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Three Random Tiling Problems

O(1) Dense Loop Model
XXZ Quantum Spin Chain at A = —
Edge-percolation (Potts Model at Q
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Fully-Packed Loops (FPL) in a square
Alternating Sign Matrices (ASM)
Six-Vertex Model at A = —I—% (Ice Model)
“Gog" triangles

TSSCPP (Plane Partitions)

Dimer coverings / Lozenge tilings

NILP (Non-intersecting Lattice Paths)
“Magog” triangles
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Link patterns

A link pattern m € £P(2n) is a pairing of {1,2,...,2n}
having no pairs (a,c), (b,d) such thata< b<c<d
(i.e., the drawing consists of n non-crossing arcs).
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They are C, = -1;(%") (the n-th Catalan number),
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A link pattern m € £P(2n) is a pairing of {1,2,...,2n}
having no pairs (a,c), (b,d) such thata< b<c<d
(i.e., the drawing consists of n non-crossing arcs).

1132 :3 14 15 16 i7 :8 19 i10

They are C, = -1;(%") (the n-th Catalan number),
are in easy bijection with Dyck Paths of length 2n
and with non-crossing partitions of n elements.

...and many other things...
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Link patterns in the Dense Loop Model

To a dense-loop configuration on a semi-infinite cylinder,
a link pattern 7 is naturally associated,
as the connectivity pattern for the points on the boundary.
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Link patterns in Fully-Packed Loops

To a Fully-Packed Loop configuration,
a link pattern 7 is naturally associated,
from connectivities among the black terminations on the boundary.
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Link patterns in Fully-Packed Loops

To a Fully-Packed Loop configuration,
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from connectivities among the black terminations on the boundary.

9 8 7
10 _
6
u (L) i
U ]
12 J 1
. ] 4
v 2 3

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



Link patterns in Fully-Packed Loops

To a Fully-Packed Loop configuration,
a link pattern 7 is naturally associated,
from connectivities among the black terminations on the boundary.

9 8 7
10 _
6
u (L) i
U ]
12 J 1
. ] 4
v 2 3

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



The Razumov—Stroganov correspondence
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W, () : probability of 7 W, (7) : probability of 7
in the O(1) Dense Loop Model  for FPL with uniform measure
in the {1,...,2n} x N cylinder in the n X n square
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The Razumov—Stroganov correspondence
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W, () : probability of W, (7) : probability of 7
in the O(1) Dense Loop Model  for FPL with uniform measure
in the {1,...,2n} x N cylinder in the n X n square

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

\TI,,(W) = W,(nm)
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Dihedral symmetry of FPL

A corollary of the Razumov-Stroganov correspondence. . .
(...that was known before the Razumov-Stroganov conjecture)

call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL (proof: Wieland, 2000)
V,(m) = V,(Rn)
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Fully-Packed Loops ® 6VM ® Alternating Sign Matrices
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Fully-Packed Loops ® 6VM ® Alternating Sign Matrices

J )-qA 1"" A,z(
\ A
-« N,I «
=0 > ¢ )« ¢ )%
k L. I Al
d.3. 1.
>0 > @« ) ‘
AU D
S YT
FPL e or e according
config to parity;

ommme — 0 Pp-o
o—eo — o<«¢o

Forget parity;

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



Fully-Packed Loops ® 6VM ® Alternating Sign Matrices

‘ J )-qA 1"" ;,z(

-« N,l «

=0 > ¢ )« ¢ )%

k LE.50.00 & 3.1

)J» -« ‘ X x

y I i

i  aapviay Sabvae i)

FPL e or e according 6-vertex
config to parity; config

ommme — 0 Pp-o (DWBC)
o—eo — o<«¢o

Forget parity;

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version
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Fully-Packed Loops ® 6VM ® Alternating Sign Matrices
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Refinement position in Fully-Packed Loops

Fully-Packed Loops have a unique straight tile on any external line
Alternating Sign Matrices have a unique +1 on any external line
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Refinement position in Fully-Packed Loops

Fully-Packed Loops have a unique straight tile on any external line
Alternating Sign Matrices have a unique +1 on any external line
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Concentrate on the bottom row, and call refinement position the
corresponding column index.
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The Temperley-Lieb(1) monoid

Consider the graphical action over link patterns 7w € L#(2n)
(throw away detached cycles)
R: /7‘/‘/-/-/-/—%/ g: 1T~
123 123 jj+1 2n

The maps {ej}1<j<2n and R*1 generate a semigroup
Example:

61(7T)2 ~ = r\mm
12345678910 12345678910
YA

o - TN = 72/
12345678910 12345678910

Consider the linear space C£(2")  linear span of basis vectors 7).
Operators ¢; and R*1 are linear operators over C£7(2)
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O(1) dense loop model: the Markov Chain over LP(2n)

A config with t — 1 layers.

Add a new layer, of i.i.d. tiles, with
prob. p (say, p =1/2)...

Some loops get detached from the
boundary. You have a config with t
layers, and a new link pattern.

W W W Y W Y W W Y

\L\L\LJFJFJF\LJF\LJfJfJfﬂk‘

JfWL\LJFJFJFJFJFJFWL\LJFJF

W An W AR o W AW A AW 2R MR

\LJFJF\L\L\L\LJF\L\LJFJFJF

NN T

JCJL“LJrjr)LJﬁLtJUCJCt
Wi m anf el AW an i Wa MN 45 MR B

Rates T,_y/o(m, ')
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Now repeat the game...
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e
o

o

-

=

S

3

s

o

Ke]

el .

(] :

- (e}

al

Q
LmururJrJrL\JrJruqu\ u\
YOO
COD L ONS
PppREaaaaaun);
m\+JHHH%+++ ms
Hﬁ++J\J\%%+ ms
Hu%&ﬁ++ﬁ5\+ ms
W/ an W a s an W anfan\n Wi

=
2
]
[
o
>
°
o
<
£
o
5
©
o
5
&
=
2
=
S
S
>
2
&
o0
<)
g
]
1T
>
]
<
N
5]
-4
®
©
°
o
=
(a]

L. Cantini and (A. Sportiello )




—

< 3
<
Iy < 6 E
(o] ~ p
g . £
- 5 2
g < o
o 'z 3
> g
m YW & .m
= g = Q {
) mo - &
> o 2
g £ = ¢
— = Y= e
© " © ° 5
> 8 ® i B
R S .o E
] 2 21 5 8 3
. = ‘o L 8 N
) H
3 1 SR UK WA UK WD R, UK U5 SR UD R U5 <
g B RBNS ER N AR S pE A R ea ¥
- Qe
= COD A ONA g
H Breercdany |
] Q0N
o O QS S
Y W W a4 W a4 4 a W ax ¥ &
~ N TN TN

o(1




O(1) dense loop model: the Markov Chain over LP(2n)

Now repeat the game...

...but add i.i.d. tiles, with prob.
p—0..

For most of the layers you just ro-
tate... From time to time, you have
a single non-trivial tile.

Rates T,_o(m, )

of a0 W W A i Y W

JfJf\L\LJFJFJF\LJF\LJFJFJFWL

JfJf\L\LJFJFJFJFJFJFWL\LJFJF

o 2R WY AR W AW A AW W aufAn WA

JfJfJfJf\\\L\LﬂLJrﬂL\\JfJer‘

of s G a0 W AR n B W B B MR

jrjr\“\urjr)ur\wa“JCJth
(s an anf anf @ ax an Wn b WK an Wb WB)
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Now repeat the game...

...but add i.i.d. tiles, with prob.
p—0..

For most of the layers you just ro-
tate... From time to time, you have
a single non-trivial tile.

Rates T,_o(m, )

Non-trivial layers look like
operators R ¢;

To=R(I+pY (e —1) +O(p?)
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Integrability: commutation of Transfer Matrices

Call T,(m, ') the matrix of transition rates, acting on C**(2")
for tiling one layer, with probability p.

Trivial: W,(7), the steady state, is the unique eigenstate of
Tp(m, 7’) with all positive entries

The Yang—Baxter relation implies: [Ty, Tyy] =0
Consequence: Wy (1) = W, (1) and we can get U(r) := @1/2(7r)
from the study of the easier T,_o(m, ')

2n

Call Hy=> (ei — 1) and [¥,) = 3 U(x)|7)
i=1
As R71T, = | + pH + O(p?) we have
Ho|W,) =0 )
linear-algebra characterization of W()
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Integrability: commutation of Transfer Matrices

wELP(2n) w€LP(2n)

(T = 1)[¥,) =0 HalW,) =0

the two linear equations for \\Tln) are equivalent!
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The Razumov-Stroganov correspondence: reloaded

peFpl(n)
Fpl(n) = {FPL in n x n square }
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The Razumov-Stroganov correspondence: reloaded

WG{&D(2n) dEFpl(n)
Hp|W,) =0 Fpl(n) = { FPL in n x n square }

Razumov—Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Hp|W,) =0
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Repeat the game once more...
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

jr\“\LJrjr)“Jr\wa“JC
fa auf anf @ ax an n un i/ 4R

of i n i A A n R
jr++’dr+++++’c
fan mar il an n af A n Wa

v f\L\LJfJfJfJfJfJf\L\L'

NN

v rJrJr\L\L\L\LJr\L\L\L
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

J fJ fJ fJ fJ fJ fJ fJ f\\'JfﬂLJf\"\"Jf\\'\\'\L‘

J r/ r/ r/ r/ r/ r/ r/ f\\'\\'JfJfJf\LJf\LJfJf’

J r/ r/ r/ r/ r/ r/ r/ f\\'\LJfJfJfJfJfJF\\'\L

o ey 2 i i i 4 W M n W AR @l A AW @ an

J r/ r/ r/ r/ r/ r/ r/ er'Jf\\'\\'\L\LJf\L\"\L'

of al e ol al el el af 4x A i I AN Em A W

22 P e R e N aREKs
faf aif aif af aef axf af ax an anf @& an wn wn NI aR)

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



o(1

N—

dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

[Si(2), Si(t')] is ugly
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

[Si(t), 5j(t)] is ugly
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

[Si(t), T(p)] is ugly
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

[Si(t), H] is ugly...
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

Lbut Si(1—t) =1+t H+ O(t?)
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

Lbut Si(1—t) =1+t H+ O(t?)

o e
fasf e aef af aef aef aef 2n n i aw e afau amnimn
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

(SRBAZ AR WP AR URUA N> A
(@ anf @nfad an wn wn WE/ 4
(@ un W auf an el anun W
\ cJ,.J,.++++++++
(SRSBJHE A aF AP AR SRS
(SR S5 A7 SR S AR SB a5
O QUL

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

Lbut Si(1—t) =1+t H+ O(t?)

N e
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

Lbut Si(1—t) =1+t H+ O(t?)
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dense loop model: the Scattering Matrices

'\UerJr'\ur'\ur
IO N AuON]
Jf (g C C\L\L C C Repeat the game once more...
fau an WA MR MR NANS) o _
N ---but this time keep all tiles frozen,
JC\t'\tjr'\t\t\th except for the one in column j + 1
N NN TN NN RX:(t) = R(t + (1 — t)e;
)L.tercJDL)uC i(t) = R(t+ (1 —t)ei)
Jr.‘L C\L) Jrf') ...ok, these operators by themselves
are not specially nice, nonetheless...
g .call S;(t) = (RX;(t))N
~ the Scattering Matrix on column /.
Lbut Si(1—t) =1+t H+ O(t?)
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dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

Lbut Si(1—t) =1+t H+ O(t?)

J fJ fJ fJ fJ fJ fJ fJ f\\'JfﬂLJf\"\"Jf\\'\\'\L‘

J r/ r/ r/ r/ r/ r/ r/ f\\'\\'JfJfJf\LJf\LJfJf’

J r/ r/ r/ r/ r/ r/ r/ f\\'\LJfJfJfJfJfJF\\'\L

o Wit o 2 s o 2 i o Al an M anf el A an o

J r/ r/ r/ r/ r/ r/ r/ er'Jf\\'\\'\L\LJf\L\"\L'

of al e ol al el el af 4x A i I AN Em A W

22 P e R e N aREKs
faf aif aif af aef axf af ax an anf @& an wn wn NI aR)

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



o(1

N—

dense loop model: the Scattering Matrices

Repeat the game once more...

...but this time keep all tiles frozen,
except for the one in column j + 1

RXi(t) = R(t + (1 — t)e;)

(SRBAZ AR WP AR URUA N> A
(@ anf @nfad an wn wn WE/ 4
(@ un W auf an el anun W
(@ an wa un Ma W R R A W
(€5 SR N5 B ADEE/AD R/ &
(SRSBJHE A aF AP AR SRS
(SR S5 A7 SR S AR SB a5
O QUL

..ok, these operators by themselves
are not specially nice, nonetheless...

.call S;(t) = (RX;(t))N
the Scattering Matrix on column /.

Lbut Si(1—t) =1+t H+ O(t?)
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Dihedral covariance of the ground states

We had Nln> => \TJ(W)|7T>, satisfying H,,|lTJ,,> =0
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Dihedral covariance of the ground states

We had ]\TJn> => \TJ(W)|7T>, satisfying H,,|lTJ,,> =0

The operators RX;(t), and the scattering matrices S;(t),
» 3 induce the deformation »
(1)) = S WO (£ 7)|x), satisfying (RX;(t) — 1)[F8)(£)) = 0.

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



Dihedral covariance of the ground states

We had ]\TJn> => \TJ(W)|7T>, satisfying H,,|lTJ,,> =0

The operators RX;(t), and the scattering matrices S;(t),
» 3 induce the deformation »
(1)) = S WO (£ 7)|x), satisfying (RX;(t) — 1)[F8)(£)) = 0.

Because of a dihedral covariance of these equations,
(and unicity of the Frobenius vector)

it suffices to study RXi(t) and \\Tlg,l)(t»
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Dihedral covariance of the ground states

We had ]\TJn> => \TJ(W)|7T>, satisfying H,,|lTJ,,> =0

The operators RX;(t), and the scattering matrices S;(t),
» 3 induce the deformation »
(1)) = S WO (£ 7)|x), satisfying (RX;(t) — 1)[F8)(£)) = 0.

Because of a dihedral covariance of these equations,
(and unicity of the Frobenius vector)

it suffices to study RXi(t) and \\Tlg,l)(t»
_ Example: '
0= (Xi(t) = ROV () = R(Xisa(t) — RTHRIWL(2))
implying [W (1)) oc R7HUY)(1))
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Dihedral covariance of the ground states

We had ]\TJn> => \TJ(W)|7T>, satisfying H,,|lTJ,,> =0

The operators RX;(t), and the scattering matrices S;(t),
» 3 induce the deformation »
(1)) = S WO (£ 7)|x), satisfying (RX;(t) — 1)[F8)(£)) = 0.

Because of a dihedral covariance of these equations,
(and unicity of the Frobenius vector)

it suffices to study RXi(t) and \\Tlg,l)(t»

_ Example: '
0= (Xi(t) = ROV () = R(Xisa(t) — RTHRIWL(2))
implying ¥}, ) (£)) oc R7HW1) (1))

Call Sym = N1 Z,{V:_Ol R', the operator that projects on the
rotationally-invariant subspace of C£#(N),

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



The refined Razumov—-Stroganov correspondence

14 18 12
- N

14 13 13 15 14 13 12 11
16 =
—| 10
17 9 e B
—— 9
18 8 BH
[
19 7 19}

[

1 2 3 4

[
=8

2 3 4
W, (t; ) : probability of 7 V,(t;7) : count FPL's ¢
in the O(1) Dense Loop Model having link pattern 7
with dynamics given by RXi(t) give tM®)~1 weight
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The refined Razumov—-Stroganov correspondence

14 13 12

2 3 4 1 2 3 4
W, (t; ) : probability of 7 V,(t;7) : count FPL's ¢
in the O(1) Dense Loop Model having link pattern 7
with dynamics given by RXi(t) give tMP~1 weight

Refined Razumov—Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

V,(t;m) # Wp(t; )
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The refined Razumov—-Stroganov correspondence

14 13 12

2 3 4 1 2 3 4
W, (t; ) : probability of 7 V,(t;7) : count FPL's ¢

in the O(1) Dense Loop Model having link pattern 7

with dynamics given by RXi(t) give tMP~1 weight

Refined Razumov—Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

Wa(8)) # [Wa(2))
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The refined Razumov—-Stroganov correspondence

14 13 12

2 3 4 1 2 3 4
W, (t; ) : probability of 7 V,(t;7) : count FPL's ¢

in the O(1) Dense Loop Model having link pattern 7

with dynamics given by RXi(t) give tMP~1 weight

Refined Razumov—Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

Sym |W,(t)) = Sym [W,(t))

L. Cantini and (A. Sportiello )
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A quest for a new strategy

The strategy in the 2010 RS proof, by L. Cantini and me, was
e Realize that H|V) = 0 fixes |W) univocally;
e Prove combinatorially that also |W) satisfies H|W) = 0...
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A quest for a new strategy

The strategy in the 2010 RS proof, by L. Cantini and me, was
e Realize that H|V) = 0 fixes |W) univocally;
e Prove combinatorially that also |W) satisfies H|W) = 0...

..But the |W(DY's differ (they are only dihedrally covariant),
and satisfy different linear equations (with RX;(t))...
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A quest for a new strategy

The strategy in the 2010 RS proof, by L. Cantini and me, was
e Realize that H|V) = 0 fixes |W) univocally;
e Prove combinatorially that also |W) satisfies H|W) = 0...

..But the |W(DY's differ (they are only dihedrally covariant),
and satisfy different linear equations (with RX;(t))...
...and Sym |W()) does not satisfy any simple
linear equation that fixes it univocally!
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A quest for a new strategy

The strategy in the 2010 RS proof, by L. Cantini and me, was
e Realize that H|V) = 0 fixes |W) univocally;
e Prove combinatorially that also |W) satisfies H|W) = 0...

..But the |W(DY's differ (they are only dihedrally covariant),
and satisfy different linear equations (with RX;(t))...

...and Sym |W()) does not satisfy any simple
linear equation that fixes it univocally!
Best possible hope:
e Find a new way 7'(¢) of associating link patterns to FPL;

e Find&prove [W(t)) = |W/(t)) with no need of symmetrization;
e Prove combinatorially that Sym |W/(t)) = Sym |W(t))

Bonus: The new enumeration is interesting by itself
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The heretical enumeration

16

10

17

18

19

20

The role of black and white is symmetrical...
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The heretical enumeration

10

16

17

18

19

20

...who's who is a matter of convention.
Swapping coloration in all FPL's leads to an equivalent conjecture
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The heretical enumeration

19

2
041 1 2 3 4 5

Here's the rule: if the refinement position is odd...

L. Cantini and (A. Sportiello #) Dihedral Razumov—Stroganov conjecture: a refined version



The heretical enumeration

19 19

2 2
041 1 2 3 4 5 19 20 Y1 2 3 041

Here's the rule: if the refinement position is odd...
...you just rotate the starting point to the refinement position

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



The heretical enumeration

2
041 1 2 3 4 5 19 20 Y1 2 3 041

15 14 13 12 11

16

10
17

9
18

8
19

7
20

6

¥ 0mr 2 1 2 3 4 5

Dihedral Razumov—Stroganov conjectur



The heretical enumeration

™(9)

15 14 13 12 11 13 12 11 10 9
16 14
10 8
17 15
9 7
18 16
8 6
19 17
7 5
20 18
19501 2 6 4 19 S
1 2 3 4 5 19 20 "1 2 3 2081
15 14 13 12 11 14 13 12 11 10
16 9
1 10 10 15 110
17 8
9 16
18 7
8 17
19 6
7 18
20 5
1950w 2 6 19 1952
1 2 3 4 5 20 M1 2 3 4 2081

if the refinement position is even...
...you swap black and white, and rotate the starting point

ini and (A. Sportiello #) ihedral Razumov—Stroganov conjecture: a refined versi



Divide and conqueer

We wanted to prove Di Francesco 2004 conjecture:
Sym [W(t)) = Sym [W(1))
with |U(t)) solving (X1(t) — R~1)|W(t)) =0
and [W(t)) = 32, t"O) Y x(g))
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Divide and conqueer

We wanted to prove Di Francesco 2004 conjecture:
Sym [W(t)) = Sym |W(t))
with ]\Ti(t)> solving (X1(t) — R‘1)|ﬁl(t)> =0
and |W(t)) = 3, t" 1 m(9))
We have been led to split this in two parts:
W(t)) = [W'(t)) and  Sym |W'(t)) = Sym |W(t))
with [W/(t)) = 32, ") x'(9))
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Divide and conqueer

We wanted to prove Di Francesco 2004 conjecture:
Sym [W(t)) = Sym [W(1))
with |U(t)) solving (X1(t) — R~1)|W(t)) =0
and |W(t)) = 3, t" 1 m(9))
y We have been led to split this in two parts:
[W(t)) =[V¥'(t)) and Sym [V'(t)) = Sym [V(t))
with [W/(t)) = 32, ") x'(9))
The first relation is proven if you show that
(Xa(t) = RTHIV(1)) = (11 = R — (t = 1)er)|W'(2)) = 0

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



Divide and conqueer

We wanted to prove Di Francesco 2004 conjecture:
Sym [W(t)) = Sym |W(¢))
with [U(t)) solving (X1(t) — R~1)[¥(t)) =0
and [W(t)) = 32, t"O) Y x(g))
y We have been led to split this in two parts:
[W(t)) =[V¥'(t)) and Sym [V'(t)) = Sym [V(t))
with [W'(£)) = 32, t"9) "1 |x'(¢))
The first relation is proven if you show that
(Xa(t) = RTHIV(1)) = (11 = R — (t = 1)er)|W'(2)) = 0
recalling that e? = e;, and (1 — €1)? = (1 — e1):

er (t1 — R™1 — (t — 1)ey)|W'(£)) = 0
(1—er) (t1 — R™Y — (t — 1)eg)|W/(2)) = 0
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Divide and conqueer

We wanted to prove Di Francesco 2004 conjecture:
Sym [W(t)) = Sym |W(¢))
with |U(t)) solving (X1(t) — R~1)|W(t)) =0
and [W(t)) = 32, t"O) Y x(g))

y We have been led to split this in two parts:
[W(t)) =[V'(t)) and Sym [V'(t)) = Sym [V(1))
with [W'(£)) = 32, t"9) 1| (¢))

The first relation is proven if you show that
(Xa(t) = RTHIV(1)) = (11 = R — (t = 1)er)|W'(2)) = 0
recalling that e? = e;, and (1 — €1)? = (1 — e1):

e1 (1 - RV (t) =0
(1—¢)(t1 = RHV(t)) =0
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FPL in fancy domains...

We considered so far FPL in the n x n square domain, with
alternating boundary conditions,

i.e. consistent fillings of this:

into things like this:

) mE Dmm
n(E wm
- (]
jﬂf_] EIJ
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FPL in fancy domains...

We considered so far FPL in the n x n square domain, with

alternating boundary conditions, )
C

i.e. consistent fillings of this: 22 21 20 19 18
"6/- 17
| 2 :
@, 16
20'ee
} "" ‘ 15| b
| >
14
X

into things like this:

C [ ]
1 0
LJ A_U
T (]
...what about
jﬂr_] EIJ domains like this?... N To/q
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Fully-Packed Loops in different domains

Let's try to compare enumerations in different domains,
with the same perimeter...

I H e B

P
+H

|
|
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Fully-Packed Loops in different domains

Let's try to compare enumerations in different domains,
with the same perimeter...

m

|4 |
CRFAIA
SARFA N

The Razumov—Stroganov correspondence holds in this wider family
of domains. . . is this true also for the Di Francesco 2004 refinement?
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Wieland gyration: how it works

FPL config

15 14 13 12 1
16 = i
— 10
17 —
— 9
18 J
AnE N .
19f—Jnu
7
20
6
1 2 3 4 5
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Wieland gyration: how it works

Mark faces | and [,
of given parity
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Wieland gyration: how it works

Mark faces | and [,
of other parity
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Wieland gyration: how it works

Mark faces | and [,
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Wieland gyration: how it works

Mark faces I and I,

of other parity Exchange H <[
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Wieland gyration: how it works
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Wieland gyration: how it works

Link pattern ...
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Wieland gyration: how it works

...and, on the conjugate

Link pattern ... . ) ..and Rm...
of the intermediate step...
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Wieland gyration: how it works

. 1
Link pattern ... ..Rz 7. ..and Rm...
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Wieland gyration: why it works

Easier to visualize the Kl [l exchange on the few K, I faces...
..but better use the conjugate config at intermediate step,
and thmk that X, I are the onIy faces fixed in the transformation

@ U:D >
ﬁfﬁQf.f fff(:@fff ﬁfﬁf.'.' E 2
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Wieland gyration: why it works

Easier to visualize the Kl [l exchange on the few K, I faces...
..but better use the conjugate config at intermediate step,
and thmk that X, I are the onIy faces fixed in the transformation

@ U:D >
fﬁqf :ff(:@fif fﬁfff fffE:ffD

This inverts degy (V) < degunite(V),
and preserves connectivity of open-path endpoints

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

N

e >
of [l | °
[ ]ell ] ) ° The construction of G,
JeU)e _ pairing (2j — 1,2j) legs
[le][ Je .
= = (plaguettes are in yellow)
N e ,
e mark in red I and [
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

A

The result of map H
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

30 29 28 27 26 25 24 23 22 2]
T J J

31 I 20
19
e 18
‘ 17 Split auxiliary vertices
16 to recover the (A, 7_)
%#ﬁ geometry
13 (i.e., first leg is white)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”

(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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o < The construction of G_,
( ° pairing (2/,2j + 1) legs
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mark in blue | and I
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”

(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

30 29 28 27 26 25 24 23 22 21
k J J
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33 D—- — 18 . - .

y ) 7 Split auxiliary vertices
15 O 16 to recover the (A, 74)
36 pd ( 1 15 original geometry

3 14 (with a rotated

78 ] 13 link pattern). ..
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Wieland gyration: where it works

e invert degprack (V) < degynite(V)

So, the trick is: A
e preserve connectivity of open paths
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Wieland gyration: where it works

e invert degprack (V) < degynite(V)

So, the trick is: A
e preserve connectivity of open paths

e Works with the Wieland recipe, on faces £ =4

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



Wieland gyration: where it works

e invert degprack (V) < degynite(V)

So, the trick is: A
e preserve connectivity of open paths

e Works with the Wieland recipe, on faces £ =4

e Works even more easily on faces { =1,2,3
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Wieland gyration: where it works

e invert degprack (V) < degynite(V)

So, the trick is: A
e preserve connectivity of open paths

e Works with the Wieland recipe, on faces £ =4
e Works even more easily on faces £ =1,2,3

e Can't work at all on faces ¢ > 5
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Wieland gyration: where it works

e invert degprack (V) < degynite(V)

So, the trick is: A
e preserve connectivity of open paths

e Works with the Wieland recipe, on faces £ =4
e Works even more easily on faces { =1,2,3
e Can't work at all on faces £ > 5

e At boundaries, pair external legs to produce triangles
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Wieland gyration: where it works

e invert degprack (V) < degynite(V)

So, the trick is: A
e preserve connectivity of open paths

e Works with the Wieland recipe, on faces £ =4

e Works even more easily on faces £ =1,2,3

e Can't work at all on faces £ > 5

e At boundaries, pair external legs to produce triangles
A single move exists on plenty of graphs...

then, rotation comes from two moves
...many more domains than just n x n squares have this property!
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Wieland gyration: where it works

Thus you can trade corners for points of curvature (i.e., faces with
less than 4 sides)

15 14 13 12 11

B
Cr\

-
16 C@j ]Cj'% "
17 am = .
18 J

ARG 8

19 ...%y
20 I .

(bottom line: an elementary generalization of Wieland strategy
gives rotational symmetry for FPL enumerations above)
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)
1 corner, 3 triangles:

19 18 17 16 15

14

123456789 10111213
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)
2 corners, 2 triangles:
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)

1 corner, 1 face with ¢ = 2:

14 13
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J U,
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15 . .
16 Hawye (this works with
17 ] punctured link patterns!)
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20 (_QD
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)

1 corner, 1 degree-2 vertex:
16 15 14

LR

| )
12
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(. 10
g ) (this works with
;g U7 punctured link patterns!)
2 (_QD D
1234567809
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)

2 corners, 1 face with ¢ = 2: 87654321
9 - W ) 16
(these are HTASM, 10 LY (] e
half-turn symmetric ASM’s) nh-1 14
U ® i~
13 — 1 12
14 11

@ By
15 10
MUS Bvsla N i

12345867 8
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)
987654321

5 1f ith ¢ = 2 10 4 st | 18
corners, 1 face wi " hﬁD Cl_.E 17

(these are HTASM, 12 L 16
half-turn symmetric ASM’s) 13 = —L 15
14 14
15}L J U 13
16 — l# 12
17 1
18 p om0
123456789
15 L:] 13
16 \ 12
17 g 11
L=2n+1 B D@ BE B
1234567809
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)

8 7654321

2 corners, 1 face with ¢ = 2:

(these are QTASM, ; as@ 3
quarter-turn symmetric ASM’s) 3 U-—j L) 6
4 — 5
5 [ ~— 4 4
6 - 3
7 D 2
8 D 1

1234561738

0w N o U
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Examples of domains with dihedral invariance...

(...and with refined Razumov-Stroganov correspondence...)
10987654321

2 corners, 1 face with £ = 2: i LbD % 1;)
i u
(thesje are gQTASM, . | i ]D 0 EF 3
quasi—quarter-turn symmetric ASM'’s) 5 I ) 6
U Ul &
° EnlEE >
8 UL (& 4
9 2
10 v’_% qgﬂ 1
12345678910
6
=
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Yet one word on gyration... the boundary conditions

We have seen how to generalise the domain,
using black/white alternating boundary conditions

What does it happen if we generalise on boundary conditions?

Pairing consecutive legs with the same colour produces arcs,
and “loses link-pattern information™: gyration holds for
linear combinations of W(), instead of component-wise.

These linear combinations, induced by arcs, are well-described by
Temperley-Lieb operators.

We will not need this in full generality. ..
the study of a single defect is sufficient at our purposes.
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Alternating boundary conditions, with one defect

Example: the state |Wl]) = 26 h(o)=j [T (¢)) satisfies
(Rej—1 — ¢)|Wll) =0
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161 '%3 - E?
0 |
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Alternating boundary conditions, with one defect

Example: the state |Wl]) = 26 h(o)=j [T (¢)) satisfies
(Rej—1 — ¢)|Wll) =0
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Alternating boundary conditions, with one defect

Example: the state |Wl]) = 26 h(o)=j [T (¢)) satisfies
(Rej—1 — ¢)|Wll) =0
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Alternating boundary conditions, with one defect

Example: the state |Wl]) = 26 h(o)=j [T (¢)) satisfies
(Rej—1 — ¢)|Wll) =0

15 14 13 12 11 14 13 12 11 10
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A first consequence

Recall our checklist of identities:
l:eg(1-R HV(t))y=0
2:(1—¢)(t1 =R HV(t))y=0
3: Sym [W(1)) = Sym [W(¢))

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



A first consequence

Recall our checklist of identities:

1:e (1-R HW(t))=0 v/ We have just proven this!
2:(1—¢)(t1 =R HV(t))y=0

3: Sym [W/(t)) = Sym [W(1))
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A first consequence

Recall our checklist of identities:

1:e (1-R HW(t))=0 v/ We have just proven this!
2:(1—¢)(t1 =R HV(t))y=0

3: Sym [W/(t)) = Sym [W(1))

(2) is equivalent to ask that tW(t; ) = V(t; R™1n),

for all 7w such that 1 ~ 2...
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A first consequence

Recall our checklist of identities:

1:e (1-R HW(t))=0 v/ We have just proven this!
2:(1—¢)(t1 =R HV(t))y=0 v’ Donel!

3: Sym [W/(t)) = Sym [W(1))

(2) is equivalent to ask that tW(t; ) = V(t; R™1n),

for all m such that 1 ~ 2...

but this is easily seen: 1 = 2 forces a small region, that in turns

implies a simple behaviour of the refinement position under
gyration
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A first consequence

Recall our checklist of identities:

1:e (1-R HW(t))=0 v/ We have just proven this!
2:(1—¢)(t1 =R HV(t))y=0 v’ Donel!

3: Sym |V/(t)) = Sym |W(t))  ® Look at gyration even better!
(2) is equivalent to ask that tW(t; ) = V(t; R™1n),

for all m such that 1 ~ 2...

but this is easily seen: 1 = 2 forces a small region, that in turns

implies a simple behaviour of the refinement position under
gyration
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A final observation on the orbits

Consider the orbits under Wieland half-gyration

As FPL in the same orbit have the same link pattern up to rotation,
Sym |W'(t)) = Sym |W(t)) follows if, for every j, and every orbit,
there are as many contributions ! to |[W/(t)) as to |W(t)).
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A final observation on the orbits

Consider the orbits under Wieland half-gyration
As FPL in the same orbit have the same link pattern up to rotation,
Sym |W'(t)) = Sym |W(t)) follows if, for every j, and every orbit,
there are as many contributions ! to |[W/(t)) as to |W(t)).
Study the behavior of the trajectory h(x) of the refinement
position:
» h(x+ 1) — h(x) € {0,£1}
» In a periodic function, a height value is attained alternately on
ascending and descending portions (if not at maxima/minima)
» All maxima/minima plateaux have length 2,
the rest has slope £1

» Ascending/descending parts of the trajectory have respectively
black and white refinement position
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;
are all equal. This completes the proof.

. )
-
U LOf
]
J m‘ o ® O [ J
" q (o] [ J oce
12 3 45 ole
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;
are all equal. This completes the proof.

e

W a [:‘; O ® O [ J
J » - (o] o oce
12-345 ole
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;

are all equal. This completes the proof.
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;

» or have a black (resp. white) refinement position;
are all equal. This completes the proof.
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;

are all equal. This completes the proof.

L. Cantini and (A. Sportiello ) Dihedral Razumov—Stroganov conjecture: a refined version



A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;

are all equal. This completes the proof.
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;

» or have a black (resp. white) refinement position;

are all equal. This completes the proof.
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;

» or have a black (resp. white) refinement position;
are all equal. This completes the proof.
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;

are all equal. This completes the proof.

[ )
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A final observation on the orbits

As a consequence, in any orbit O, and for any value j, the numbers
of ¢ € O such that h(¢) = j, and

» are in even (resp. odd) position in the orbit;
» or have a black (resp. white) refinement position;

are all equal. This completes the proof.
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A bijective version of the last lemma

15141312 11

16 m—t—, G,-lo
17 — =9 . .
18) J Us The structure of the orbits gives
19j L|;  a bijection factory...

- 6

1
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A bijective version of the last lemma

o
(e
[ J
O
N OlPNB A o N oo
[ J
(@]

'
w

15141312 11

16—t G,-lo
gﬂ M ;Z Consider the infinite orbit, and extend
19j e ordinates from {1,...,L} to Z...

et 6

1
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A bijective version of the last lemma
97
8
7
6
4

e

15141312 11

16—t G,-lo

i;j (] ] .Z All 45-degree diagonals with odd intercept
B (L have a unique white intersection

19 7
et 6
1
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A bijective version of the last lemma

\\9

8

7

6\

5

® O o4

® O [ J o Q o [ J o

° oe o) 2|0 oe o °

N
:2\\

15141312 11

16—t G,-lo

i;j (] ] .Z All 135-degree diagonals with even intercept
B (L have a unique black intersection
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A possible conclusion...

In 2010 we had a proof of the Razumov—Stroganov correspondence

At first, we wanted to generalize this proof to the refined version
by Di Francesco, with one spectral parameter “turned on”

At last, we did it, by introducing a new “heretical” way
of associating link patterns to FPL

This leads to a stronger statement,
and to a new perspective on this family of correspondences

Will this help in the determination of correspondences
with more spectral parameters “turned on”?
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(End of the talk)
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