Schnyder woods for higher genus surfaces: from graph encoding to graph drawing

JCB 2014, Labri

Luca Castelli Aleardi

 v_0

(joint works with O. Devillers, E. Fusy, A. Kostrygin, T. Lewiner)

Some facts about planar graphs

("As I have known them")

Some facts about planar graphs

Thm (Schnyder, Trotter, Felsner)

G planar if and only if dim(G) < 3

Thm (Koebe-Andreev-Thurston)

Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Thm (Kuratowski, excluded minors)

G planar if and only if G contains neither K_5 nor $K_{3,3}$ as minors

Thm (Y. Colin de Verdière)

G planar if and only if $\mu(G) \leq 3$ $(\mu(G))$ = multiplicity of λ_2 of a generalized laplacian)

$$L_G = egin{bmatrix} 4 & -1 & \dots & 0 \ -1 & 5 & \dots & & \ \dots & \dots & \dots & & \ 0 & \dots & & 3 \end{bmatrix} \quad L_G[i,k] = \ egin{bmatrix} deg(v_i) \ -A_G[i,j] \ \end{pmatrix}$$

$$L_G[i,k] = \begin{cases} deg(v_i) \\ -A_G[i,j] \end{cases}$$

Planar triangulations

$$n - e + f = 2$$

$$e = 3n - 6$$

Schnyder woods and canonical orderings: overview of applications

(**graph drawing**, **graph encoding**, succinct representations, compact data structures, exhaustive graph enumeration, bijective counting, greedy drawings, spanners, contact representations, planarity testing, untangling of planar graphs, Steinitz representations of polyhedra, . . .)

Some (classical) applications

(Chuang, Garg, He, Kao, Lu, Icalp'98) (He, Kao, Lu, 1999) Graph encoding

(Poulalhon-Schaeffer, Icalp 03)

bijective counting, random generation

$$c_n = \frac{2(4n+1)!}{(3n+2)!(n+1)!}$$

 \Rightarrow optimal encoding ≈ 3.24 bits/vertex

Thm (Schnyder '90)

planar straight-line grid drawing (on a $O(n \times n)$ grid)

More ("recent") applications

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces and Half- Θ_6 -graphs [Bonichon et al., WG'10, Icalp '10, ...]

(a)

Figure 2: A coplanar orthogonal surface with its geodesic embedding.

Figure 3: (a) TD-Voronoi diagram. (b) $\lambda_1 < \lambda_2 < \lambda_3$ stand for three triangular distances. Set $\{u,v\}$ is an ambiguous point set, however $\{u,v,w\}$ is non-ambiguous.

Every planar triangulation admits a greedy drawing (Dhandapani, Soda08)

(conjectured by Papadimitriou and Ratajczak for 3-connected planar graphs)

Schnyder woods

(the definition)

Schnyder woods: (planar) definition

[Schnyder '90]

rooted triangulation on n nodes

A Schnyder wood of a (rooted) planar triangulation is partition of all inner edges into three sets T_0 , T_1 and T_2 such that

- i) edge are colored and oriented in such a way that each inner nodes has exactty one outgoing edge of each color
- ii) colors and orientations around each inner node must respect the local Schnyder condition

Schnyder woods: equivalent formulation

Schnyder woods: spanning property

[Schnyder '90]

The three sets T_0 , T_1 , T_2 are spanning trees of the inner vertices of \mathcal{T} (each rooted at vertex v_i)

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

1

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

 v_1

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Every planar triangulation admits a Schnyder wood, which can be computed in linear time.

 v_1

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

The traversal starts from the root face

[incremental vertex shelling, Brehm's thesis]

Theorem

Canonical orderings

(the definition)

Canonical orderings: definition

(of planar graphs)

Classical algorithms:

spring-embedding

incremental (Shift-algorithm)

face-counting principle

Input of the problem set of triangle faces

Output geometric coordinates of vertices

Face counting algorithm

(Schnyder algorithm, 1990)

Face counting algorithm

Geometric interpretation

$$v=lpha_1x_1+lpha_2x_2+lpha_3x_3$$
 where $lpha_i$ is the normalized area

$$v = \frac{|R_1(v)|}{|T|} x_1 + \frac{|R_2(v)|}{|T|} x_2 + \frac{|R_3(v)|}{|T|} x_3$$
 where $|R_i(v)|$ is the number of triangles

Theorem (Schnyder, Soda '90)

For a triangulation \mathcal{T} having n vertices, we can draw it on a grid of size $(2n-5)\times(2n-5)$, by setting $x_1=(2n-5,0)$, $x_2=(0,0)$ and $x_3=(0,2n-5)$.

Face counting algorithm

 ${\mathcal T}$ endowed with a Schnyder wood

Face counting algorithm: proof (sketch)

 ${\mathcal T}$ endowed with a Schnyder wood

$$a \to (13, 0, 0)$$

$$\begin{array}{l} {\sf b} \ \to (0,13,0) \\ {\sf c} \ \to (9,3,1) \end{array}$$

$$c \to (9,3,1)$$

$$d \to (5, 6, 2)$$

$$e \to (2,7,4)$$

$$f \rightarrow (7,3,3)$$

$$g \to (1,4,8)$$

$$h \to (8,1,4)$$

$$i \to (0, 0, 13)$$

Face counting algorithm: proof (sketch)

 ${\mathcal T}$ endowed with a Schnyder wood

a
$$\rightarrow$$
 (13,0,0)
b \rightarrow (0,13,0)
c \rightarrow (9,3,1)
d \rightarrow (5,6,2)
e \rightarrow (2,7,4)
f \rightarrow (7,3,3)

Face counting algorithm: proof (sketch)

 ${\mathcal T}$ endowed with a Schnyder wood

$$a \to (13, 0, 0)$$

$$\begin{array}{c} {\sf b} \to (0,13,0) \\ {\sf c} \to (9,3,1) \end{array}$$

$$c \to (9, 3, 1)$$

$$d \to (5, 6, 2)$$

$$e \to (2,7,4)$$

$$f \to (7,3,3)$$

$${\bf g} \to (1,4,8)$$

$$h \to (8,1,4)$$

$$i \to (0, 0, 13)$$

Graph encoding

(practical) motivation

Geometric v.s combinatorial information

Geometry

vertex coordinates

between 30 et 96 bits/vertex

David statue (Stanford's Digital Michelangelo Project, 2000)

2 billions polygons32 Giga bytes (without compression)

No existing algorithm nor data structure for dealing with the entire model

"Connectivity": the underlying triangulation

adjacency relations between triangles, vertices

vertex

1 reference to a triangle

triangle

3 references to vertices 3 references to triangles

 $13n \log n$ or 416n bits

$$\#\{\text{triangulations}\} = \frac{2(4n+1)!}{(3n+2)!(n+1)!} \approx \frac{16}{27} \sqrt{\frac{3}{2\pi}} n^{-5/2} \left(\frac{256}{27}\right)^n$$

 \Rightarrow entropy = $\log_2 \frac{256}{27} \approx 3.24$ bpv.

A simple encoding scheme

Turan encoding of planar map (1984)

12n bits encoding scheme

parenthesis word of size
$$2n$$

parenthesis word of size 2n

$$S(G)$$
 ([[[)(](][[]))(]][)...

length(S) = 2e symbols $(2\log_2 4)e = 4e = 12n$ bits

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

 T_1 is redundant: reconstruct from T_0 , T_2

Canonical orderings - Schnyder woods (He, Kao, Lu '99)

 T_1 is redundant: reconstruct from T_0 , T_2

 T_2 can be reconstructed from T_0 and the number of ingoing edges (for each node)

Canonical orderings - Schnyder woods (He, Kao, Lu '99) 4n bits (for triangulations)

$$\overline{T}_0$$
 () ((()) () () () (()) (())

$$2(n-1)$$
 symbols= $2(n-1)$ bits

$$\overline{T}_2$$
 000001010101011111

$$(n-1) + (n-3) = 2n-4$$
 bits

Compact (practical) mesh data structures

(non compact) data structures

compact data structures

	Data Structure	size	navigation time	vertex access	dynamic		
	Half-edge/Winged-edge/Quad-edge	18n + n	O(1)	O(1)	yes		
	Triangle based DS / Corner Table	12n + n	O(1)	O(1)	yes		
	Directed edge (Campagna et al. '99)	12n + n	O(1)	O(1)	yes		
	2D Catalogs (Castelli Aleardi et al., '06)	7.67n	O(1)	O(1)	yes		
	Star vertices (Kallmann et al. '02)	7n	O(d)	O(1)	no		
	TRIPOD (Snoeyink, Speckmann, '99)	6n	O(1)	O(d)	no		
	SOT (Gurung et al. 2010)	6n	O(1)	O(d)	no		
	SQUAD (Gurung et al. 2011)	$(4+\varepsilon)n$	O(1)	O(d)	no		
	arepsilon between 0.09 and 0.3 ESQ (Castelli Aleardi, Devillers, Rossignac'12)	4.8n	O(1)	O(d)	yes		
	Castelli Aleardi and Devillers (2011)	4n (or $6n$)	O(1)	O(d) (or $O(1)$)	no		
	LR (Gurung et al. 2011)	$(2+\delta)n$	O(1)	O(d)	no		
•	δ about 0.8 and 0.3						

Compact (practical) mesh data structures

(non compact) data structures

compact data structures

	Data Structure	size	navigation time I	vertex access	dynamic
	Half-edge/Winged-edge/Quad-edge	18n + n	O(1)	O(1)	yes
	Triangle based DS / Corner Table	12n + n	O(1)	O(1)	yes
	Directed edge (Campagna et al. '99)	12n + n	O(1)	O(1)	yes
	2D Catalogs (Castelli Aleardi et al., '06)	7.67n	O(1)	O(1)	yes
	Star vertices (Kallmann et al. '02)	7n	O(d)	O(1)	no
	TRIPOD (Snoeyink, Speckmann, '99)	6n	O(1)	O(d)	no
	SOT (Gurung et al. 2010)	6n	O(1)	O(d)	no
	SQUAD (Gurung et al. 2011)	$(4+\varepsilon)n$	O(1)	O(d)	no
	arepsilon between 0.09 and 0.3 ESQ (Castelli Aleardi, Devillers, Rossignac'12)	4.8n	O(1)	O(d)	yes
	Castelli Aleardi and Devillers (2011)	4n (or $6n$)	O(1)	O(d) (or $O(1)$)	no
_	LR (Gurung et al. 2011)	$(2+\delta)n$	O(1)	O(d)	no
	δ about 0.8 and 0.3				

(timings are expressed in nanoseconds/vertex) vertex degree (only topological navigation)

1.2 - 1.9 times slower than Winged-edge (experimental evaluation)

Graphs on surfaces

Graphs on surfaces

$$e = 3n - 6$$

$$n - e + f = 2 - 2g$$

$$\phi = (1, 2, 3, 4)(17, 23, 18, 22)(5, 10, 8, 12)(21, 19, 24, 15) \dots$$

$$\alpha = (2, 18)(4, 7)(12, 13)(9, 15)(14, 16)(10, 23) \dots$$

what can we to extend to higher genus?

$$e = 3n - 6$$

[Goncalves Lévêque, DCG'14]

what can we to extend to higher genus?

$$e = 3n - 6$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

[Goncalves Lévêque, DCG'14]

Schnyder woods and higher genus surfaces

(several possible generalizations)

(pioneeristic) toroidal tree decomposition

[Bonichon Gavoille Labourel, 2005]

the "tambourine" solution

Compute a pair of adjacent non contractible cycles

Tambourine T

Result:

Inconvenients:

- valid only for toroidal triangulations (genus 1)
- ullet potentially large number of vertices (on C_1 and C_2) not satisfying the local condition
- shortest non trivial cycles are "hard" to compute

Definition I: genus g Schnyder woods

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

local condition for multiple vertices

Def: partition of all "inner" edges into four sets

 T_0 , T_1 , T_2 and ${\cal E}$

such that

almost all vertices have outgoing degree 3

all edges in T_0, T_1 and T_2 have one color/orientation

at most 4g special vertices (outdegree > 3)

the set \mathcal{E} contains at most 2g edges (multiple edges)

new local conditions around special vertices

Definition I: genus g Schnyder woods

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Def: partition of all "inner" edges into four sets T_0 , T_1 , T_2 and \mathcal{E}

such that

almost all vertices have outgoing degree 3 all edges in T_0, T_1 and T_2 have one color/orientation

at most 4g special vertices (outdegree > 3) the set \mathcal{E} contains at most 2g edges (multiple edges) new local conditions around special vertices

Genus g Schnyder woods: spanning property

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

local condition for multiple vertices

Theorem

The three sets of edges T_0 and T_1 (red and blue edges), as well as the set $T_2 \cup \mathcal{E}$ (black edges and special edges) are maps of genus g satisfying:

- T_0, T_1 are maps with at most 1 + 2g faces;
- $T_2 \cup \mathcal{E}$ is a 1 face map (a g-tree)

Genus g Schnyder woods: application

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

local condition for multiple vertices

Corollary

A triangulation of genu g having n vertices can be encoded with $4n + O(g \log n)$ bits

Encode map $T_2 \cup \mathcal{E}$: a tree plus 2g edges: $2n + O(g \log n)$ bits

Mark special vertices: $O(g \log n)$ bits

Store outgoing edges incident to special edges: $O(g \log n)$ bits

For each node in $T_2 \cup \mathcal{E}$ store the number of ingoing edges of color 0: $2n + O(g \log n)$ bits

$$\mathcal{E} = \{(u, w), (v, w)\}$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

$$\mathcal{E} = \{(u, w), (v, w)\}$$

Incremental algorithm

$$\mathcal{E} = \{(u, w), (v, w)\}$$

Incremental algorithm

$$\mathcal{E} = \{(u, w), (v, w)\}$$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Perform a vertex conquest (as far as you can) when you get stuck

 \mathcal{S}^{in} is a topological disk

chordal edge (u, w)

No more free vertices

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Perform a vertex conquest (as far as you can)

when you get stuck

perform edge split

 \mathcal{S}^{in} is a topological disk

chordal edge (u, w)

Now there are free vertices

 $\mathcal{E} = \{(u, w), (v, w)\}$

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Incremental algorithm

Perform a vertex conquest (as far as you can) when you get stuck perform edge split
Perform a vertex conquest (as far as you can)

 \mathcal{S}^{in} is a topological disk

 $\mathcal{E} = \{(u, w), (v, w)\}$

Incremental algorithm

[Castelli-Aleardi Fusy Lewiner, SoCG'08]

Perform a vertex conquest (as far as you can)

when you get stuck

perform edge split

Perform a vertex conquest (as far as you can) $\mathtt{merge}(u,w)$

perform edge split

 \mathcal{S}^{in} is a topological disk

Periodic straight-line drawings

(of higher genus graphs)

Drawing higher genus graphs

drawing in polynomial area [Duncan, Goodrich, Kobourov, GD'09] [Chambers, Eppstein, Goodrich, Löffler, GD'10]

Drawing toroidal graphs

Periodic straight-line drawings

On the torus

[Castelli Devillers Fusy, GD'12] $O(n \times n^{\frac{3}{2}})$ grid

[Goncalves Lévêque, DCG] $O(n^2 \times n^2)$ grid

straight-line frame

not *x*-periodic not *y*-periodic

[Chambers et al., GD'10]

[Duncan et al., GD'09]

$$O(n \times n^2)$$
 grid

straight-line frame

x-periodic and y-periodic drawing

[Castelli Fusy Kostrygin, Latin'14]

Periodic straight-line drawings

On the torus

straight-line drawing

x-periodic and y-periodic drawing

[Castelli Devillers Fusy, GD'12] $O(n \times n^{\frac{3}{2}})$ grid

[Goncalves Lévêque, DCG] $O(n^2 \times n^2)$ grid

straight-line frame

not x-periodic not y-periodic

[Chambers et al., GD'10]

[Duncan et al., GD'09]

 $O(n \times n^2)$ grid

straight-line frame

x-periodic and y-periodic drawing

[Castelli Fusy Kostrygin, Latin'14]

 $O(n^4 \times n^4)$ grid

A shift-algorithm for the torus 2. Extend to the cylinder 3. Get toroidal

1. Recall algorithm of

3. Get toroidal drawings

Torus

[De Fraysseix et al'89]

Plane

Grid $2n-4 \times n-2$

[Castelli Aleardi Fusy Devillers 2012]

Cylinder

 $\mathsf{Grid} \leq 2n \times (1 + n(2c + 1))$

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

1.

6.

Grid size of G_k : $2k \times k$

At each step:

insert two vertical strips of width 1 using the dual tree

At each step:

insert two vertical strips of width 1 using the dual tree

At each step:

insert two vertical strips of width 1 using the dual tree

At each step:

insert two vertical strips of width 1 using the dual tree

 G_k

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

At each step: - insert two vertical strips of width 1

Extension to the cylinder: drawing

Extension to the cylinder: drawing

Width =
$$2n$$
 Height $\leq n(n-3)/2$

Can also deal with chordal edges incident to outermost cycle

Extension to the cylinder: drawing

Each edge has vertical extension at most \boldsymbol{w}

$$\Rightarrow h \leq n(2d+1)$$

with d the graph-distance between the two boundaries

Getting toroidal drawings

Every toroidal triangulation admits a "tambourine" [Bonichon, Gavoille, Labourel'06]

Getting toroidal drawings

Let c= length shortest non-contractible cycle, $c\le \sqrt{2n}$ [Hutchinson Albert'78] Can choose tambourine so that $d< c\Rightarrow h=O(n^{3/2})$

Schnyder woods for toroidal graphs

Toroidal Schnyder woods: definition

[Goncalves Lévêque, DCG'14]

$$g = 1$$
 $e = 3n$

Planar Schnyder woods [Felsner 2001]

- Schnyder local rule (for half-edges)
- no monochromatic cycles

Toroidal Schnyder woods [Goncalves Lévêque, DCG'14]

- Schnyder local rule (for half-edges)
- every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods: existence

[Goncalves Lévêque, DCG'14]

$$g = 1$$
 $e = 3n$

no pair of intersecting monochromatic cycles

Toroidal Schnyder woods: existence

Thm[Fijavz]

(planar simple triangulations)

A simple toroidal triangulation contains three non-contractible and non-homotopic cycles that all intersect on one vertex and that are pairwise dis- joint otherwise.

Toroidal Schnyder woods: drawing

Thm[Goncalves Lévêque]

(planar simple triangulations)

A simple toroidal triangulation admits a straight-line periodic drawing on a grid of size ${\cal O}(n^2\times n^2)$

