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Young diagram

/\:()\1,...,/\;() with A\ >...>2X>0
A =(7,5,5,3,0)

Length=number of rows + number of columns=X; + k



Young diagram

11 10 9
12

Number the border : 1,2,..., 12



Young diagram

Code the border: DEEDDEEDEEED



Example |

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2nis (2n — 1)!1.
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Example |

Any X and one 1 per row and per column : Rook placements
The number of RP of length 2nis (2n — 1)!1.
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S ¢ = (W|(D + E)*"|V)
meMo,
where DE = qED + 1, (W|E =0, D|V)=0.

[y

© |
oo [ XX

= +

(Touchard-Riordan, Penaud, Flajolet-Noy, Josuat-Verges .. .)
Moments of g-Hermite polynomials



Example Il
Leroux (88) 0-1 tableaux : One 1 per column.
The number of tableaux of length n is B, (the nt" Bell number)

0-1 tableaux — Set partitions

1 1)1

2

Y s 1=(1,3,4,8)(2)(5,6)(7,9)

[ay

<W\(yD+E)”\V>
with DE = gED + D, (W|E =0, D|V) =

et

Moments of g-Charlier polynomials (de Medicis, Stanton, White
95)
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Permutation tableaux (Postnikov 01, Williams 05)

Totally non negative part of the Grassmanian
Permutation tableau 7 : a partition A filled with 0's and 1's such
that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and
a 1 to its left in the same row.
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Permutation tableaux (Postnikov 01, Williams 05)

Totally non negative part of the Grassmanian
Permutation tableau 7 : a partition A filled with 0's and 1's such
that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and
a 1 to its left in the same row.

ofof1|ofof1]1] o|1]o]o|1}1]
o[of1]o o[ofafo]
of1]1]1 o[1]oPx1
ofofo 0|ofo

1] P

Number of permutation tableaux of length n is n!



Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableaux is uniquely defined by its topmost ones

and rightmost restricted zeros.

(C. Nadeau 07)
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Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableaux is uniquely defined by its topmost ones

and rightmost restricted zeros.

(C. Nadeau 07)
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Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableaux is uniquely defined by its topmost ones
and rightmost restricted zeros.

(C. Nadeau 07)

1 1)1

Alternative tableaux (Viennot 08, Nadeau 09)



Bijections with permutations

Postnikov (00)

Steingrimsson and Williams (06)
Burstein (07)

C. and Nadeau (07)

Viennot (08)
Descents, excedances, crossings, 31-2, RL-min, LR-Max.



Enumeration of PT

» u(7T) : number of unrestricted rows minus one

» f(7) : number of ones in the first row

ofof[1]ofo]1]1]
ofo[1]o]1 =
of1]1]1]1
olo]o u(T)=4-1=3
[ 1]
n—1
> DY =TT (x+y+1) = (x+y)n.
T length n+1 i=0

(C. and Nadeau 07)



g-enumeration
wt(7): number of ones minus number of columns

1{of1]o]of1]1]
ofof1]o1
ofif1]1]1] wt(T)=10-7=3

i=0

k—1
Ex , _ t _ n—k? 1 i k—i1m n k—i n
o) = S wi(1) = 4" (1)1 B ((7)e+ (",
(Williams 05)
g-analogue of Eulerian numbers
g = 0 Narayana numbers, g = —1 Binomial numbers.

Moments of g-Laguerre polynomials (Kasraoui, Stanton, Zeng 09)

Tableaux of a given shape (Williams 05, Novelli, Thibon, Williams
08)



Three parameter enumeration

Fal@ 0 8) = S tongn o W(T) W(T) = ")) g=u(T),

Fo(q, o, 8) = (W|(D+ E)"!|V),  where
DE = qED + D + E;

EdEg=grg

a(W[E = (W[, pD|V) =|V) (W[]V)=1.

(C, Williams 06)
Compute Fn(q, o, B) (Josuat-Verges 09)




PT and Partially asymmetric exclusion process
Model : n sites that are empty or occupied

The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).
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Model : n sites that are empty or occupied
The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).

» First a position is chosen at random

> A particle hops to the right with probability 1
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PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n+ 1 positions (n — 1 positions in
between sites, left border and right border).

» First a position is chosen at random

v

A particle hops to the right with probability 1

v

A particle hops to the left with probability g

v

A particle enters with probability o

v

A particles leaves with probability 3

5]

0000000088






Stationary distribution of the PASEP chain

7 =(0,0,1,0,0,1,1,0,0)
00 00 | 00

Let PZ*?(7) be the probability to be in state 7 = (71, ..., 7n).
Theorem. (Derrida et al. 93) The probability to be in state
T=(T1,...,Tn) IS

(WI(TiL, (1D + (1 = ) E)V)

P.(T) = Z )

with Z, = (W|(D + E)"|V), D and E are infinite matrices, V is a
column vector, and W is a row vector, such that

DE —qED =D+ E

BD|V) =|V)
a(W|E = (W|



Permutation tableaux

7=(0,0,1,0,0,1,1,0,0) > \(r) =

Theorem. Fix 7 = (11,...,75) € {0,1}", and let X\ := A\(7). The
probability of finding the PASEP chain in configuration 7 in the

steady state is
> W(T)
Zp ’

where the sum is on the permutation tableaux of shape .
(C. and Williams 2006)



General PASEP

a u I5]

IS /N

[O0000e0ee

Y q 0
Theorem. (Derrida et al. 93) The probability to be in state
T=(11,...,7Tn) is

W|(TT? D+ (1—-7)E))|V
o) — WA (5D + (L= m)ENIV).

Zy
with Z, = (W|(D + E)"|V), D and E are infinite matrices, V is a
column vector, and W is a row vector, such that
uDE —qED = D + E
BD|V) = |V)+0E|V)
a(W|E = (W|+~(W|D



Theorem.

Fix 7 = (71,...,7n) € {®,0}", and The probability of finding the
PASEP chain in configuration 7 in the steady state is

2.7 WI(T)
z,

where the sum is on staircase tableaux of type 7.
(C. and Williams 2009)



Staircase tableaux
Staircase shape (n,n—1,...,2,1).
Fill some cells with «,3, v or d such that
» Cells of the diagonal are filled
> 1 for o or y
> « for B ord
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Staircase tableaux
Staircase shape (n,n—1,...,2,1).
Fill some cells with «,3, v or § such that
> Cells of the diagonal are filled
> 1 for a or
> « for B ord

B e’ Y
o
« Y
o
0
°
) o
°
o
°
B
o
Y
o

Type : read the diagonal, put o if 5 or «v and e if a or 0.



Staircase tableaux

Staircase shape (n,n—1,...,2,1).

Fill some cells with «,3, v or d such that
» Cells of the diagonal are filled
> 1 for o or y
> « for B ord




Weight of a staircase tableau

under\ right [ a [ B | v | ¢

o ulululqg

B glulqglq

i qlujlqlq

) ulululg
ulBlu i
Jlu|o
qlalaq
alé|u
alalé
ulp
~

W(T) — 06252’)/3(52619 u8.



Staircase tableau of type ee

Probabilité de ee

Qu+6?qg+ad(ut+qg+a+B+y+9)

Z>



Staircase and alternative tableaux

No v, No ¢

B o o

a o
B

J6] o
B

B
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Staircase and alternative tableaux

No v, No ¢
J6] o i %
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Staircase and alternative tableaux
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Staircase and alternative tableaux

No v, No ¢
B o (i ¥
a d
A}
B
B a <—
]
B
2 <—
&
&~




Matrix Ansatz and staircase tableaux

under\ right | o« | B | v | &
a ulululg
B glulqglgqg
v glulqglg
1) ulu|lulg

Staircase tableau of length n+ 1. First diagonal:
> ooy
» [ : take off the first line Su”
> ) : take off the first line 6g”

a< WIEX|V > =~ < W|DX|V >+(apu™ —~viq") < W|X|V >

X e {D,E}"



Matrix Ansatz and staircase tableaux

< WIXDEY|V > = g< W|IXEDY|V >
_’_(aﬂun+m+1 _,.)/5qn+m+1) < W’X(D—i— E)Y’V >

B< WIXD|V >=6< W|XE|V > +(aBu” — y6q") < W|X|V >

X e{D,E}", Y € {D,E}".
Proof by induction



Enumeration of staircase tableaux

There exist 2"n! staircase tableaux of type 7
There exist 4"n! staircase tableaux of size n
u = q g 1’

n—1

Zy=[Ja+B+~v+6+i(a+7)(B+0)
i=0



Bijection

1, e 1,

G ,2 G "\/2
LAE 013
0M4 0M4
5 5

B B

o1 - °

L7 RAY;

(4,5,1,6,2,3,7)

First sign : type, second sign : label of the beginning of the path
(——4,—-—+5+-1,++6,++2,—4+3,— —7)



Enumeration formula v =1
Theorem. (C. Stanton, Williams, 2010)

"1 < (ab d:
Zy(y,a,b,c,d,q) = (abcd; q)n<aﬁ> 1 5 (abyacy, adiq)i

l—gq) 2n &~ (abcd; q)«
k —7 [ —
X Zq‘(k—j)2(a2y)f—k _(I+y+ qJay + ¢ k/a)n.
= (g.g%72k%1/22y; q)k—j(q, a®yqt =22k, q);
_ 1—q 5= I—q
¢ T 1 actatrce VT 1 bdibrd
(1-qac o (1-q)bd
7 ltactatc ° 1+bdtbtd

Moments of the Askey Wilson polynomials

(1-gq)"
207 725 (o — vq)

Z,(—1,ai, bi,ci,di,q)



Open problems

> Symmetry o <> 7y, < 0, g & u.
o u 5
IS We /N
\?0( X )‘%’O‘.\{

» Enumeration of staircase tableaux

v

Combinatorics of staircase tableaux? What does g count?

Lifted chain on staircase tableaux?

v

v

Link with the double Grassmanian?

v

Hopf algebra?



Merci

Merci!



