# Tableaux escalier, PASEP et polynômes d'Askey Wilson

Sylvie Corteel (LIAFA - CNRS et Université Paris Diderot)

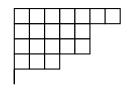
JCB2010 - Bordeaux - Janvier 2010

#### Coworkers

- M. Josuat-Vergès (Université Paris-Sud)
- P. Nadeau (U. Wien)
- L.K. Williams (Berkeley)
- ▶ D. Stanton (Minnesota)

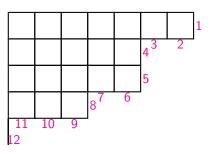
# Young diagram

$$\lambda = (\lambda_1, \dots, \lambda_k)$$
 with  $\lambda_1 \ge \dots \ge \lambda_k \ge 0$   
 $\lambda = (7, 5, 5, 3, 0)$ 



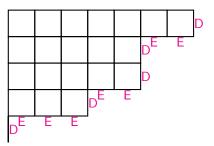
Length=number of rows + number of columns= $\lambda_1 + k$ 

# Young diagram

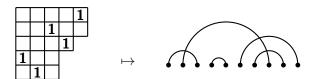


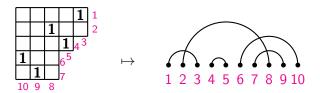
Number the border:  $1,2,\ldots,12$ 

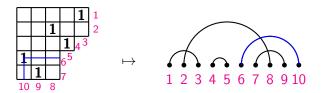
# Young diagram

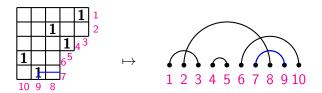


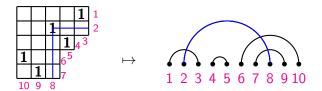
Code the border: DEEDDEEDEED

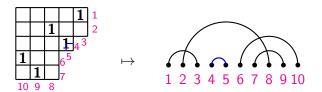


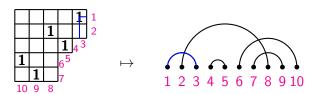




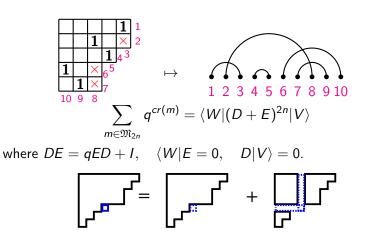








Any  $\lambda$  and one 1 per row and per column : Rook placements The number of RP of length 2n is (2n-1)!!.



(Touchard-Riordan, Penaud, Flajolet-Noy, Josuat-Vergès . . . )

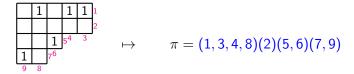
Moments of *q*-Hermite polynomials



Leroux (88) 0-1 tableaux : One 1 per column.

The number of tableaux of length n is  $B_n$  (the  $n^{th}$  Bell number)

#### 0-1 tableaux $\mapsto$ Set partitions



$$\langle W|(yD+E)^n|V\rangle$$

with DE = qED + D,  $\langle W|E = 0$ ,  $D|V\rangle = |V\rangle$ .

Moments of *q*-Charlier polynomials (de Medicis, Stanton, White 95)

Leroux (88) 0-1 tableaux : One 1 per column.

The number of tableaux of length n is  $B_n$  (the  $n^{th}$  Bell number)

#### 0-1 tableaux $\mapsto$ Set partitions

$$\langle W|(yD+E)^n|V\rangle$$

with DE = qED + D,  $\langle W|E = 0$ ,  $D|V\rangle = |V\rangle$ .

Moments of *q*-Charlier polynomials (de Medicis, Stanton, White 95)

# Permutation tableaux (Postnikov 01, Williams 05)

#### Totally non negative part of the Grassmanian

Permutation tableau  $\mathcal T$  : a partition  $\lambda$  filled with 0's and 1's such that :

- 1. Each column contains at least one 1.
- 2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 |   |   |
| 0 | 1 | 1 | 1 | 1 |   |   |
| 0 | 0 | 0 |   |   |   |   |
| 1 |   |   |   |   |   |   |

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |   |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |   |   | - |
| 0 | 1 | 0 | 1 | 1 |   |   |   |
| 0 | 0 | 0 |   |   |   |   |   |
| 1 |   |   | • |   |   |   |   |

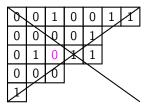
## Permutation tableaux (Postnikov 01, Williams 05)

#### Totally non negative part of the Grassmanian

Permutation tableau  $\mathcal T$  : a partition  $\lambda$  filled with 0's and 1's such that :

- 1. Each column contains at least one 1.
- 2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 |   |   |
| 0 | 1 | 1 | 1 | 1 |   |   |
| 0 | 0 | 0 |   |   |   |   |
| 1 |   |   |   |   |   |   |



# Permutation tableaux (Postnikov 01, Williams 05)

#### Totally non negative part of the Grassmanian

Permutation tableau  $\mathcal T$  : a partition  $\lambda$  filled with 0's and 1's such that :

- 1. Each column contains at least one 1.
- 2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 |   |   |
| 0 | 1 | 1 | 1 | 1 |   |   |
| 0 | 0 | 0 |   |   |   |   |
| 1 |   |   |   |   |   |   |

|   |   |   | _ |   |   | _ |
|---|---|---|---|---|---|---|
| 6 | 9 | 1 | 0 | 0 | 1 | 1 |
| 0 | 6 | 9 | 0 | 1 |   |   |
| 0 | 1 | 0 | X | 1 |   |   |
| 0 | 0 | Ø |   |   |   |   |
| 1 |   |   |   |   |   | \ |

Number of permutation tableaux of length n is n!

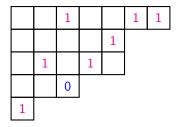
Restricted zero: lies below some 1

A permutation tableaux is uniquely defined by its topmost ones and rightmost restricted zeros.

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 |   |   |
| 0 | 1 | 1 | 1 | 1 |   |   |
| 0 | 0 | 0 |   |   |   |   |
| 1 |   |   |   |   |   |   |

Restricted zero: lies below some 1

A permutation tableaux is uniquely defined by its topmost ones and rightmost restricted zeros.



Restricted zero: lies below some 1

A permutation tableaux is uniquely defined by its topmost ones and rightmost restricted zeros.

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
|---|---|---|---|---|---|---|
| 0 | 0 |   | 0 | 1 |   |   |
| 0 | 1 |   | 1 |   |   |   |
| 0 | 0 | 0 |   |   |   |   |
| 1 |   |   |   |   |   |   |

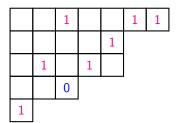
Restricted zero: lies below some 1

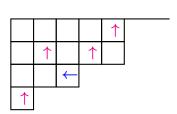
A permutation tableaux is uniquely defined by its topmost ones and rightmost restricted zeros.

|   |   | 1 |   |   | 1 | 1 |
|---|---|---|---|---|---|---|
|   |   | 1 |   | 1 |   |   |
|   | 1 | 1 | 1 | 1 |   |   |
|   |   | 0 |   |   |   |   |
| 1 |   |   | - |   |   |   |

Restricted zero: lies below some 1
A permutation tableaux is uniquely defined by its topmost ones and rightmost restricted zeros.

(C. Nadeau 07)





Alternative tableaux (Viennot 08, Nadeau 09)

## Bijections with permutations

```
Postnikov (00)
Steingrimsson and Williams (06)
Burstein (07)
C. and Nadeau (07)
Viennot (08)
Descents, excedances, crossings, 31-2, RL-min, LR-Max.
```

#### Enumeration of PT

- $ightharpoonup u(\mathcal{T})$ : number of unrestricted rows minus one
- $ightharpoonup f(\mathcal{T})$ : number of ones in the first row

$$\sum_{\mathcal{T} \text{ length } n+1} x^{u(\mathcal{T})} y^{f(\mathcal{T})} = \prod_{i=0}^{n-1} (x+y+i) = (x+y)_n.$$

(C. and Nadeau 07)



#### q-enumeration

 $wt(\mathcal{T})$ : number of ones minus number of columns

$$E_{k,n}(q) = \sum_{\mathcal{T}} wt(\mathcal{T}) = q^{n-k^2} \sum_{i=0}^{k-1} (-1)^i [k-i]_q^n \left( \binom{n}{i} q^{k-i} + \binom{n}{i-1} \right)$$

(Williams 05)

q-analogue of Eulerian numbers q=0 Narayana numbers, q=-1 Binomial numbers.

Moments of q-Laguerre polynomials (Kasraoui, Stanton, Zeng 09)

Tableaux of a given shape (Williams 05, Novelli, Thibon, Williams 08)

## Three parameter enumeration

$$F_n(q, \alpha, \beta) = \sum_{\mathcal{T} \text{ length } n} W(\mathcal{T}); \quad W(\mathcal{T}) = q^{\text{wt}(\mathcal{T})} \alpha^{-f(\mathcal{T})} \beta^{-u(\mathcal{T})},$$

$$F_n(q, \alpha, \beta) = \langle W | (D + E)^{n-1} | V \rangle, \quad \text{where}$$

$$DE = qED + D + E;$$

$$\alpha \langle W|E=\langle W|; \ \beta D|V \rangle = |V \rangle \ \langle W||V \rangle = 1.$$
 (C, Williams 06) Compute  $F_n(q,\alpha,\beta)$  (Josuat-Vergès 09)

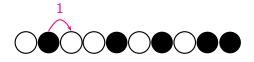


Model: n sites that are empty or occupied The sites are delimited by n+1 positions (n-1 positions in between sites, left border and right border).

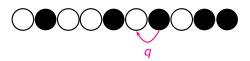
First a position is chosen at random



- First a position is chosen at random
- A particle hops to the right with probability 1



- First a position is chosen at random
- A particle hops to the right with probability 1
- A particle hops to the left with probability q



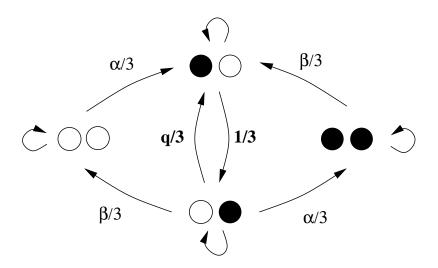
- First a position is chosen at random
- A particle hops to the right with probability 1
- A particle hops to the left with probability q
- lacktriangle A particle enters with probability lpha



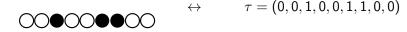
- First a position is chosen at random
- ▶ A particle hops to the right with probability 1
- A particle hops to the left with probability q
- ightharpoonup A particle enters with probability lpha
- $\blacktriangleright$  A particles leaves with probability  $\beta$



#### Markov chain n = 2



## Stationary distribution of the PASEP chain



Let  $P_n^{q,\alpha,\beta}(\tau)$  be the probability to be in state  $\tau=(\tau_1,\ldots,\tau_n)$ . Theorem. (Derrida et al. 93) The probability to be in state  $\tau=(\tau_1,\ldots,\tau_n)$  is

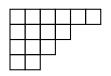
$$P_n(\tau) = \frac{\langle W | (\prod_{i=1}^n (\tau_i D + (1-\tau_i)E)) | V \rangle}{Z_n}.$$

with  $Z_n = \langle W | (D+E)^n | V \rangle$ , D and E are infinite matrices, V is a column vector, and W is a row vector, such that

$$DE - qED = D + E$$
  
 $\beta D|V\rangle = |V\rangle$   
 $\alpha \langle W|E = \langle W|$ 

#### Permutation tableaux

$$\tau = ({\tt 0}, {\tt 0}, {\tt 1}, {\tt 0}, {\tt 0}, {\tt 1}, {\tt 1}, {\tt 0}, {\tt 0}) \leftrightarrow \lambda(\tau) =$$



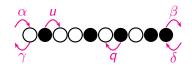
Theorem. Fix  $\tau = (\tau_1, \dots, \tau_n) \in \{0, 1\}^n$ , and let  $\lambda := \lambda(\tau)$ . The probability of finding the PASEP chain in configuration  $\tau$  in the steady state is

$$\frac{\sum_{\mathcal{T}} W(\mathcal{T})}{Z_n}$$
.

where the sum is on the permutation tableaux of shape  $\lambda$ .

(C. and Williams 2006)

#### General PASEP



Theorem. (Derrida et al. 93) The probability to be in state  $\tau = (\tau_1, \dots, \tau_n)$  is

$$P_n(\tau) = \frac{\langle W | (\prod_{i=1}^n (\tau_i D + (1-\tau_i)E)) | V \rangle}{Z_n}.$$

with  $Z_n = \langle W | (D+E)^n | V \rangle$ , D and E are infinite matrices, V is a column vector, and W is a row vector, such that

$$uDE - qED = D + E$$
  

$$\beta D|V\rangle = |V\rangle + \delta E|V\rangle$$
  

$$\alpha \langle W|E = \langle W| + \gamma \langle W|D$$

#### Theorem.

Fix  $\tau = (\tau_1, \dots, \tau_n) \in \{\bullet, \circ\}^n$ , and The probability of finding the PASEP chain in configuration  $\tau$  in the steady state is

$$\frac{\sum_{\mathcal{T}} W(\mathcal{T})}{Z_n}.$$

where the sum is on staircase tableaux of type  $\tau$ .

(C. and Williams 2009)

#### Staircase tableaux

Staircase shape  $(n, n-1, \ldots, 2, 1)$ . Fill some cells with  $\alpha, \beta, \gamma$  or  $\delta$  such that

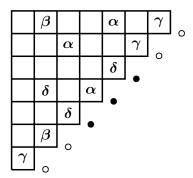
- Cells of the diagonal are filled
- $\blacktriangleright \uparrow \text{ for } \alpha \text{ or } \gamma$
- $\blacktriangleright$   $\leftarrow$  for  $\beta$  or  $\delta$

|          | $\boldsymbol{\beta}$ |          |          | $\alpha$ |          | $\gamma$ |
|----------|----------------------|----------|----------|----------|----------|----------|
|          |                      | $\alpha$ |          |          | $\gamma$ |          |
|          |                      |          |          | δ        |          | -        |
|          | δ                    |          | $\alpha$ |          |          |          |
|          |                      | δ        |          | -        |          |          |
|          | $\boldsymbol{\beta}$ |          |          |          |          |          |
| $\gamma$ |                      |          |          |          |          |          |

### Staircase tableaux

Staircase shape  $(n, n-1, \ldots, 2, 1)$ . Fill some cells with  $\alpha, \beta, \gamma$  or  $\delta$  such that

- Cells of the diagonal are filled
- ightharpoonup  $\uparrow$  for  $\alpha$  or  $\gamma$
- $\blacktriangleright \leftarrow \text{for } \beta \text{ or } \delta$

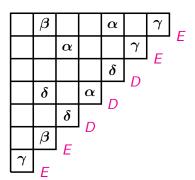


Type : read the diagonal, put  $\circ$  if  $\beta$  or  $\gamma$  and  $\bullet$  if  $\alpha$  or  $\delta$ .

#### Staircase tableaux

Staircase shape  $(n, n-1, \ldots, 2, 1)$ . Fill some cells with  $\alpha, \beta, \gamma$  or  $\delta$  such that

- Cells of the diagonal are filled
- $\blacktriangleright \uparrow \text{ for } \alpha \text{ or } \gamma$
- $\blacktriangleright$   $\leftarrow$  for  $\beta$  or  $\delta$



# Weight of a staircase tableau

| under\ right | $\alpha$ | β | $\gamma$ | $\delta$ |
|--------------|----------|---|----------|----------|
| $\alpha$     | и        | и | и        | q        |
| β            | q        | и | q        | q        |
| $\gamma$     | q        | и | q        | q        |
| δ            | и        | и | и        | q        |

| и        | $\boldsymbol{\beta}$ | и        | и        | $\alpha$ | q        | $\gamma$ |
|----------|----------------------|----------|----------|----------|----------|----------|
| q        | и                    | $\alpha$ | и        | и        | $\gamma$ |          |
| q        | q                    | q        | q        | δ        |          | •        |
| q        | δ                    | и        | $\alpha$ |          |          |          |
| q        | q                    | δ        |          | -        |          |          |
| и        | $\boldsymbol{\beta}$ |          |          |          |          |          |
| $\gamma$ |                      |          |          |          |          |          |

$$W(\mathcal{T}) = \alpha^2 \beta^2 \gamma^3 \delta^2 q^9 u^8.$$

# Staircase tableau of type ••

| и        | $\alpha$ | q        | δ | q | δ | и | $\alpha$ | δ | $\alpha$ | $\gamma$ | $\alpha$ | β | $\alpha$ | $\alpha$ | $\alpha$ |
|----------|----------|----------|---|---|---|---|----------|---|----------|----------|----------|---|----------|----------|----------|
| $\alpha$ |          | $\alpha$ |   | δ |   | δ |          | δ |          | δ        |          | δ |          | δ        |          |

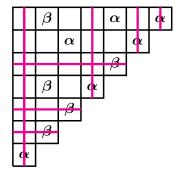
Probabilité de ••

$$\frac{\alpha^2 u + \delta^2 q + \alpha \delta (u + q + \alpha + \beta + \gamma + \delta)}{Z_2}$$

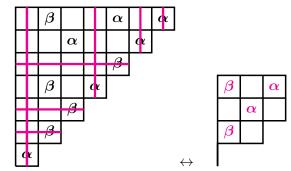
No  $\gamma$  , No  $\delta$ 

|          | $\boldsymbol{\beta}$ |                      |          | $\alpha$             |          | $\alpha$ |
|----------|----------------------|----------------------|----------|----------------------|----------|----------|
|          |                      | $\alpha$             |          |                      | $\alpha$ |          |
|          |                      |                      |          | $\boldsymbol{\beta}$ |          |          |
|          | $\boldsymbol{\beta}$ |                      | $\alpha$ |                      | •        |          |
|          |                      | $\boldsymbol{\beta}$ |          |                      |          |          |
|          | $\boldsymbol{\beta}$ |                      |          |                      |          |          |
| $\alpha$ |                      | •                    |          |                      |          |          |

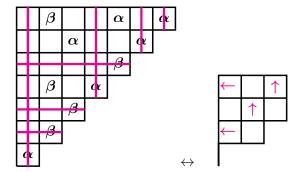
No  $\gamma$  , No  $\delta$ 



No  $\gamma$ , No  $\delta$ 



No  $\gamma$ , No  $\delta$ 



### Matrix Ansatz and staircase tableaux

| under\ right | $\alpha$ | β | $\gamma$ | δ |
|--------------|----------|---|----------|---|
| $\alpha$     | и        | и | и        | q |
| β            | q        | и | q        | q |
| $\gamma$     | q        | и | q        | q |
| δ            | и        | и | и        | q |

Staircase tableau of length n + 1. First diagonal:

- $ightharpoonup \alpha \leftrightarrow \gamma$
- $\beta$  : take off the first line  $\beta u^n$
- $\delta$ : take off the first line  $\delta q^n$

$$\alpha < W|EX|V > = \gamma < W|DX|V > +(\alpha \beta u^n - \gamma \delta q^n) < W|X|V >$$

$$X \in \{D, E\}^n$$



### Matrix Ansatz and staircase tableaux

$$< W|XDEY|V> = q < W|XEDY|V> + (\alpha\beta u^{n+m+1} - \gamma\delta q^{n+m+1}) < W|X(D+E)Y|V>$$

$$\beta < W|XD|V > = \delta < W|XE|V > +(\alpha \beta u^n - \gamma \delta q^n) < W|X|V >$$

$$X \in \{D, E\}^n, Y \in \{D, E\}^m.$$

Proof by induction

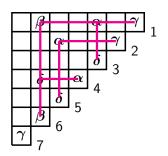


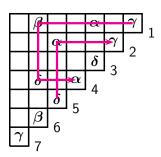
#### Enumeration of staircase tableaux

There exist  $2^n n!$  staircase tableaux of type  $\tau$ There exist  $4^n n!$  staircase tableaux of size nu = q = 1,

$$Z_n = \prod_{i=0}^{n-1} (\alpha + \beta + \gamma + \delta + i(\alpha + \gamma)(\beta + \delta))$$

## **Bijection**





First sign : type, second sign : label of the beginning of the path (-4,-+5,+-1,++6,++2,-+3,--7)

#### Enumeration formula u=1

Theorem. (C. Stanton, Williams, 2010)

$$Z_{n}(y, a, b, c, d, q) = (abcd; q)_{n} \left(\frac{\alpha\beta}{1-q}\right)^{n} \frac{1}{2^{n}} \sum_{k=0}^{n} \frac{(ab, acy, ad; q)_{k}}{(abcd; q)_{k}} q^{k}$$

$$\times \sum_{j=0}^{k} q^{-(k-j)^{2}} (a^{2}y)^{j-k} \frac{(1+y+q^{k-j}ay+q^{j-k}/a)^{n}}{(q, q^{2j-2k+1}/a^{2}/y; q)_{k-j} (q, a^{2}yq^{1-2j+2k}; q)_{j}}$$

$$lpha = rac{1-q}{1-ac+a+c}, \quad \beta = rac{1-q}{1-bd+b+d}, \ \gamma = rac{(1-q)ac}{1+ac+a+c}, \quad \delta = rac{(1-q)bd}{1+bd+b+d}$$

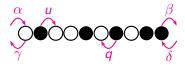
Moments of the Askey Wilson polynomials

$$\frac{(1-q)^n}{2^n i^n \prod_{i=0}^{n-1} (\alpha\beta - \gamma\delta q^i)} Z_n(-1, \mathsf{a} i, \mathsf{b} i, \mathsf{c} i, \mathsf{d} i, q)$$



## Open problems

▶ Symmetry  $\alpha \leftrightarrow \gamma$ ,  $\beta \leftrightarrow \delta$ ,  $q \leftrightarrow u$ .



- Enumeration of staircase tableaux
- Combinatorics of staircase tableaux? What does q count?
- Lifted chain on staircase tableaux?
- Link with the double Grassmanian?
- Hopf algebra?

## Merci

Merci!