Approche combinatoire de l'analyse des k-arbres

Alexis Darrasse

28 janvier 2010

k-trees: a class of graphs

Definition

A tree is:

- either a vertex,
- or a tree with one of its vertices connected to a new vertex.

k-trees: a class of graphs

Definition

A tree is:

- either a vertex,
- or a tree with one of its vertices connected to a new vertex.

Definition - [Harary & Palmer-1968] (k = 2), [Beineke & Pippert-1969]

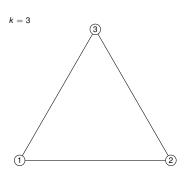
A k-tree is:

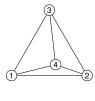
- either a k-clique,
- or a k-tree with one of its k-cliques connected to a new vertex.

k = 1

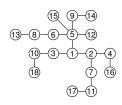
k = 2

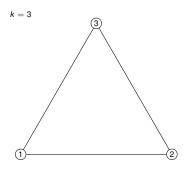
1





$$k = 1$$

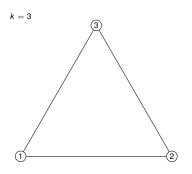


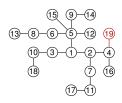


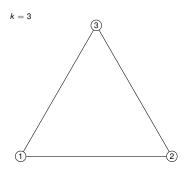
k = 1

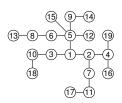
k = 2

(15) (9)-(4) (13)-(8)-(6)-(5)-(12) (10)-(3)-(1)-(2)-(4) (18) (7) (16) (17)-(11)

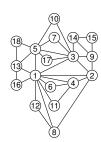




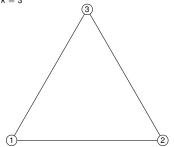




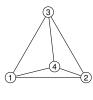
k = 2



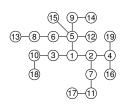
$$k = 3$$



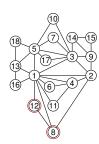
$$k = 4$$



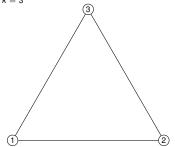
k = 1



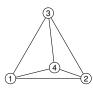
k = 2

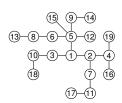


$$k = 3$$

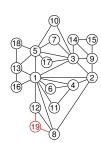


k = 4

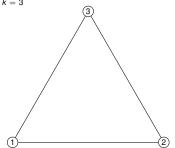




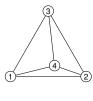
k = 2

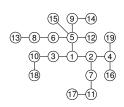


$$k = 3$$

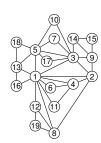


$$k = 4$$

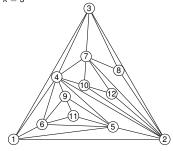




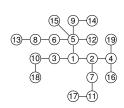
k = 2



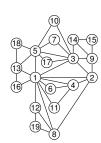
$$k = 3$$



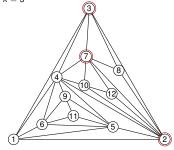
k = 4



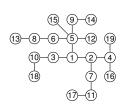
k = 2



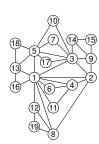
k = 3



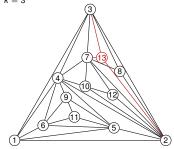
k = 4



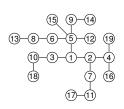
k = 2



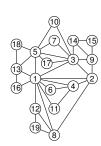
$$k = 3$$



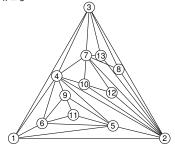
k = 4



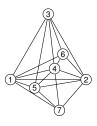
k = 2

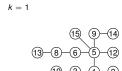


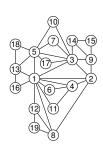
k = 3

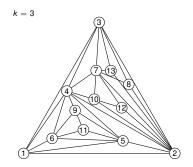


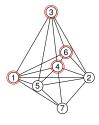
k = 4

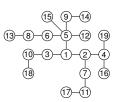




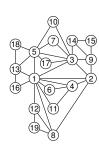




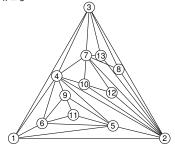




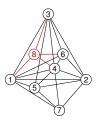
k = 2



k = 3



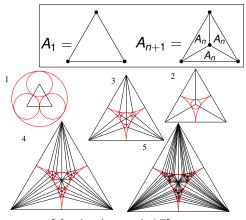
k = 4



Combinatorial analysis of *k*-trees

bijection between planar 3-trees and ternary trees estimating distances in planar 2-trees BFS-profile of general *k*-trees

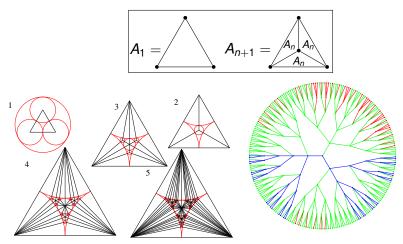
Apollonian networks (deterministic)



[Andrade et al. 05]

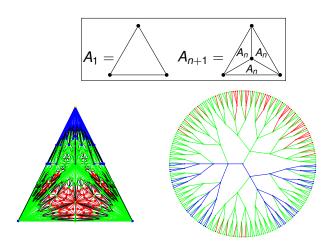
- Properties similar to "real world" graphs
- Inspired from the apollonian packings

Apollonian networks (deterministic)



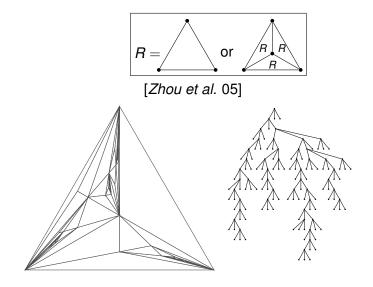
The (trivial) bijection with ternary trees can be used to study distances to an external vertex.

Apollonian networks (deterministic)

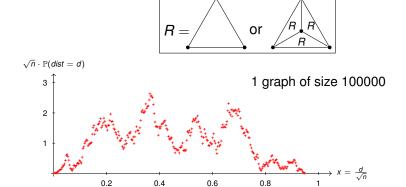


The (trivial) bijection with ternary trees can be used to study distances to an external vertex.

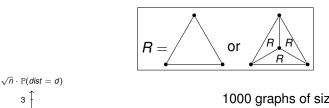
Random Apollonian networks (Planar 3-trees, Stack triangulations)

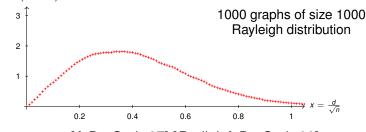


Random Apollonian networks (Planar 3-trees, Stack triangulations)



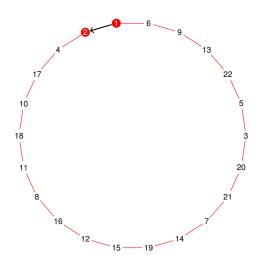
Random Apollonian networks (Planar 3-trees, Stack triangulations)

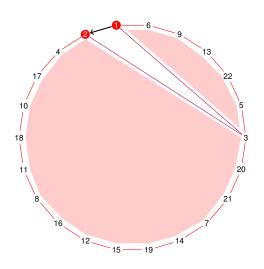


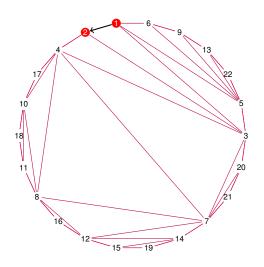


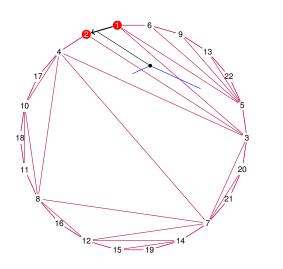
[A.D., Soria 07] [Bodini, A.D., Soria 08]

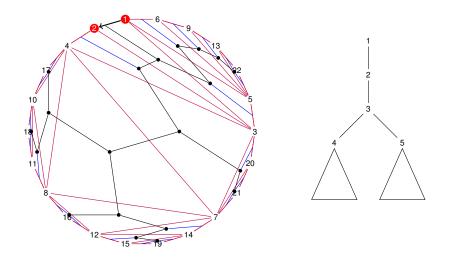
[Albenque, Marckert 08]

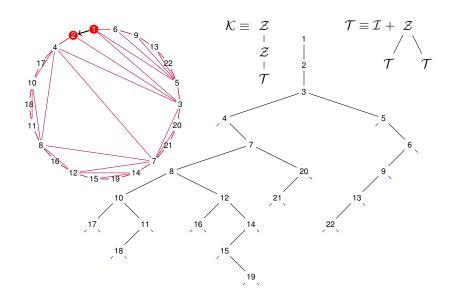


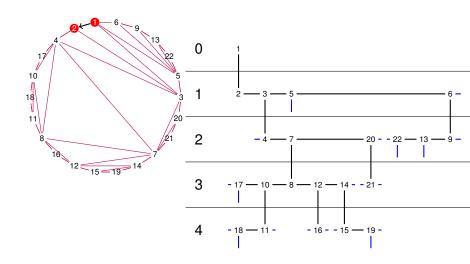


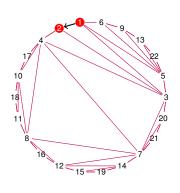




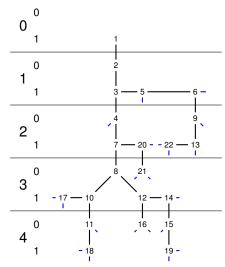








$$\begin{split} \mathcal{K} &\equiv \mathcal{Z} & \mathcal{T}_{d,0} \equiv \mathcal{I} + \mathcal{Z}_{d} \\ \mathcal{Z} & \mathcal{T}_{d,1} & \mathcal{T}_{d,1} \\ \mathcal{T}_{1,1} & \mathcal{T}_{d,1} \equiv \mathcal{I} + \mathcal{Z}_{d} \!\!-\!\! \mathcal{T}_{d,1} \\ \mathcal{T}_{d+1,0} & \mathcal{T}_{d+1,0} \end{split}$$



$$K_d(z, u) = \sum_{n,m} r_{n,m} u^m z^n$$

 $r_{n,m}$: # of rooted k-trees with n total vertices and m vertices at distance d

$$\frac{\partial}{\partial u}K_d(z,u)\big|_{u=1}=\sum_n r_n z^n$$

r_n: # of vertices at distance d in all rooted k-trees with n total vertices

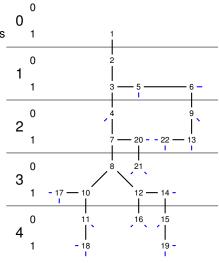
$$K_{d}(z, u) = z^{2}T_{d-1,1}(z, u)$$

$$T_{d,1}(z, u) = 1 + zT_{d,1}(z, u)T_{d-1,0}(z, u)$$

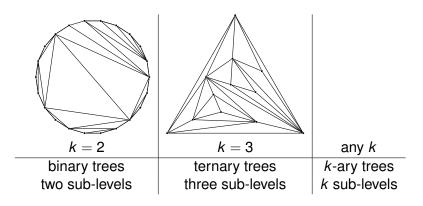
$$T_{d,0}(z, u) = 1 + zT_{d,1}^{2}(z, u)$$

$$T_{0,1}(z, u) = 1 + zT_{0,1}(z, u)T(z)$$

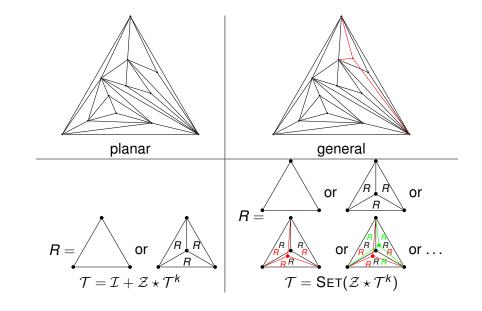
$$T_{0,0}(z, u) = 1 + zT_{1,1}^{2}(z, u)$$



Generalization to planar *k*-trees



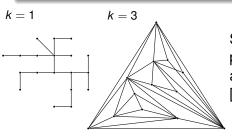
Generalization to (non-planar) k-trees



Definition [Beineke, Pippert 69] (k = 2 [Harary, Palmer 68])

A k-tree is:

- either a k-clique,
- or a k-tree with one of its k-cliques connected to a new vertex.



Some graph theory NP-hard problems have linear time algorithms on partial *k*-trees [*Arnborg, Proskurowksi* 89]

Generating function for distances

$$K(z) = \sum_{n} K_{n} z^{n}$$

$$K(z) = z^{k} T(z)$$

$$T(z) = \exp(z T^{k}(z))$$

$$K_{d}(z, u) = \sum_{n,m} r_{n,m} u^{m} z^{n}$$

$$K_{d}(z, u) = z^{k} T_{d,1}(z, u)$$

$$T_{d,i}(z, u) = \exp(z T^{k-i}_{d,i}(z, u) T^{i}_{d,i+1}(z, u))$$

$$T_{d,d}(z, u) = T_{d-1,0}(z, u)$$

$$T_{0,i}(z, u) = \exp(u z T^{k-i}_{0,i}(z, u) T^{i}_{0,i+1}(z, u))$$

$$T_{0,d-1}(z, u) = \exp(u z T^{k-i}_{0,d-1}(z, u) T(z))$$

$$\frac{1}{nK_{n}} [z^{n}] \frac{\partial}{\partial u} K_{d}(z, u) \Big|_{u=1} =$$
mean # of vertices at distance d

Generating function for distances

$$K(z) = \sum_{n} K_{n} z^{n}$$

$$K(z) = z^{k} T(z)$$

$$T(z) = \exp(zT^{k}(z))$$

$$K_{d}(z, u) = \sum_{n,m} r_{n,m} u^{m} z^{n}$$

$$K_{d}(z, u) = z^{k} T_{d,1}(z, u)$$

$$T_{d,i}(z, u) = \exp(zT_{d,i}^{k-i}(z, u)T_{d,i+1}^{i}(z, u))$$

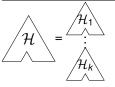
$$T_{d,d}(z, u) = T_{d-1,0}(z, u)$$

$$T_{0,i}(z, u) = \exp(uzT_{0,i}^{k-i}(z, u)T_{0,i+1}^{i}(z, u))$$

$$T_{0,d-1}(z, u) = \exp(uzT_{0,d-1}^{k-i}(z, u)T(z))$$

$$\frac{1}{nK_n}[z^n] \left. \frac{\partial}{\partial u} K_d(z, u) \right|_{u=1} =$$
 mean # of vertices at distance d

$$\frac{\partial}{\partial u}K_d(z,u)\big|_{u=1} = H^{d-2}(z) \frac{\partial}{\partial u}K_2(z,u)\big|_{u=1}$$



combinatorial interpretation

$$H(z) = k!(zT^{k}(z))^{k} \prod_{i=1}^{k-1} \frac{1}{1 - izT^{k}(z)}$$
$$= 1 - c_{k} \sqrt{2(1 - kez)} + O(1 - kez).$$

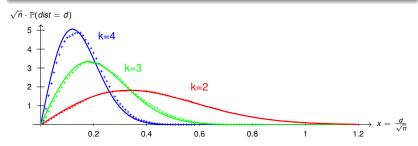
Semi-large power theorem for calculating $[z^n]H^{d-2}(z)$ in the range $x\sqrt{n}$.

Main Result

Theorem [A.D., Soria 09] (RAN [Bodini, A.D., Soria 08])

Given a rand. k-tree G over n vert., the distance between the root vertex r and a random vertex v of G has asymptotic mean value of order \sqrt{n} and is Rayleigh distributed in the range $x\sqrt{n}$:

$$\sqrt{n} \cdot \lim_{n \to \infty} \mathbb{P}(D(r, v) = \lfloor x \sqrt{n} \rfloor) = c_k^2 x e^{-\frac{(c_k x)^2}{2}}, \text{ with } c_k = k \sum_{i=1}^k \frac{1}{i}$$



Main Result

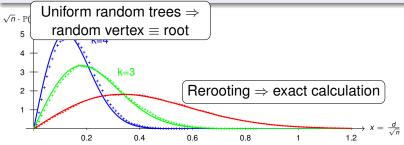
Theorem [A.D., Soria 09] (RAN [Bodini, A.D., Soria 08])

Given a rand. k-tree root vertex r and a r value of order \sqrt{n} ar

What about the distance between 2 random vertices?

ance between the as asymptotic mean d in the range $x\sqrt{n}$:

$$\sqrt{n} \cdot \lim_{n \to \infty} \mathbb{P}(D(r, v) = \lfloor x \sqrt{n} \rfloor) = c_k^2 x e^{-\frac{(c_k x)^2}{2}}, \text{ with } c_k = k \sum_{i=1}^k \frac{1}{i}$$

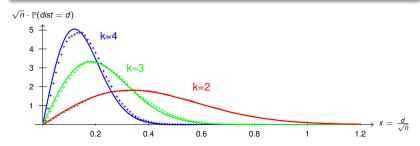


Main Result

Theorem [A.D., Soria 09]

Given a rand. k-tree G over n vert., the distance between the two random vertices v, w of G has asymptotic mean value of order \sqrt{n} and is Rayleigh distributed in the range $x\sqrt{n}$:

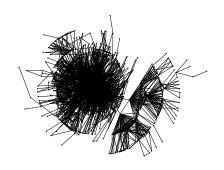
$$\sqrt{n} \cdot \lim_{n \to \infty} \mathbb{P}(D(v, w) = \lfloor x \sqrt{n} \rfloor) = c_k^2 x e^{-\frac{(c_k x)^2}{2}}, \text{ with } c_k = k \sum_{i=1}^k \frac{1}{i}$$



Increasing random model (joint work with Bodini, Hwang, Soria)

- Same bijection.
- $\bullet \ \mathcal{T} = \exp(\mathcal{Z} \star \mathcal{T}^k) \to \mathcal{T} = \exp(\mathcal{Z}^{\square} \star \mathcal{T}^k)$
- Probability model of original RAN.
- Power law degree distribution.
- BFS profile a gaussian around log(n).
- Extension to chordal graphs.

Increasing chordal graphs



$$\mathcal{T}_k = \mathsf{SET}(\mathcal{Z}^{\square} \star \prod_{i=1}^{k+1} \mathcal{T}_i^{\binom{k+1}{i}})$$

1, 1, 3, 17, 153, 2005, 36435, 892589, . . . Non-increasing [Wormald 1985]: 1, 1, 4, 35, 541, 13302, 489287, 25864897, . . .