Exo1 : Prise en main de RapidMiner pour l'extraction de règles d'association

RapidMiner est une suite logicielle permettant d'effectuer plusieurs tâches d'extraction de connaissance, en particulier, la recherche d'association, la classification et le regroupement qui sont les 3 thème qui seront abordés dans le cours.

Pour les règles d'association, RapidMiner implémente l'algorithme FP-Growth (basé sur les FP-trees vus en cours) qui permet de trouver les ensembles fréquents. Une fois les itemsets fréquents sont extraits, les règles d'association peuvent alors en être générées.

RapidMiner est facile d'utilisation car il est basé sur un ensemble d'opérateurs pré-définis (on peut en ajouter soi-même) qu'il s'agit d'enchainer sous la forme de workflow pour créer un processus d'extraction de connaissances. Le tout, se faisant d'une manière visuelle à base d'opérations « Glisser » et « Relier ».

Pour illustrer, nous allons travailler sur le fichier de données qui s'appelle « Transactions » qui se trouve déjà dans RapidMiner une fois ce dernier installé (on verra comment le retrouver). Il s'agit d'une table de la forme Transactions(Invoice, Product1, Order, Sales Value). Chaque ligne de cette table signifie que dans telle facture, on a un produit qui a été commandé pour telle quantité (Order) et qui a été facturé pour telle montant. Si 2 produits différents sont mentionnés dans une même facture, alors on a 2 enregistrements.

On veut extraire à partir de cette table les produits qui sont régulièrement facturés ensemble (association entre produits facturés). Chaque facture est donc vue comme une transaction.

Avant de pouvoir extraire les ensembles fréquents puis les règles d'association, il faut d'abord « mettre en forme » les données pour les présenter sous un format « acceptable » par RapidMiner. En effet, RapidMiner, et plus précisément son implémentation de FP-Growth, requiert à ce que les transactions soient sous la forme d'une table avec une seule colonne et où chaque enregistrement est une liste d'items séparés par un caractère spécial (par exemple '|')¹. Pour réaliser cette transformation, nous allons utiliser les outils de RapidMiner. Une fois celle-ci effectuée, on peut appliquer FP-Growth et par la suite on applique au résultat de FP-Growth, l'opérateur de génération des règles. Noter que pour le premier, on peut fixer, entre autres paramètres, le support minimal, et pour le second, la confiance minimale.

	Resulting and	Press	Parameters
	O restine	0 mm	if Person
onnées et	H Training Secondary		New York
ocessus	* Complete	- × •	tepha -
nregistrés	A Press		
0			and rule
			accountry
			Z talk and
	Openators -		ef Danas
		Leverage the Machine of Darwite is get operative economications based in our partners theory.	-
	+ C Bandag (C)	√ stan man dCont	
	 Chartering (20). Stationary (10): 	Bestille -	Mainth Name

• Double cliquer sur « Transactions » pour voir son contenu.

¹ Il existe deux autres formats possibles mais on ne va considérer pour l'instant que celui-ci.

Glisser « Transactions » vers la fenêtre de création de processus

epository 🛛		Process
Q Import Data	(F.*)	Process
* Templatos	^	Precess
* 📴 Chum Modeling		
Credit Risk Modeling		0.44
* 🎫 Direct Marketing		Retirerer Transactions
Geographic Distances		~ ~ P
+ 🌇 Lift Citari		-
* 📑 Market Basket Analysis		
of Market basket analysis		
Transactions		
* 🎇 Medical Fraud Detection		
a The Passester Clevellan	1¥.	

- Avant de chercher les ensembles fréquents, on agrège les enregistrements de cette table en (i) regroupant ces enregistrements par facture (invoice) et (ii) en concaténant les valeurs de l'attribut Product 1. Pour cela, il faut récupérer l'opérateur d'agrégation. Il suffit de taper « Aggregate » dans la fenêtre des opérateurs puis glisser cet opérateur dans la fenêtre de définition de processus. Faire en sorte que
 - L'entrée d'aggregate soit la table transactions
 - Préciser l'attribut de regroupement (nous c'est Invoice)
 - Préciser l'attribut qu'on veut agréger (c'est Product 1) et la fonction d'agrégation (c'est concatenation)

 On peut déjà chercher à voir le résultat de cette opération : relier la sortie de l'opérateur Aggregate à bouton « res » (pour result) qui se trouve à droite de la fenêtre puis lancer le processus :

 On doit donc éliminer les doublons avant d'agréger. Pour ce faire, on doit (i) sélectionner de la table Transactions juste les deux attributs qui nous intéressent : Invoice et Product 1 et ensuite (ii) éliminer les enregistrements en double.

Process	0			
Dinp				res
Retrieve Transactions	Select Attributes	Remove Duplicates	Aggregate	res (
C out	exa exa	exa P exa	exa exa	
v		dup		

- On peut vérifier que maintenant, chaque produit n'est associé qu'une seule fois à chaque transaction.
- Le résultat de l'opérateur « Aggregate » est une table de transactions à deux colonnes : Invoice et Concat(Product 1). Il faut supprimer la colonne invoice pour qu'elle ait un format accepté par l'opérateur FP-Growth qui trouver les ensembles fréquents (mettons comme support minimal 10%).

Process		Parameters #		
Process	P P 0 8 3 4 8 3	input format	item lists.	• 0
ne -		Rein separators	1	ψ
Retrieve Transactions Select Attributes Remove Duplicates Aggregate		use quotes		-10
· · · · · ·		escape character	Ň.	0
v	Select Attributes (7)	🚽 bim ilam names		0
		min requirement	support	• 0
Leverage the Wilsdom of Crowds to get coerstar recommendations based on your process desir	e e e e e e e e e e e e e e e e e e e	min support	0.1	10

• Le résultat aura la forme suivante :

Size	Support	Item 1	Item 2	
1	0.079	Product 23		
1	0.073	Product 15		
1	0.071	Product 26		
1	0.067	Product 13		
1	0.059	Product 21		
1	0.057	Product 24		
1	0.049	Product 19		
1	0.049	product 1		
1	0.047	Product 16		
1	0.043	Product 14		
1	0.037	Product 29		
1	0.028	Product 25		
1	0.028	Product 27		
1	0.024	Product 17		
1	0.024	Product 31		
1	0.022	Product 22		
2	0.034	Product 11	Product 20	
2	0.026	Product 12	Product 20	

• A partir des ensembles fréquents ainsi obtenus, on peut chercher les règles d'association avec une condition sur la confiance (ex : 50%)

Process					Parameters	×	
Process			PP 🐚 👩	😽 🍹 💕 🖾	Treate Assoc	ciation Rules	
Piocean					offerion	confidence	
) ing	Remove D	aplicates			min confidence	0.5	
Retrieve Transactions Select Attributes	JI.		Create Association Robert		gain theta	2.0	
, <u> </u>	~	Y			laplace k	1.0	
Le résultat cont AssociationRules (6	iendra ul	ne seule règle c	jui est :				
Show rules matching	No.	Premises	Conclusion	Support	Confidence	LaPlace	Gain
all of these conclusions:	1	Product 15	Product 12	0.047	0.639	0.975	-0.099
Product 12	-						

Exo2 : Application

Soit le fichier Ticket_Clien_Produit(N°Ticket, N°Client, Produit) qui enregistre les produits achetés par un client (disposant d'une carte de fidélité) lors de son passage à la caisse d'un supermarché.

N°Ticket	N°Client	Produit
1	1	А
1	1	В
1	1	С
2	1	А
2	1	С
3	2	А

A partir de cette table, on veut extraire des règles de la forme

Produits \rightarrow produit

Ces règles peuvent avoir deux sens différents :

1) si tels produits ont été achetés lors <u>d'un passage à la caisse</u> alors tel produit a aussi été acheté lors <u>du même passage</u>, ou bien

2) Si tels produits ont été achetés <u>par un client</u>, alors tel produit a aussi été acheté <u>par le même client</u>, mais pas forcément en même temps.

Utiliser le fichier CSV disponible sur le site du cours pour réaliser ce travail.