COUNTING WITH AB-BA=I

PHILIPPE FLAJOLET,

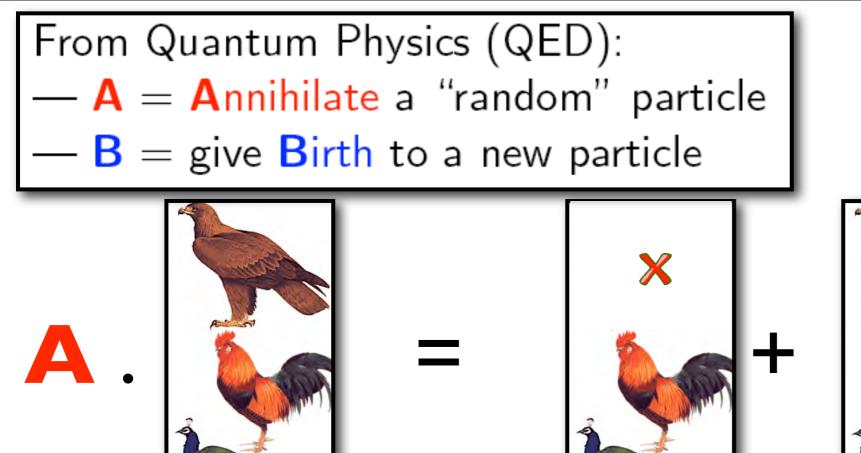
ROCQUENCOURT

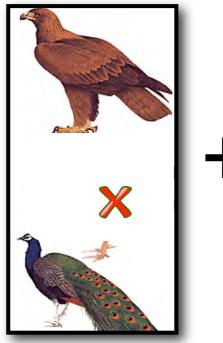
g

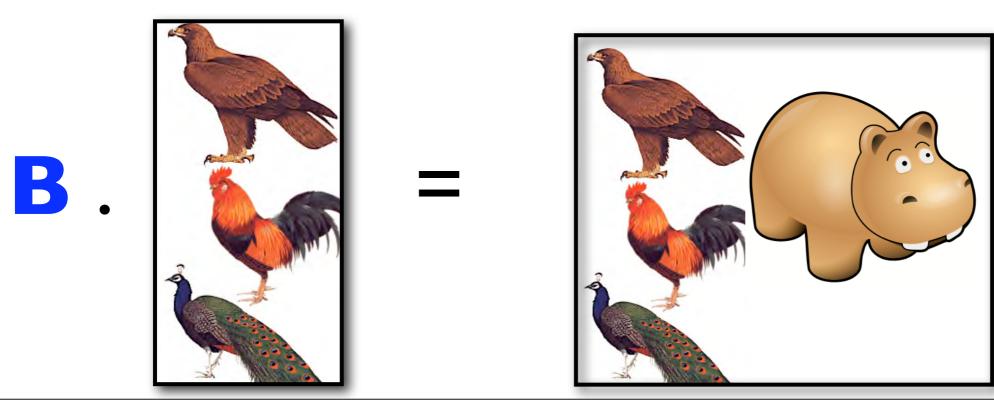
PAWEL BLASIAK,

KRAKÓW

"COMBINATORIAL MODELS OF ANNIHILATION-CREATION"; IN PREP. (2010)







 $- \mathbf{A} = \mathbf{Annihilate} \text{ a "random" particle} \\ - \mathbf{B} = \text{give Birth to a new particle} \longrightarrow \Box$

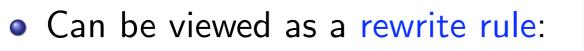
$$\mathbf{AB}\mathcal{F} = \mathbf{A}(\Box\mathcal{F}) = (\mathbf{A}\Box) \cdot \mathcal{F} + \Box \cdot (\mathbf{A}\mathcal{F})$$
$$= \mathbf{BA}\mathcal{F} = \Box \cdot (\mathbf{A}\mathcal{F})$$

$$(AB - BA)\mathcal{F} \cong \mathcal{F}$$

A and B must satisfy:

$$\mathbf{AB}-\mathbf{BA}=\mathbf{1}$$

Annihilation and Creation: AB - BA = 1



$$AB \mapsto 1 + BA$$
:

[Algebra: Polynomials/Ideal $\mathbb{C}\langle A, B \rangle / (AB - BA - 1).$]

• Leads to \mathfrak{N} ormal form: $\mathfrak{N}(f)$, with all **B**'s before all **A**s.

Lemma

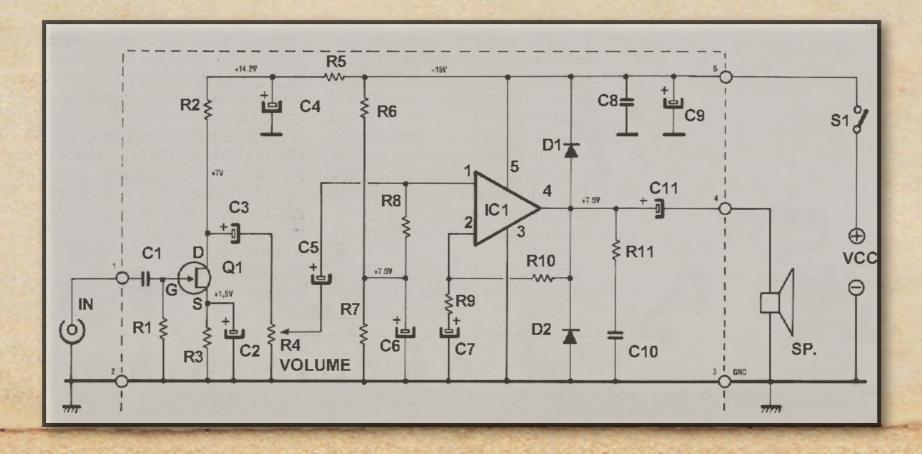
The differential interpretation $A \mapsto D$, $B \mapsto X$ is <u>faithful</u>.

$$X \cdot f(x) := xf(x),$$
 $D \cdot f(x) := \frac{d}{dx}f(x).$ $DX f - XD f = f$

• Agrees with classical combinatorial analysis of X, D.

 $D \equiv$ "choose and delete"; $X \equiv$ "append atom".

1. Gates and Díagrams ~~A first combinatorial model~~



Gates and Diagrams (def.)

 A gate of type (r, s) is a one-vertex digraph with r incoming legs (edges) and s outgoing legs. Legs are ordered.

- A diagram is an acyclic assembly of gates with interconnections. A labelled diagram has vertices that bear integer labels.
- An increasing diagram is labelled and such that labels are increasing along directed paths.

S.	(2,3)-gate
r S	Ø
Q	RON)
Ø	Ó

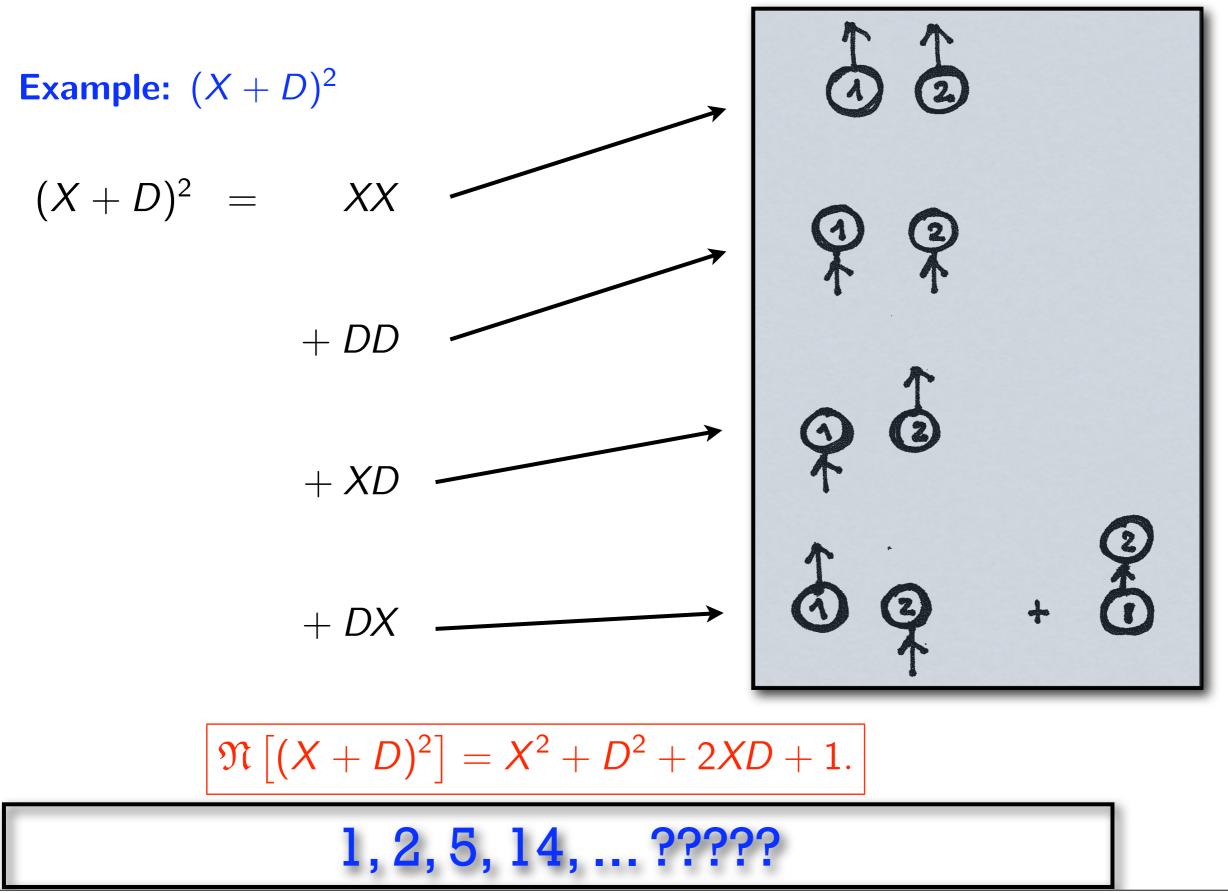
- A diagram has basis $\mathcal{H} \subset \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ iff all the gates that it comprises have type in \mathcal{H} .
- Let $C[\mathcal{H}]$ be the class of (increasing) diagrams with basis \mathcal{H} ; size is number of vertices.

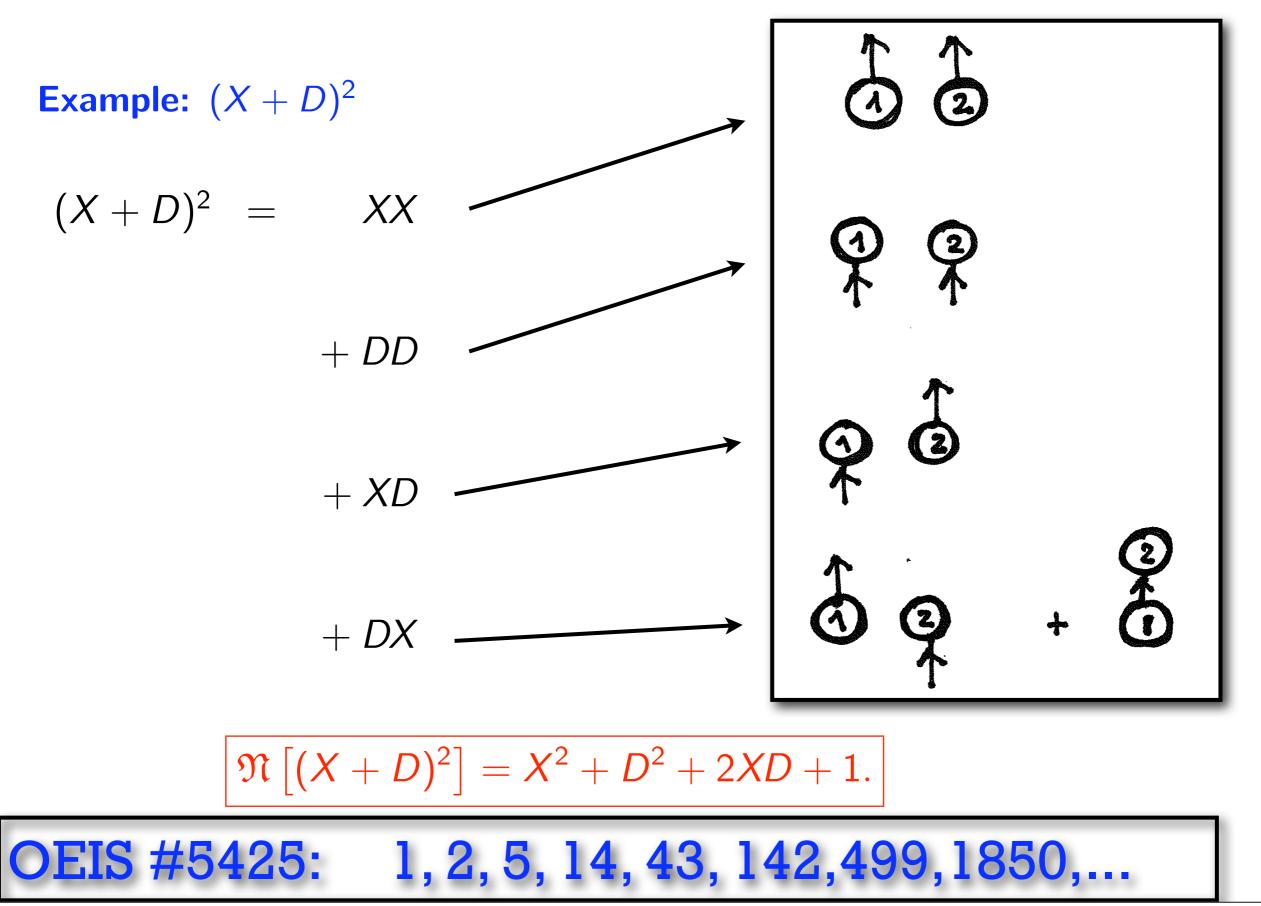
Theorem (Błasiak, Penson, et al., 2000++)

Consider the (normalized) operator $\mathfrak{h} = \sum_{(r,s)\in\mathcal{H}} w_{r,s} X^r D^s$. Then the normal form of \mathfrak{h}^n is given by

$$\mathfrak{N}(\mathfrak{h}^n) = \sum_{a,b} c_{n,a,b} X^a D^b,$$

where $c_{n,a,b} :=$ # { diagrams in C[H] of size <u>n</u>, with <u>a</u> inputs and <u>b</u> outputs }.





Monday, January 25, 2010

From algebra to combinatorics: a dictionary

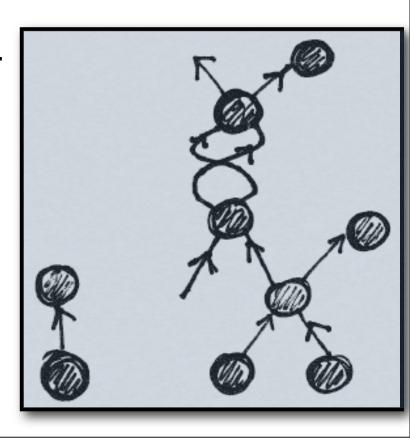
$$X + D + X^2 D^2$$

monomial $X^r D^s$ polynomial \mathfrak{h} in X, D \mathfrak{h}^n $e^{z\mathfrak{h}}$ (z, X, D)

gate weighted basis \mathcal{H} of gates labelled diagrams of size n on \mathcal{H} generating function of all diagrams (size, #outputs, #inputs).

• The exponential generating function (EGF) of all diagrams

with basis \mathcal{H} is $e^{z\mathfrak{h}}$, with $e^{z\Gamma} := \sum \Gamma^n \frac{z^n}{n!}$



 Conceptually(!) for combinatorialists: symbolic methods, theory of species,

 $D \equiv$ "choose and delete"; $X \equiv$ "append atom".

• Otherwise, by recurrence on number of gates, based on

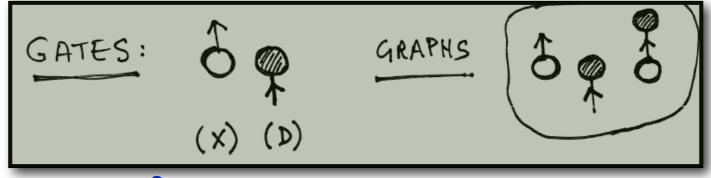
$$(X^{r}D^{s})(X^{a}D^{b}) = \sum_{t=0}^{s} {s \choose t} {a \choose t} t! X^{r+a-t}D^{s+b-t}.$$

The coefficient is also # ways of attaching a new gate to an already reduced diagram.

2. The (X+D) forms Involutions & such...

The form (X + D) and involutions

$$\begin{aligned} \mathfrak{N}[(X + D^{1})] &= X + D \\ \mathfrak{N}[(X + D)^{2}] &= X^{2} + 2XD + D^{2} + 1 \\ \mathfrak{N}[(X + D)^{3}] &= \cdots 14 \text{ terms } \cdots \end{aligned} \begin{vmatrix} \mathbf{2} \text{ terms (instead of 2)} \\ \mathbf{5} \text{ terms (instead of 4)} \\ \mathbf{14} \text{ terms (instead of 8)} \end{aligned}$$



• Involutions ($\sigma^2 = Id$) with bicoloured singetons:

$$\exp(2z+z^2/2) = 1 + 2\frac{z}{1!} + 5\frac{z^2}{2} + 14\frac{z^3}{3!} + 43\frac{z^4}{4!} + \cdots$$

• Normal forms of $(\alpha X + \beta D)$:

Proposition (Linear forms and involutions)

$$\mathfrak{N}((\alpha X + \beta D)^n) = \sum_{\ell,m} \frac{n!}{2^{(n-\ell-m)/2} ((n-\ell-m)/2)!\ell!m!} \alpha^{n-m} \beta^{n-\ell} \mathbf{X}^{\ell} \mathbf{D}^m.$$

Evolution equations

Definition

An equation for $F \equiv F(x, t)$, such as

$$\frac{\partial}{\partial t}F = \Gamma \cdot F, \qquad F(x,0) = f(x),$$

is known as an evolution equation (with initial value, or Cauchy, conditions), based on the "spatial" operator $\Gamma \in \mathbb{C}\left[x, \frac{\partial}{\partial x}\right]$.

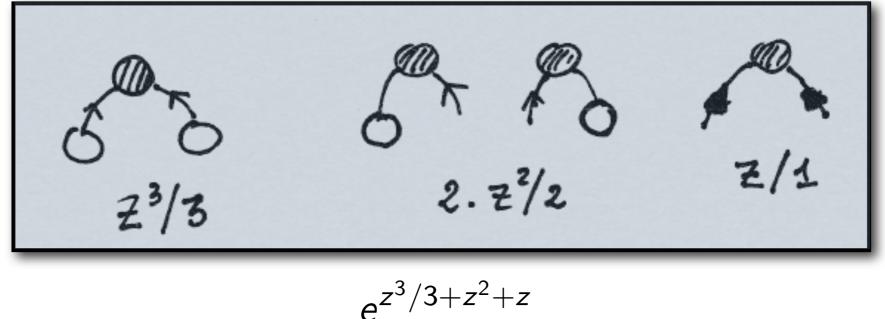
Proposition

Evolution equation is formally solved by $F(x, t) = e^{t\Gamma} \cdot f$

Solving
$$\frac{\partial}{\partial t}F = \frac{\partial}{\partial x}F + xF$$

- Use normal form $F = e^{t(X+D)} = e^{t^2/2} \cdot e^{tx} \cdot e^{tD} \cdot f$.
- Taylor "means" $e^{tD} \cdot f(x) = f(x+t)$.
- Conclude:

The model is that of a **COMB**.



$$\mathfrak{N}\left[e^{z(D^2+X)}\right] = e^{z^3/3+zX} \cdot e^{zD^2+z^2D}.$$

Generalization to (a(X) + D) or (a(D) + X);
PDE: solve \$\frac{\partial}{\partial t}F\$ = \$\frac{\partial}{\partial x}F\$ + a(x)F\$.
[cf method of characteristics; heat kernel...]

3. The (XD)-forms Set partitions & such...

• Well-known connections in analysis, difference calculus, and combinatorics(!)

$$\mathcal{G} = \operatorname{SET} \left(u \operatorname{SET}_{\geq 1}(\mathcal{Z}) \right) \implies G(z, u) = e^{u(e^z - 1)}.$$
$$\mathfrak{N} \left[e^{z(XD)} \right] = \sum_{k \geq 0} \frac{1}{k!} (e^z - 1)^k X^k D^k.$$

$$\rightsquigarrow$$
 PDE $\frac{\partial}{\partial t}F = x\frac{\partial}{\partial x}F$ is solved by $F(x, t) = f(xe^t)$.

The forms (X^2D^2) and such, after Blasiak, Penson *et al.*

- Count matrices with two ones per line, no null column.
- **Coupon collector** with group drawings [DuFIRoTa]:

$$\mathbb{E}_m(T) = \frac{m(m-1)}{2m-1} \left[H_m + 12m - 1 - \frac{(-1)^m}{(m+1)\binom{2m-1}{m+1}} \right] \sim \frac{1}{2} \log m.$$

• Also set partitions with constrained contiguities.

4. The (X^2+D^2) -form

Permutations & such

The "circle" form $(X^2 + D^2)$

• Get two types of gates: CUPS (X^2) and CAPS (D^2)

- These assemble into chains that are either open or closed.
- As we go along a chain, label values alternate.
- There are symmetry factors since we enter from left or right.

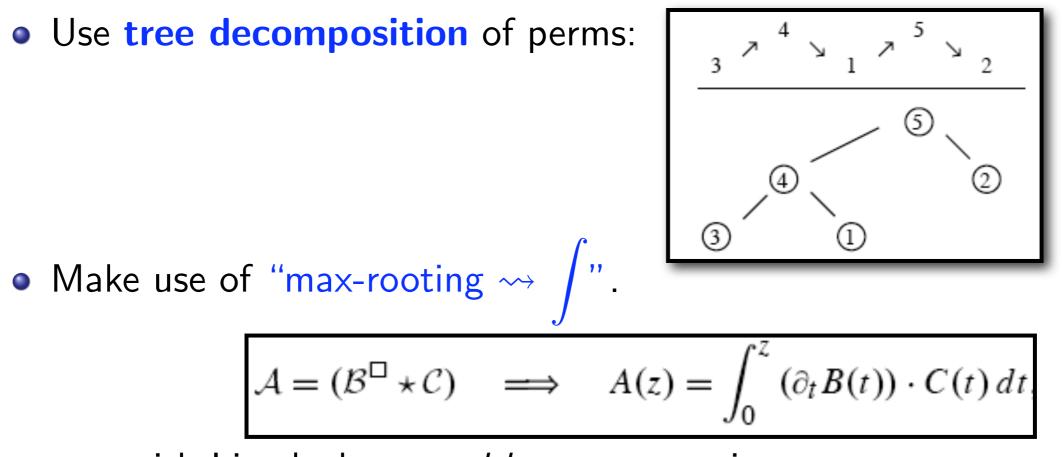
Alternating (zigzag) perms have EGF tan(z), sec(z) [André 1881] Alternating cycles have EGF log cos(z). We must take SETs of these.

$$G(x,y,z) = \frac{1}{\sqrt{\cos(2z)}} \exp\left(\left(\frac{x^2}{2} + \frac{y^2}{2}\right) \tan(2z) + xy(\sec(2z) - 1)\right).$$

The general quadratic form $(\alpha X^2 + \beta D^2 + \gamma XD + \delta DX)$

Principle: similarly follow the spaghetti!

- Get the famous peaks, troughs, double rises, double falls.
- Cf: Carlitz; Françon–Viennot, ...



Contrast with Lie algebra or *ad hoc* computations.

Ordering of the exponential of a quadratic in boson operators. I. Single mode case

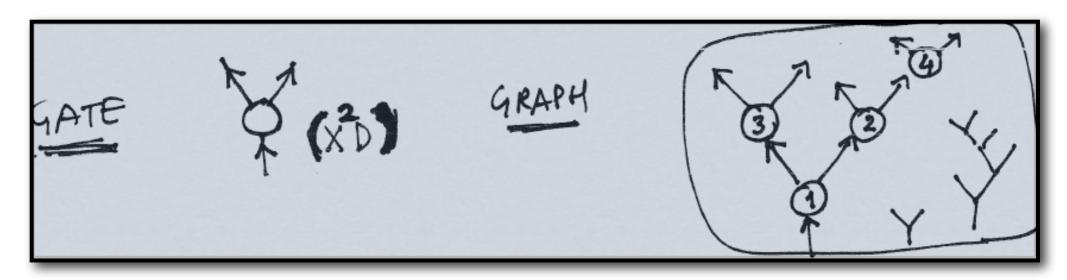
C. L. Mehta

5. The tree form (X^2D)

... and trees

The special form (X^2D)

• The unique gate is a ' \mathbb{Y} '.



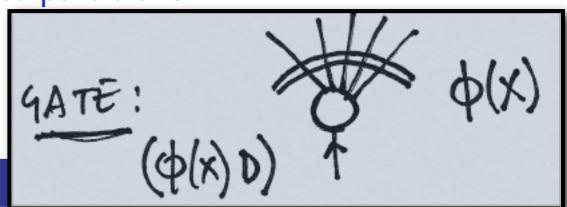
- Get all permutations as connected components.
- Take **SETs** of these.
- GFs are variants of $\left| \exp\left(\frac{z}{1-z}\right) \right|$.

$$\mathfrak{N}\left[e^{zXD^2}\right] = \exp\left(z\frac{X^2}{1-zX}D\right).$$

The semilinear form $\phi(X)D$

Gives rise to increasing trees, with $\phi(X)$ the basic constructor.

- Case (*XD*): threads (unary trees) \rightsquigarrow set partitions.
- Case (X^2D) : binary trees.
- Case $(X^r D)$: *r*-ary trees, ...



Proposition

The EGF of increasing trees with "rule" ϕ is

$$T(z) = Inv \int_0^t \frac{dw}{\phi(w)}$$

Some exactly solvable models	Plane d-ary	$y' = (1+y)^d$	$y(z) = -1 + [1 - (d - 1)z]^{-1/(d-1)}$
[Bergeron-FI-Salvy, 1992]	Plane Strict d—ary	$y' = 1 + y^d$	$d = 2 y(z) = \tan z$ $d > 2 $
	Non plane Strict d–ary	$y' = 1 + \frac{y^d}{d!}$	$d = 2 y(z) = \sqrt{2} \tan \frac{z}{\sqrt{2}}$ $d > 2 -$
	Plane unary-binary	$y' = 1 + y + y^2$	$y(z) = \frac{\sqrt{3}}{2} \tan\left(\frac{\sqrt{3}}{2}z + \frac{\pi}{6}\right) - \frac{1}{2}$
	Non plane unary-binary	$y' = 1 + y + y^2/2$	$y(z) = \tan\left(\frac{z}{2} + \frac{\pi}{4}\right) - 1$
	Plane "Recursive"	$y' = \frac{1}{1 - y}$	$y(z) = 1 - \sqrt{1 - 2z}$
	(Non plane) "Recursive"	$y' = \exp(y)$	$y = \log \frac{1}{1-z}$

Example: XD^r, after Blasiak, Penson, Solomon

$$G(x,y,z) = \exp\left(\frac{xy}{(1-\rho x^{\rho}z)^{1/\rho}} - xy\right), \qquad \rho := r-1.$$

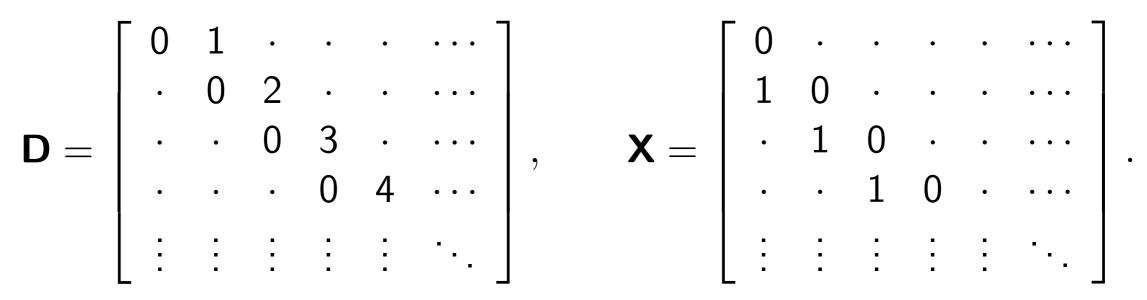
• For
$$r = 3$$
, get $\exp\left(\frac{1}{\sqrt{1-2z}} - 1\right)$, which is evocative of binary trees(?).

• Explicit binomial sums are available for \mathfrak{N} of powers of XD^r .

6. The (X^a+D^a) forms Dyck path, histories, & such

Paths and operators

In the **canonical basis** (x^k) , X and D become matrices:



Schematically, effect on basis (x^k) is described by the "Weyl

graph":

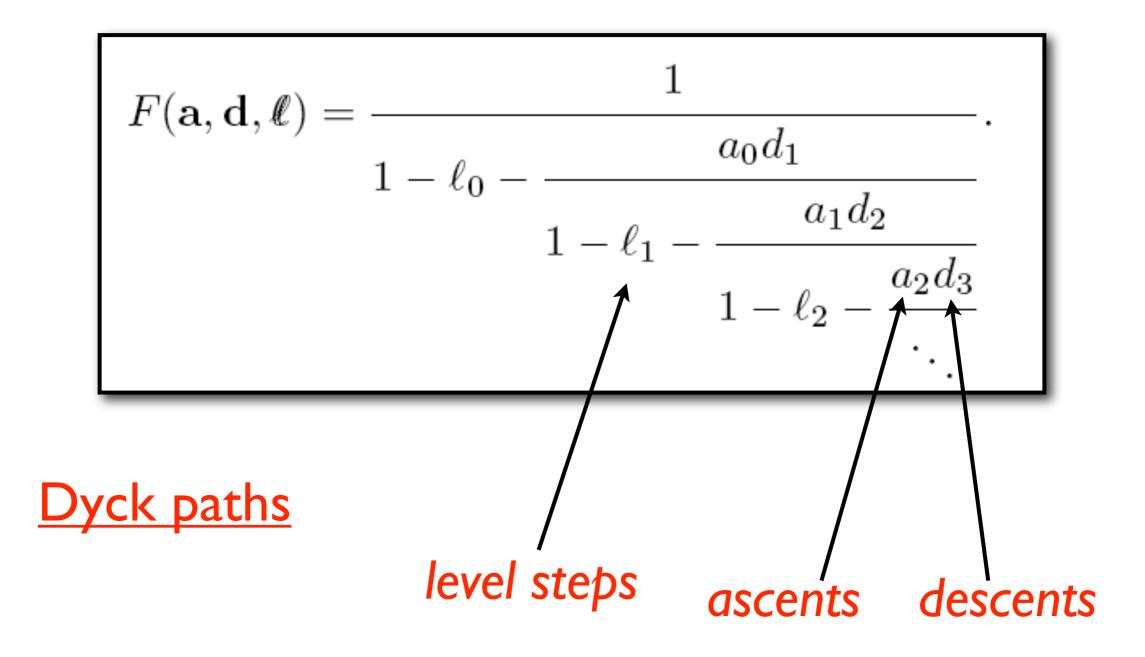


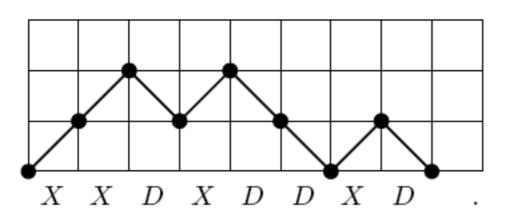
Proposition

Consider a monomial \mathfrak{f} in X, D. The constant term (of its normal form) is nonzero if and only if the associated path $\pi(\mathfrak{f})$ in the Weyl graph, starting from vertex 0, returns to vertex 0. In that case, this constant term is equal to the multiplicative weight of the path $\pi(\mathfrak{f})$.

Constant Terms (C.T.) = weighted Dyck paths

Theorem F-1980]:

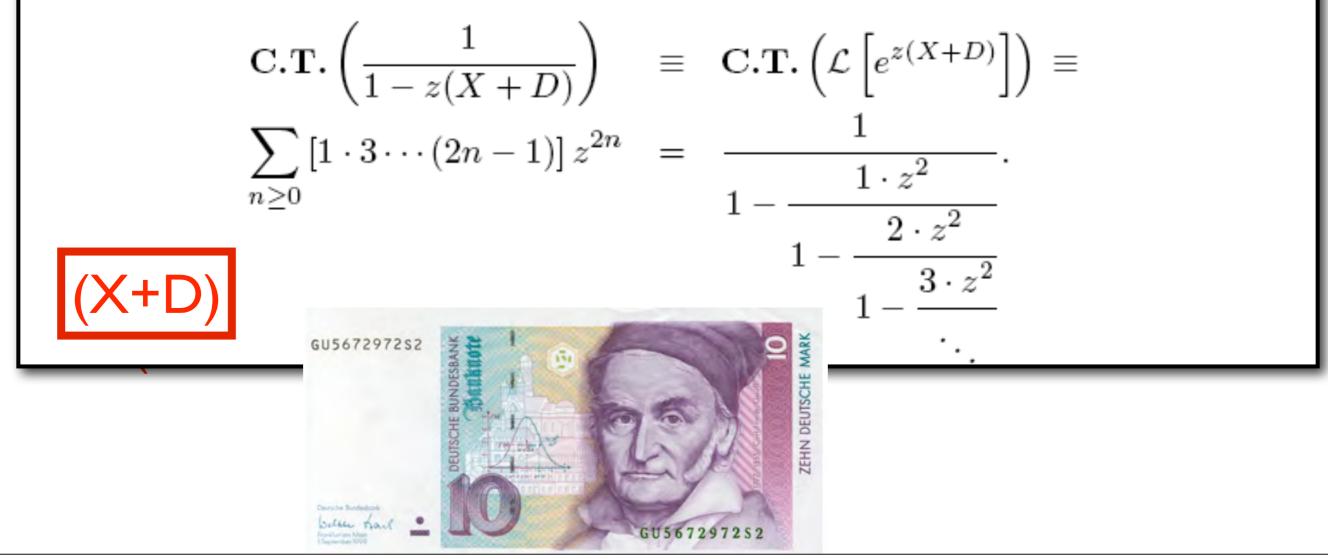


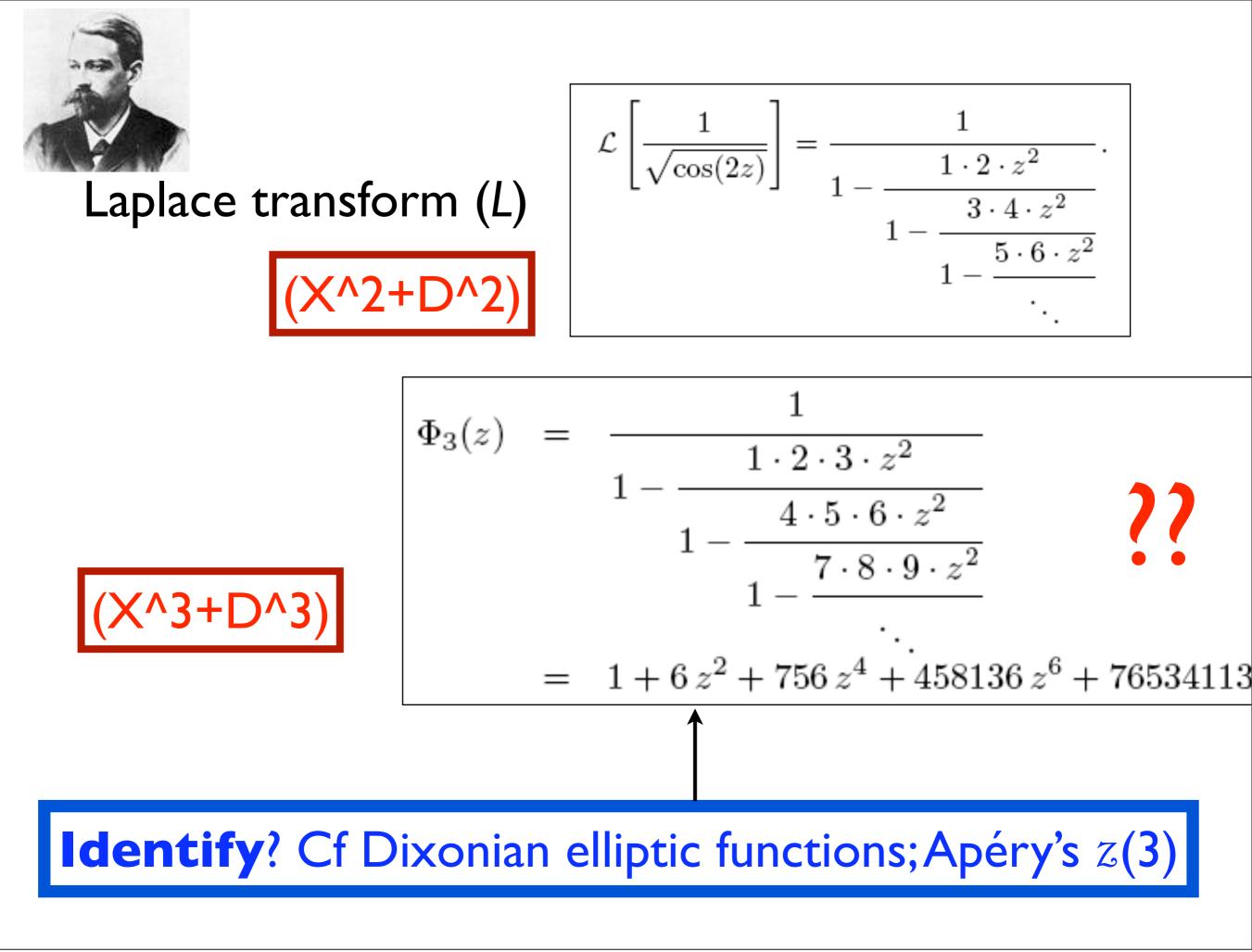


$$\mathfrak{h} = DXDDXDXX$$

$$\mathbf{C.T.}(\mathfrak{h}) = 1 \times 1 \times 2 \times 1 \times 2 \times 1 \times 1 \times 1 = 4.$$

Proposition 2. The normal ordering of (X + D) corresponds to the continued fraction expansion





Partial difference equations, q-analogues,...

Openings

- Relation with PDEs?
 Eg. Duchon's Clubs and the cubic oscillator.
- Difference equations and q-analogues
- Relation with Rook Polynomials [Varvak]...
- Relation with various tableaux? exclusion...?
 Cf Viennot, Corteel, Josuat-Verges, ...