡¡Emp¿¿ ci-dessous

Emp Nom Num Cte Rue

Dupont 124 Neuve
Dupont 235 Neuve
Durand 123 Vieille

πNom(Emp) =
Nom

Dupont
Durand

7

Sélection

Notation : σCond(r) où

• r est le nom d’une relation

• Cond est une condition de la forme

1. Atti θ Attj ou

Atti θ constante avec

θ ∈ {<,≤,=,≥, >, 6=}, ou bien

2. une conjonction (∧) ou une disjonction (∨) de

conditions

Le résultat est une relation qui contient tous les n-

uplets de r qui satisfont la condition Cond

8

Sélection (Exemple)

On veut avoir les informations concernant les em-

ployés dont le nom est Dupont

Emp Nom Num Cte Rue

Dupont 124 Neuve
Dupont 235 Neuve
Durand 123 Vieille

σ(Nom=Dupont) =
Nom Num Cte Rue

Dupont 124 Neuve
Dupont 235 Neuve

9

Union, Différence et Intersection

• Opérations ensemblistes classiques

• Notation : r ∪ s; r − s; r ∩ s

• r ∪ s = {t | t ∈ r ou t ∈ s}

• r − s = {t | t ∈ r et t 6∈ s}

• r ∩ s = {t | t ∈ r et t ∈ s}

• Opérations binaires

• Il faut que Att(r) = Att(s)

10

Union, Différence et Intersection

r A B

α 1
α 2
β 1

s A B

α 2
β 3

r − s =
A B

α 1
β 1

r ∪ s =

A B

α 1
α 2
β 1
β 3

r ∩ s =
A B

α 2

11

Produit cartésien

Notation : r × s

r × s = {tv | t ∈ r et v ∈ s}

tv est la concaténation des tuples t et v

Cette opération n’est pas définie si Att(r)∩Att(s) 6= ∅

Att(r × s) = Att(r) ∪Att(s)

Produit cartésien (Exemple)

r A B

α 1
β 2

s C D E

α 10 +
β 10 −

r × s =

A B C D E

α 1 α 10 +
α 1 β 10 −
β 2 α 10 +
β 2 β 10 −

12

Renommage

Notation : ρAtti→Att′i
(r)

Permet de renommer l’attribut Atti par Att′i

Le résultat est la relation r avec un nouveau schéma

Renommage (Exemple)

r A

10
20

ρA→B(r) =
r B

10
20

13

Composition des opérateurs

On peut appliquer un opérateur de l’algèbre au résultat

d’une autre opération

Exemple : πA

(
σB=20(r)

)

On dit que l’algèbre relationnelle est un langage fermé

car chaque opération prend une ou deux relations et

retourne une relation.

Soient les schémas de relation Tit(Id,Nom,Adresse)

et Cte(Num,Solde, Id T it).

Le compte de numéro Num appartient au client iden-

tifié par Id T it.

On veut avoir (i) le numéro, (ii) le solde et (iii) le

nom du titulaire de chaque compte débiteur.

Id Nom Adresse

A25 Dupond rue neuve
B212 Durand rue vieille

Num Solde Id Tit

120 25234.24 A25
135 -100 A25
275 230 B212

Tit Cte

14

1. Cte×Tit retourne une relation qui associe à chaque

tuple de Cte, tous les tuples de Tit

2. σId=Id T it(Cte×Tit) élimine les tuples où le compte

n’est pas associé au bon titulaire

3. σSolde<0

(
σId=Id T it(Cte×Tit)

)
retient les comptes

débiteurs

4. πNom,Num,Solde

(
σSolde<0

(
σId=Id T it(Cte×Tit)

))
élimine

les attributs non demandés

Comment aurait-on pu faire si dans Cte on avait Id

au lieu de Id T it comme nom d’attribut ?

15

Jointure

Notation : r 1 s

Att(r 1 s) = Att(r) ∪Att(s)

Résultat : Soient tr ∈ r et ts ∈ s. trts ∈ r 1 s ssi

∀A ∈ Att(r) ∩Att(s)tr.A = ts.A

Jointure (Exemple)

r A B

α 10
α 15
β 1

s B C

10 +
1 −

r 1 s =
A B C

α 10 +
β 1 −

16

Jointure (Exemple)

• Noter que le même résultat peut être obtenu comme

suit :

1. temp1 := ρB→B1
(s)

2. temp2 := r × temp1

3. temp3 := σB=B1
(temp2)

4. res := πA,B,C(temp3)

• La jointure n’est pas une opération de base de

l’algèbre relationnelle

17

Calcul relationnel par n-uplet

• Les requêtes sont de la forme {t | P (t)}

• C’est l’ensemble des n-uplets tels que le prédicat

P (t) est vrai pour t

• t est une variable n-uplet et t[A] désigne la valeur

de l’attribut A dans t

• t ∈ r signifie que t est un n-uplet de r

• P est une formule de la logique de premier ordre

18

Rappel sur le calcul des prédicats

• Des ensembles d’attributs, de constantes, de com-

parateurs {<, . . . }

• Les connecteurs logiques ’et’ ∧, ’ou’ ∨ et la négation

¬

• Les quantificateurs ∃ et ∀ :

– ∃t ∈ r
(
Q(t)

)
: Il existe un tuple t de r tel que

Q est vrai

– ∀t ∈ r
(
Q(t)

)
: Q est vrai pour tout t de r

19

Exemples de requêtes

Considérons les schémas de relations suivants :

Film(Titre, Réalisateur, Acteur) instance f

Programme(NomCiné, Titre, Horaire) instance p

f contient des infos sur tous les films et p concerne

le programme à Bordeaux

• Les films réalisés par Bergman

{t | t ∈ f ∧ t[Réalisateur] = ”Bergman”

• Les films où Jugnot et Lhermite jouent ensembles

{t | t ∈ f ∧ ∃s ∈ f
(
t[Titre] = s[Titre]∧

t[Acteur] = ”Jugnot”∧s[Acteur] = ”Lhermite”
)

20

Exemples de requêtes(suite)

Les titres des films programmés à Bordeaux :

{t | ∃s ∈ p
(
t[Titre] = s[Titre]

)
}

Les films programmés à l’UGC mais pas au Trianon :

{t | ∃s ∈ p
(
s[Titre] = t[Titre] ∧ s[NomCiné] = “UGC′′∧

¬∃u ∈ p
(
u[NomCiné] = “Trianon′′∧u[Titre] = t[Titre]

))
}

Les titres de films qui passent à l’UGC ainsi que leurs

réalisateurs :

{t | ∃s ∈ p
(
∃u ∈ f

(
s[NomCiné] = “UGC′′∧

s[Titre] = u[Titre] = t[Titre] ∧ t[Réal] = u[Réal]
))
}

21

Expressions “non saines”

Il est possible d’écrire des requêtes en calcul qui re-

tournent une relation infinie.

Exemple : Soit NumCte(Num) avec l’instance n et

la requête {t | ¬t ∈ n} i.e les numéros de compte non

recensés. Si on considère que le Dom(Num) = N ,

alors la réponse à cette requête est infinie.

Une requête est saine si quelle que soit l’instance de

la base dans laquelle on l’évalue, elle retourne une

réponse finie.

Dépendance du domaine.

22

Calcul relationnel par domaine

Les requêtes sont de la forme :

{〈x1, . . . , xn〉 | P (x1, . . . , xn)}

Les xi représentent des variables de domaine.

P (x1, . . . , xn) est une formule similaire à celles qu’on

trouve dans la logique des prédicats.

Exemple : Les titres de films programmés à l’UGC de

Bordeaux

{〈t〉 | ∃〈nc, t, h〉 ∈ p(nc = “UGC′′)}

23

Relation entre les 3 langages

• Toute requête exprimée en algèbre peut être ex-

primée par le calcul.

• Toute requête “saine” du calcul peut être ex-

primée par une requête de l’algèbre.

• Les 3 langages sont donc équivalents d’un point

de vue puissance d’expression.

• L’algèbre est un langage procédurale (quoi et com-

ment) alors que le calcul ne l’est pas (seulement

quoi)

24

Le langage SQL

C’est un langage fourni avec tout SGBD relationnel

commercialisé.

C’est un standard reconnu par l’ISO depuis 87 (standard⇒
portabilité)

On en est à la version 2 (SQL92) et la version 3 est

annoncée pour bientôt

SQL est un LDD et un LMD. Il est aussi utilisé pour

définir des vues, les droits d’accès, manipulation de

schéma physique . . .

25

Structure de base

Une requête SQL typique est de la forme :

SELECT A1, . . . , An
FROM r1, . . . , rm
WHERE P

Les Ai sont des attributs, les rj sont des noms de

relations et P est un prédicat.

Cette requête est équivalente à

πA1,...,An

(
σP (r1 × · · · × rm)

)

26

La clause SELECT

La clause SELECT correspond à la projection de l’algèbre.

Les titres des films :

SELECT Titre
FROM film

L’utilisation de l’astérisque permet de sélectionner tous

les attributs

SELECT *
FROM film

27

La clause SELECT (suite)

SQL autorise par défaut les doublons. Pour le forcer

à les éliminer, on utilise la clause DISTINCT

SELECT DISTINCT Titre
FROM film

La clause SELECT peut contenir des expressions

arithmétiques ainsi que le renommage d’attributs

SELECT Prix HT * 1.206 AS Prix TTC
FROM produit

28

La clause WHERE

Correspond au prédicat de sélection dans l’algèbre.

La condition porte sur des attributs des relations qui

apparaissent dans la clause FROM

SELECT DISTINCT Titre
FROM film
WHERE Réalisateur = “Bergman”

AND Acteur = “Stewart”

SQL utilise les connecteurs AND, OR et NOT

Pour simplifier la clause WHERE, on peut utiliser la

clause BETWEEN

SELECT Num
FROM compte
WHERE Solde BETWEEN 0 AND 10000

29

La clause FROM

Elle correspond au produit cartésien de l’algèbre.

Le titre et le réalisateur des films programmés à l’UGC

de Bordeaux.

SELECT Titre, Réalisateur
FROM film, programme
WHERE film.titre=programme.titre AND

programme.NomCiné=“UGC”

30

Les variables n-uplets

Elles sont définies dans la clause FROM

SELECT Titre, Réalisateur
FROM film AS f, programme AS p
WHERE f.titre=p.titre AND p.NomCiné=“UGC”

Soit Emp(Id,Nom,Id chef)

SELECT e1.Nom, e2.Nom AS Nom Chef
FROM emp e1, emp e2
WHERE e1.Id chef = e2.Id

31

La clause ORDER BY

SQL permet de trier les résultats de requête

SELECT *
FROM programme
WHERE NomCiné=“UGC”
ORDER BY Horaire ASC, Titre DESC

32

Opérateurs ensemblistes

SELECT . . .
. . .

UNION/ INTERSECT/ EXCEPT
SELECT . . .

Attention : Ces opérations éliminent les doublons,

pour pouvoir les garder, utiliser à la place INTER-

SECT ALL . . .

Si t apparâıt m fois dans r et n fois dans s alors il

apparâıt

• m+ n fois dans r UNION ALL s

• min(m,n) fois dans r INTERSECT ALL s

• max(0,m− n) fois dans r EXCEPT ALL s

33

Les fonctions d’aggrégats

Ce sont des fonctions qui agissent sur des ensembles

(multi-ensembles) de valeurs :

AVG : la valeur moyenne de l’ensemble
MIN : la valeur minimale
MAX : la valeur maximale
SUM : le total des valeurs de l’ensemble
COUNT : le nombre de valeur dans l’ensemble

34

Les fonctions d’aggrégats (suite)

SELECT COUNT(Titre)
FROM Programme

Cette requête retourne le nombre de films programmés

à Bordeaux.

Attention : Un même titre peut être compté plusieurs

fois s’il est programmé à des heures différentes et dans

des salles différentes.

SELECT COUNT(DISTINCT Titre)
FROM Programme

35

Aggrégats et GROUP BY

Le nombre de films programmés dans chaque salle

SELECT NomCiné, COUNT(DISTINCT Titre)
FROM Programme
GROUP BY NomCiné

Les attributs apparaissant dans la clause SELECT en

dehors des aggrégats doivent être associés à la clause

GROUP BY

36

Aggrégats et la clause HAVING

Les salles où sont programmés plus de 3 films

SELECT NomCiné, COUNT(DISTINCT Titre)
FROM Programme
GROUP BY NomCiné
HAVING COUNT(DISTINCT Titre) > 3

Le prédicat associé à la clause HAVING est testé

après la formation des groupes définis dans la clause

GROUP BY

37

Requêtes imbriquées

SQL fournit un mécanisme qui permet d’imbriquer les

requêtes.

Une sous requête est une requête SQL (SELECT-

FROM-WHERE) qui est incluse dans une autre requête.

Elle apparâıt au niveau de la clause WHERE de la

première requête.

Les films programmés à l’UGC non programmés au

Triaon

SELECT Titre
FROM Programme
WHERE NomCiné=“UGC” and Titre NOT IN (

SELECT Titre
FROM Programme
WHERE NomCiné=“Trianon”)

38

Requêtes imbriquées (suite)

Compte(Num, Solde, NomTit)

Trouver les comptes dont les soldes sont supérieurs

aux soldes des comptes de Durand

SELECT *
FROM Compte
WHERE Solde > ALL (

SELECT Solde
FROM Compte
WHERE NomTit=“Durand”)

En remplaçant ALL par SOME, on obtient les comptes

dont les soldes son sup. au solde d’au moins un

compte de Durand.

39

Requêtes imbriquées (suite)

Les cinémas qui passent tous les films programmés à

l’UGC

SELECT NomCiné
FROM programme p1

WHERE NOT EXISTS
(

(SELECT DISTINCT Titre
FROM programme
WHERE NomCiné=“UGC”)
EXCEPT
(SELECT DISTINCT Titre
FROM programme p2

WHERE p1.NomCiné=p2.NomCiné)
)

40

Test d’absence de doublons

La clause UNIQUE permet de tester si une sous

requête contient des doublons.

Les titres de films programmés dans une seule salle et

un seul horaire

SELECT p.Titre
FROM programme p

WHERE UNIQUE
(

(SELECT p1.Titre
FROM programme p1

WHERE p.Titre=p1.Titre
)

41

Les relations dérivées

Titulaire(Nom, Adresse)

Compte(Num, Solde, NomTit)

Donner le solde moyen des comptes de chaque per-

sonne ayant un solde moyen supérieur à 1000

SELECT NomTit, SoldeMoyen

FROM
(

SELECT NomTit, AVG(Solde)
FROM Compte

GROUP BY NomTit
)

AS Result(NomTit, SoldeMoyen)
WHERE SoldeMoyen > 1000

Noter qu’on aurait pu exprimer cette requête en util-

isant la clause HAVING

42

Les vues

Permettent de définir des relations virtuelles dans le

but de (i) cacher certaines informations à des utilisa-

teurs, (ii) faciliter l’expression de certaines requêtes

(iii) améliorer la présentation de certaines données.

Une vue est définie par une expression de la forme :

CREATE VIEW V AS requête

requête : est une expression quelconque de requête

V : est le nom de la vue

43

Les vues (suite)

Emp(NumE, Salaire, Dept, Adresse)

CREATE VIEW EmpGen AS
(

SELECT NumE, Dept, Adresse

FROM Emp
)

Toutes les informations concernant les employés du

département 5.

SELECT *
FROM EmpGen
WHERE Dept = 5

44

Modification des relations : Suppression

• Supprimer tous les employés du département 5

DELETE FROM Emp

WHERE Dept=5

• Supprimer du programme tous les films programmés

à l’UGC où un des acteurs est DiCaprio.

DELETE FROM programme

WHERE NomCiné = “UGC” AND EXISTS
(

SELECT Titre

FROM film

WHERE programme.Tite = film.Titre AND

film.Acteur =“DiCaprio”
)

45

Modification des relations : Suppression

Supprimer les comptes dont le solde est inférieur à la

moyenne des soldes de tous les comptes.

DELETE FROM compte

WHERE Solde < (SELECT AVG(Solde) FROM

compte)

Remarque : Si les n-uplets sont supprimés un à un

de la relation compte, on peut penser qu’à chaque

suppression on a une nouvelle valeur de AVG(Solde).

Solution de SQL : D’abord, calculer AVG(Solde) et

ensuite supprimer les tuples satisfaisant le test sans re-

calculer à chaque fois la nouvelle valeur de AVG(Solde).

46

Modification des relations : Insertion

• Insérer un n-uplet dans la relation “compte”

INSERT INTO compte(Num, Solde, NomTit)

VALUES(
511, 1000, “Dupont”)

ou bien

INSERT INTO compte VALUES(
511, 1000, “Dupont”)

• Insère un n-uplet avec un solde inconnu.

INSERT INTO compte VALUES(
511, NULL, “Dupont”)

ou bien

INSERT INTO compte(Num, NomTit) VAL-

UES(
511, “Dupont”)

Les 2 dernières m.à.j sont équivalentes sauf si une

valeur par défaut du Solde a été spécifiée lors de

la définition de la table compte.

47

Modification des relations : Insertion

Supposons qu’on a crée une relation TitMoy(NomTit,

Moyenne) qui doit contenir le nom des clients de

la banque ainsi que la moyenne des soldes de leurs

comptes.

INSERT INTO TitMoy(NomTit, Moyenne)

SELECT NomTit, AVG(Solde)

FROM compte

GROUP BY NomTit

48

Modification des relations : Update

Rajouter 1% à tous les comptes dont le solde est

inférieur à 500

UPDATE compte

SET Solde = Solde * 1.01

WHERE Solde ≤ 500

La condition qui suit la clause WHERE peut être une

requête SQL.

49

SQL en tant que LDD

• Le schéma des relations

• Les domaines des attributs

• Les contraintes d’intégrité

• La gestion des autorisations

• La gestion du stockage physique

• Les index associés à chaque relation

50

Domaines

• char(n) : châıne de caractères de taille fixe n

• varchar(n) : châıne de caractères de taille vari-

able mais inférieure à n

• int : Entier (un sous ensemble fini des entiers,

dépend de la machine)

• smallint : Entier. Sous ensemble de int

• numeric(p,d) : Un réel codé sur p digits et au

max d digits pour la partie à droite de la décimale.

51

Domaines

• real : Un réel flottant.

• date : YYYY-MM-DD (année, mois, jours)

• time : HH:MM:SS (heure, minute, seconde)

• Les valeurs nulles (NULL) sont possibles dans tous

les domaines. Pour déclarer qu’un attribut ne doit

pas être nul, il faut rajouter NOT NULL

• CREATE DOMAIN nom-client char(20)

52

Création des tables

• On utilise la clause CREATE TABLE

CREATE TABLE compte (

Num int NOT NULL,

Solde int,

NomTit varchar(20))

• Rajout de contraintes :

CREATE TABLE compte (

Num int NOT NULL,

Solde int DEFAULT 0,

NomTit varchar(20),

PRIMARY KEY (Num),

CHECK (Num ≥ 1))

• En SQL92, si un attribut est clé alors il est différent

de NULL

53

Clé étrangère

Soient Personne(NSS, Nom) et
Voiture(Matricule, modèle, Proprio).

“Proprio” correspond au NSS du propriétaire. C’est
une clé étrangère dans le schéma Voiture car c’est une
clé dans un autre schéma.

CREATE TABLE Voiture (

Matricule CHAR(8),

Modele CHAR(10),

Proprio CHAR(3),

PRIMARY KEY(Matricule),

FOREIGN KEY(Proprio) REFERENCES Personne

ON [DELETE | UPDATE] CASCADE|

RESTRICT|

SET NULL

)

CASCADE : Si une personne est supprimée, alors les
voitures qu’elle possède sont supprimées.
RESTRICT : Le système refuse la suppression d’une per-
sonne s’il y a des voitures qui lui sont rattachées.
C’est l’option par défaut.
SET NULL : Si une personne est supprimée, alors l’attribut
Proprio prend la valeur NULL

L’insertion d’une voiture ne peut se faire que si le
“proprio” existe dans Personne (ou bien valeur nulle)

54

Valeurs nulles

Employé Nom Salaire

Dupont 10000
Martin NULL

SELECT *
FROM Employé
WHERE Salaire ¿ 12000

Ne retourne aucun tuple. Pareil si la condition est :

WHERE Salaire ¡ 8000

SELECT SUM(Salaire) FROM Employé;

Retourne 10000

SELECT COUNT(Salaire) FROM Employé;

Retourne 2

SELECT AVG(Salaire) FROM Employé;

Retourne 10000

SELECT COUNT(*) FROM Employé

WHERE Salaire IS NOT NULL;

Retourne 1

55

Mise à jour des vues

Personne(Nom,Salaire). Supposons que la table Per-
sonne est vide.
CREATE VIEW Gros Salaire AS
SELECT *
FROM Personne
WHERE Salaire > 10000

INSERT INTO Gros Salaire VALUES(”Martin”, 5000)

Si on fait

SELECT * FROM Gros Salaire; on n’obtient aucun
tuple.

Si à la création de la vue on rajoute l’option

WITH CHECK OPTION

alors l’insertion est refusée.

Les mises à jours des vues sont traduites en des mises
à jours des tables sous-jacente. La traduction n’est
pas toujours unique.
=⇒ Certaines vues ne permettent pas des mises à
jour.

56

Jointure externe

Si on fait Personne1 Voiture, on n’aura que les per-

sonnes qui ont une(des) voiture(s) qui sont dans le

résultat.

SELECT *
FROM Personne P Left Outer Join Voiture V

ON P.NSS = V.Proprio

Cette requête retourne aussi les personnes n’ayant pas

de voiture.

Ces tuples auront des valeurs nulles pour les champs

provennant de Voiture.

Si on met juste Outer Join alors on aura les person-

nes sans voitures et les voitures sans Propriétaire.

La jointure est exprimée par : T1 Inner Join T2 On

Condition

57

Manipulation de schéma

• La commande DROP TABLE permet de sup-

primer une table.

Ex : DROP TABLE compte.

• Si une vue est définie sur la table compte alors il

faut utiliser

DROP TABLE compte CASCADE

• La commande ALTER TABLE permet de mod-

ifier le schéma d’une relation. Exemple :

ALTER TABLE compte ADD Date ouverture

date

ALTER TABLE compte DROP Solde CAS-

CADE

58

