
Luca Castelli Aleardi

JCB 2014, Labri

v0 v1

v2

Schnyder woods for higher genus surfaces: from graph
encoding to graph drawing

(joint works with O. Devillers, E. Fusy, A. Kostrygin, T. Lewiner)

Some facts about planar graphs
(”As I have known them”)

G planar if and only if G contains
neither K5 nor K3,3 as minors

Thm (Schnyder, Trotter, Felsner)

Every planar graph with n vertices is isomorphic to the
intersection graph of n disks in the plane.

Thm (Koebe-Andreev-Thurston)

Some facts about planar graphs

Thm (Kuratowski, excluded minors)
G planar if and only if dim(G) ≤ 3

Thm (Y. Colin de Verdière)

G planar if and only if µ(G) ≤ 3
(µ(G) = multiplicity of λ2 of a generalized laplacian)

vNS2
vNM

4 −1 . . . 0

−1

0

5

. . .

3

LG = . . .
. . .

. . .
. . .

. . .
. . .

LG[i, k] = { −AG[i, j]

deg(vi)

Planar triangulations

1
2

3

4

5
10

8

12

21
19
24

15

22
17
23

18

16
7
13

9

11
20

6

14

φ = (1, 2, 3, 4)(17, 23, 18, 22)(5, 10, 8, 12)(21, 19, 24, 15) . . .

α = (2, 18)(4, 7)(12, 13)(9, 15)(14, 16)(10, 23) . . .

n− e + f = 2

e = 3n− 6

S2

Schnyder woods and canonical orderings: overview of applications

(graph drawing, graph encoding, succinct representations, compact data structures, exhaustive graph

enumeration, bijective counting, greedy drawings, spanners, contact representations, planarity testing,

untangling of planar graphs, Steinitz representations of polyhedra, . . .)

Some (classical) applications

bijective counting, random generation

0 12 3

45

6

78

9

10

11

04
3

2

5

6

7

8

9
10

1 0

1

2
3

4
5

6
7

8

9

)((((()) () ()) () (()) () ())[][[[]]] [[]] [[[[]]]]{ }{ }{ { }{ }{ { { } } }{ } }S

T0

T1

T2

(Poulalhon-Schaeffer, Icalp 03)

Graph encoding

Thm (Schnyder ’90)

planar straight-line grid drawing (on a O(n× n) grid)

cn = 2(4n+1)!
(3n+2)!(n+1)!

⇒ optimal encoding ≈ 3.24 bits/vertex

(Chuang, Garg, He, Kao, Lu, Icalp’98)

(He, Kao, Lu, 1999)

More (”recent”) applications

u

v
a

b

Every planar triangulation admits a greedy drawing (Dhandapani, Soda08)

(conjectured by Papadimitriou and Ratajczak
for 3-connected planar graphs)

Greedy routing

Schnyder woods, TD-Delaunay graphs, orthogonal surfaces and
Half-Θ6-graphs [Bonichon et al., WG’10, Icalp ’10, ...]

Schnyder woods
(the definition)

Schnyder woods: (planar) definition

v0 v1

n nodes

v2

ii) colors and orientations around each inner node must
respect the local Schnyder condition

i) edge are colored and oriented in such a way that each
inner nodes has exaclty one outgoing edge of each color

A Schnyder wood of a (rooted)
planar triangulation is partition of all
inner edges into three sets T0, T1 and
T2 such that

[Schnyder ’90]

rooted triangulation on

Schnyder woods: equivalent formulation

v0 v1

v2

[3-orientation]

[normal labeling]

0 0
0

0

0
0

00

2 2 2 2

2 2
2

2

2

1

1

1

1

1
1

1

1

1

1

1

1

1
2

2
2

0

2

0 0
0

1

1

0

2

3-connected graphs [Felsner]

0

1
2

Schnyder woods: spanning property

v0 v1

v2

[Schnyder ’90]

Theorem
The three sets T0, T1, T2 are spanning
trees of the inner vertices of T (each
rooted at vertex vi)

v1

v0

T2

T1

v2 T0

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

vn−1

⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

vn−2

w
⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

vn−3
⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

⇓

Gk−1

Gk

perform a vertex conquest
at each step

vk

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

Schnyder woods: existence (algorithm I)

v0 v1

[incremental vertex shelling, Brehm’s thesis]

Theorem
Every planar triangulation admits a
Schnyder wood, which can be
computed in linear time.

The traversal starts from the root face

v2

Canonical orderings
(the definition)

Canonical orderings: definition
[de Fraysseix Pach Pollack]

e 1

G1 = {0, 1, 2}

e

2

e

3

G3G2

e

4

G4

e

5

G5
G = G7

0

6

7

8

Planar straight-line drawings
(of planar graphs)

Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒

Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒

Classical algorithms:

[Tutte’63] [De Fraysseix, Pach, Pollack 89] [Schnyder’90]

spring-embedding incremental (Shift-algorithm) face-counting principle

existence of straight-line drawing

[Stein’51]

Planar straight-line drawings

[Wagner’36]

[Fary’48]
⇒

Planar straight-line grid drawings

[Wagner’36]

[Fary’48]
⇒

A

B

C

D

E

G

Output

geometric coordinates of vertices

F

Input of the problem

set of triangle faces

a b
cd

e
f

gh

i

(a, b, c)
(a, c, d)
(d, c, e)
(c, b, e)
(a, d, f)
(f, d, g)

(d, e, g)
(e, b, g)
(a, f, h)
(a, h, i)
(i, h, f)
(i, f, g)

(i, g, b)
(i, b, a)

Face counting algorithm
(Schnyder algorithm, 1990)

Face counting algorithm

x1

x3
x2

R1(v)
v

R3(v)
R2(v)

v = |R1(v)|
|T | x1 + |R2(v)|

|T | x2 + |R3(v)|
|T | x3

where |Ri(v)| is the number of triangles

Theorem (Schnyder, Soda ’90)
For a triangulation T having n vertices, we can draw it on a grid of size (2n− 5)× (2n− 5),
by setting x1 = (2n− 5, 0), x2 = (0, 0) and x3 = (0, 2n− 5).

x1

x3
x2

α1

v
α3 α2

v = α1x1 + α2x2 + α3x3
where αi is the normalized area

Geometric interpretation

Face counting algorithm

⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

d

a b

c d

e f

g h

i→ (0, 0) → (0, 1) → (1, 0)

→ (5
13 ,

6
13)→ (9

13 ,
1
13)

→ (7
13 ,

4
13) → (3

13 ,
3
13)

→ (4
13 ,

8
13) → (1

13 ,
4
13)

Face counting algorithm: proof (sketch)

⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

d

a
b
c
d
e

f
g

h
i

→ (13, 0, 0)

→ (0, 13, 0)

→ (0, 0, 13)

→ (

→ (9, 3, 1)

→ (2, 7, 4)

→ (7, 3, 3)

→ (1, 4, 8)

→ (8, 1, 4) d

5, 6, 2)

Face counting algorithm: proof (sketch)

⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

a
b
c
d
e

f
g

h
i

→ (13, 0, 0)

→ (0, 13, 0)

→ (0, 0, 13)

→ (

→ (9, 3, 1)

→ (2, 7, 4)

→ (7, 3, 3)

→ (1, 4, 8)

→ (8, 1, 4) d

5, 6, 2)

Face counting algorithm: proof (sketch)

⇒

T endowed with a Schnyder wood

Input: T

a b
cd

e
f

gh

i

a
b
c
d
e

f
g

h
i

→ (13, 0, 0)

→ (0, 13, 0)

→ (0, 0, 13)

→ (

→ (9, 3, 1)

→ (2, 7, 4)

→ (7, 3, 3)

→ (1, 4, 8)

→ (8, 1, 4) d

5, 6, 2)

Graph encoding

(practical) motivation
Geometric v.s combinatorial information

Geometry

between 30 et 96 bits/vertex vertex

triangle

1 reference to a triangle

3 references to vertices
3 references to triangles

”Connectivity”: the underlying triangulation

13n log n 416n bits

vertex coordinates adjacency relations
between triangles, vertices

or

#{triangulations} = 2(4n + 1)!

(3n + 2)!(n + 1)!
≈ 16

27

√
3

2π
n−5/2

(
256

27

)n

⇒ entropy = log2
256
27 ≈ 3.24 bpv.

David statue (Stanford’s Digital
Michelangelo Project, 2000)

2 billions polygons

32 Giga bytes (without compression)

No existing algorithm nor data
structure for dealing with the

entire model

A simple encoding scheme

() ((()) () ()) () (()) () ()

2
3

45

6

78

9

10

11

[[[[]]][[[[]][]][[[[[[]][]]][[]]][]]]]G \ T

T

T

([[[)(](][[[)])(]][) . . .S(G)

Turan encoding of planar map (1984)

length(S) = 2e symbols

(2 log2 4)e = 4e = 12n bits

G = (V,E) |V | = n |E| = e

T := (any) vertex spanning tree of G

parenthesis word of size 2n

12n bits encoding scheme

parenthesis word of size 2n

10

A more efficient encoding
Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

2
3

45

6

78

9

10

11

T0 T1

T2

A more efficient encoding
Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

2
3

45

6

78

9

10

11

T1

T2

T 0

10

A more efficient encoding
Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

2
3

45

6

78

9

10

11T2

T1 is redundant: reconstruct from T0, T2

10 10

T 0

A more efficient encoding
Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

2
3

45

6

78

9

10

11T2

T1 is redundant: reconstruct from T0, T2

10 10

T2 can be reconstructed from T0 and the
number of ingoing edges (for each node)

2
3

45

6

78

9

10

11T2

10 10

T 0 T 0

A more efficient encoding
Canonical orderings - Schnyder woods (He, Kao, Lu ’99)

2
3

45

6

78

9

10

11T2

10 10

2
3

45

6

78

9

10

11T2

10 10

() ((()) () ()) () (()) () ()T 0

T 0 T 0

2(n− 1) symbols= 2(n− 1) bits

00000101010100110111T 2 (n− 1) + (n− 3) = 2n− 4 bits

4n bits (for triangulations)

Half-edge

Triangle-based

(non compact) data structures

compact data structures

e

opposite(e)

prev(e)

next(e)

source(e)

Winged-edge

Data Structure size

navigation
time vertex access dynamic

Half-edge/Winged-edge/Quad-edge

Triangle based DS / Corner Table

Directed edge (Campagna et al. ’99)

2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)

TRIPOD (Snoeyink, Speckmann, ’99)

SOT (Gurung et al. 2010)

Castelli Aleardi and Devillers (2011)

18n + n
12n + n

12n + n
7.67n
7n
6n
6n

4.8n
4n (or 6n)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(d)

O(d)

O(d)

O(d)

O(d)

yes

yes

yes

yes

no

no

no

yes

no

SQUAD (Gurung et al. 2011) (4 + ε)n O(1) O(d) no

LR (Gurung et al. 2011) (2 + δ)n O(1) O(d) no

ε between 0.09 and 0.3

δ about 0.8 and 0.3

ESQ (Castelli Aleardi, Devillers, Rossignac’12)

(or O(1))

Compact (practical) mesh data structures

Half-edge, Winged-edge, Quad-edge
(19n)

Triangle DS, Corner Table, Directed edge
(13n)

2D Catalogs
(7.67n)

(7n)
Star-Vertices

SOT
(6n)

Castelli Devillers
(Isaac 2011),
(4n)

ESQ,
(4.8n)

Half-edge

Triangle-based

(non compact) data structures

compact data structures

e

opposite(e)

prev(e)

next(e)

source(e)

Winged-edge

Data Structure size

navigation
time vertex access dynamic

Half-edge/Winged-edge/Quad-edge

Triangle based DS / Corner Table

Directed edge (Campagna et al. ’99)

2D Catalogs (Castelli Aleardi et al., ’06)

Star vertices (Kallmann et al. ’02)

TRIPOD (Snoeyink, Speckmann, ’99)

SOT (Gurung et al. 2010)

Castelli Aleardi and Devillers (2011)

18n + n
12n + n

12n + n
7.67n
7n
6n
6n

4.8n
4n (or 6n)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)

O(d)

O(d)

O(d)

O(d)

O(d)

yes

yes

yes

yes

no

no

no

yes

no

SQUAD (Gurung et al. 2011) (4 + ε)n O(1) O(d) no

LR (Gurung et al. 2011) (2 + δ)n O(1) O(d) no

ε between 0.09 and 0.3

δ about 0.8 and 0.3

ESQ (Castelli Aleardi, Devillers, Rossignac’12)

(or O(1))

Compact (practical) mesh data structures

Half-edge, Winged-edge, Quad-edge
(19n)

Triangle DS, Corner Table, Directed edge
(13n)

2D Catalogs
(7.67n)

(7n)
Star-Vertices

SOT
(6n)

Castelli Devillers
(Isaac 2011),
(4n)

ESQ,
(4.8n)

vertex degree (only topological navigation)

1.2 - 1.9 times slower than Winged-edge
(experimental evaluation)

(timings are expressed in nanoseconds/vertex)

4n

Winged-edge 19n

0

50

100

150

Graphs on surfaces

Graphs on surfaces

1
2

3

4

5
10

8

12

21
19
24

15

22
17
23

18

16
7
13

9

11
20

6

14

φ = (1, 2, 3, 4)(17, 23, 18, 22)(5, 10, 8, 12)(21, 19, 24, 15) . . .

α = (2, 18)(4, 7)(12, 13)(9, 15)(14, 16)(10, 23) . . .

e = 3n− 6

S2

n− e + f = 2− 2g

e = 3ng = 1

what can we to extend to higher genus?
e = 3n− 6

e = 3ng = 1

v0 v1

v2

v1

v0

T2 T1

v2
T0

T0

[Goncalves Lévêque, DCG’14]

what can we to extend to higher genus?
e = 3n− 6

e = 3ng = 1

v0 v1

v2

v1

v0

T2 T1

v2
T0

T0

[Goncalves Lévêque, DCG’14]

u

v w

E = {(u,w), (v, w)} v

v

w

w

F1

F1

F1

F1

F1 F2

F3

u

T0

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

Schnyder woods and higher genus surfaces

(several possible generalizations)

(pioneeristic) toroidal tree decomposition
[Bonichon Gavoille Labourel, 2005]

the ”tambourine”
solution

Inconvenients:
• valid only for toroidal triangulations (genus 1)
• potentially large number of vertices (on C1 and C2) not satisfying the
local condition

Result:

Compute a pair of adjacent non contractible cycles

Graph G

C1 C2

Graph H

C1 C2

Tambourine
T

C
1

C
2

• shortest non trivial cycles are ”hard” to compute

Definition I: genus g Schnyder woods

u

v wG

almost all vertices have outgoing degree 3

at most 4g special vertices (outdegree > 3)

local condition for
multiple vertices

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

all edges in T0, T1 and T2 have one color/orientation

the set E contains at most 2g edges (multiple edges)
new local conditions around special vertices

E = {(u,w), (v, w)}

Def: partition of all ”inner” edges into four sets

T0, T1, T2 and E
such that

Definition I: genus g Schnyder woods

u

v wG Gs v′′

w′′

w′

w′′′

u′
u′′

v′

almost all vertices have outgoing degree 3

split special vertices

all vertices have outgoing
degree at most 3

n + 4g

vertices

2n + 2g

faces

at most 4g special vertices (outdegree > 3)

local condition for
multiple vertices

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

all edges in T0, T1 and T2 have one color/orientation

the set E contains at most 2g edges (multiple edges)
new local conditions around special vertices

E = {(u,w), (v, w)}

Def: partition of all ”inner” edges into four sets

T0, T1, T2 and E
such that

Genus g Schnyder woods: spanning property

u

v w

E = {(u,w), (v, w)}

G

local condition for
multiple vertices

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

v

v

w

w

v

v

w

w

F1

F1

F1

F1

F1 F2

F3

u u

F1

F1

F1

F1

F1

F1

F2

T1T0

es

em

u

v

v

w

w

T2

F1

F1

F1

Theorem
The three sets of edges T0 and T1 (red and blue
edges), as well as the set T2 ∪ E (black edges and
special edges) are maps of genus g satisfying:

• T0, T1 are maps with at most 1 + 2g faces;

• T2 ∪ E is a 1 face map (a g-tree)

Genus g Schnyder woods: application

u

v w

E = {(u,w), (v, w)}

G

local condition for
multiple vertices

[Castelli-Aleardi Fusy Lewiner, SoCG’08]

Corollary
A triangulation of genu g having n vertices can
be encoded with 4n + O(g log n) bits

Encode map T2 ∪ E : a tree plus 2g edges:
2n + O(g log n) bits

Mark special vertices: O(g log n) bits

Store outgoing edges incident to
special edges: O(g log n) bits

For each node in T2 ∪ E store the
number of ingoing edges of color 0:
2n + O(g log n) bits

T g \ {e1, e2}

e1e1 e2

v0

e2e1

() () (((()) ()) ()) () ()) S

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)

⇓

Gk−1

Gk

w

w

Sout
S in

v0

v1

v2

C
wr

wl

conquer(w)

vk

conquer(w)

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)

⇓

Gk−1

Gk

w

w

Sout
S in

v0

v1

v2

C
wr

wl

conquer(w)

vk

conquer(w)

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)

⇓

Gk−1

Gk

w

w

Sout
S in

v0

v1

v2

C
wr

wl

conquer(w)

vk

conquer(w)

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)

⇓

Gk−1

Gk

w

w

Sout
S in

v0

v1

v2

C
wr

wl

conquer(w)

vk

conquer(w)

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)

when you get stuck

S in

Sin is a topological disk

No more free vertices

w
u

Sout
v0

v1

v2

S in

chordal edge (u,w)

vk

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)
when you get stuck

perform edge split

Sin is a topological disk

Now there are free vertices

w
u

Sout
v0

v1

v2

S in

chordal edge (u,w)

vk

Sout
v0
v1
v2

Sin

u

w

Sin

split(u,w)

Sout
vk

es

u

w

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)
when you get stuck

perform edge split
Perform a vertex conquest (as far as you can)

Sin is a topological disk

es

u

w

w

Sout
S in

v0

v1

v2

C
wr

wl

conquer(w)

vk

Genus g Schnyder woods: existence

u

v w

E = {(u,w), (v, w)} [Castelli-Aleardi Fusy Lewiner, SoCG’08]

Incremental algorithm
Perform a vertex conquest (as far as you can)
when you get stuck

perform edge split
Perform a vertex conquest (as far as you can)

perform edge split

Sin is a topological disk

Soutw

Sin

merge(u,w)

v0
v1
v2

Sin Sin
uSout

es

u

wv

em

es

u

w v
em

w

Execution ends performing a sequence of
conquer operations

v w

Periodic straight-line drawings
(of higher genus graphs)

Drawing higher genus graphs
Wikipedia picture

Universal cover

g ≥ 2 Polygonal scheme

[Mohar’99]

[Duncan, Goodrich, Kobourov, GD’09]

[Chambers, Eppstein, Goodrich, Löffler, GD’10]

periodic drawing

drawing in polynomial area

out of circle packing

vNS2
vNM

vNG

g = 0

Drawing toroidal graphs
On the torus

m

(Palais de la Découverte, Fête de la Science, October 2013)

g = 1

Periodic straight-line drawings
On the torus

m
⇒

x-periodic and

y-periodic drawing

drawing on the flat torus

not x-periodic

not y-periodic

straight-line drawing

straight-line frame

straight-line frame
x-periodic and

y-periodic drawing

[Chambers et al., GD’10]

[Duncan et al., GD’09]

[Castelli Fusy Kostrygin, Latin’14]

[Castelli Devillers Fusy, GD’12]

[Goncalves Lévêque, DCG]

O(n× n2) grid

O(n2 × n2) grid

O(n× n3
2) grid

Periodic straight-line drawings
On the torus

m
⇒

x-periodic and

y-periodic drawing

drawing on the flat torus

not x-periodic

not y-periodic

straight-line drawing

straight-line frame

straight-line frame
x-periodic and

y-periodic drawing

[Chambers et al., GD’10]

[Duncan et al., GD’09]

[Castelli Fusy Kostrygin, Latin’14]

[Castelli Devillers Fusy, GD’12]

[Goncalves Lévêque, DCG]

O(n× n2) grid

O(n2 × n2) grid

O(n× n3
2) grid

O(n4 × n4) grid

A shift-algorithm for the torus
1.Recall algorithm of

Grid 2n−4× n−2

⇓

⇓

[De Fraysseix et al’89]

2.Extend to the cylinder

[Castelli Aleardi Fusy Devillers 2012]

3.Get toroidal drawings

Plane Cylinder Torus

Grid ≤ 2n× n(2d + 1) Grid≤ 2n×(1+n(2c+1))

Incremental drawing algorithm
[de Fraysseix, Pollack, Pach’89]
1.

2.

3.

4.

5.

6.

7.

12

34

5
6

7

Grid size of Gk: 2k × k

Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1

Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1

Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1

Reformulation of the shift-step
At each step: insert two vertical strips of width 1 using the dual tree

Gk−1

Gk

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1

Extension to the cylinder: drawing
algorithm

At each step: - insert two vertical strips of width 1
- insert the next vertex as in the planar case

Gk−1 Gk

Extension to the cylinder: drawing
algorithm

7

6

5
4 32

1

Extension to the cylinder: drawing
algorithm

7

6

5
4 32

1

1

Extension to the cylinder: drawing
algorithm

7

6

5
4 3

1

2

1

2

1

Extension to the cylinder: drawing
algorithm

7

6

5
4 32

1

1
2

1
2

3

Extension to the cylinder: drawing
algorithm

7

6

5
4

1

2
3

1
2

3

1
2

3

4

Extension to the cylinder: drawing
algorithm

7

6

3
4

5

1

2
1

2

3

4

1
2

3

4
5

Extension to the cylinder: drawing
algorithm

7

6

3
4

5

1

2 1
2

3
4

5

Extension to the cylinder: drawing
algorithm

7

6

5
4

3

1

2

1

2

3

4
5

6

1
2

3
4

5

Extension to the cylinder: drawing
algorithm

7

6

5
4

3

1

2

6

5
4

3

1

2

Extension to the cylinder: drawing
algorithm

7

6

5
4

32

1

Width = 2n Height ≤ n(n− 3)/2

Can also deal with chordal edges incident to outermost cycle

12

3

4
5

6

7

Extension to the cylinder: drawing
algorithm

7

6

5
4

32

1
w = 2n

Each edge has vertical extension at most w
⇒ h ≤ n(2d+ 1)

with d the graph-distance between the two boundaries

12

3

4
5

6

7

d = 2

Getting toroidal drawings
Every toroidal triangulation admits a “tambourine”

[Bonichon,Gavoille,Labourel′06]

Torus

Cylinder

a
b

c
d a

e

a

b
c

dd

e

a

Getting toroidal drawings

a
b

c
d a

e

a
b

c
dd

e

a

cb da e
cb da

a b c d

e

w ≤ 2n
h≤n(2d+1)

c=3

compute
tambourine

delete edges
in tambourine

Torus Cylinder
drawing algo.
on cylinder

resinsert edges
in tambourine

∆h ≤ 2n+ 1

d=2

Can choose tambourine so that d < c ⇒ h = O(n3/2)

Let c =length shortest non-contractible cycle, c ≤
√

2n
[Hutchinson,
Albert’78]

Schnyder woods for toroidal graphs

Toroidal Schnyder woods: definition
e = 3ng = 1

T0

[Goncalves Lévêque, DCG’14]

Planar Schnyder woods [Felsner 2001]

Toroidal Schnyder woods [Goncalves Lévêque, DCG’14]

Schnyder local rule (for half-edges)

no monochromatic cycles

Schnyder local rule (for half-edges)

every monochromatic cycle intersects at least one monochromatic cycle of each color

Toroidal Schnyder woods: existence
e = 3ng = 1

T0

[Goncalves Lévêque, DCG’14]

no pair of intersecting monochromatic cycles

Toroidal Schnyder woods: existence
(planar simple triangulations)Thm[Fijavz]

A simple toroidal triangulation contains three non-contractible and
non-homotopic cycles that all intersect on one vertex and that are
pairwise dis- joint otherwise.

Toroidal Schnyder woods: drawing
(planar simple triangulations)Thm[Goncalves Lévêque]

A simple toroidal triangulation admits a straight-line periodic drawing on
a grid of size O(n2 × n2)

