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he minimum spanning tree

Definition.
G = (V, E) a connected graph

we > 0, e € E weights
MST = lightest connected subgraph of G

Kruskal’s algorithm.
1. sort the edges by increasing weight, e;, 1 </ < |E]
2. Initially set To = (V, 9)
3. Set T;11 = T; U{e;} iff it does not create a cycle
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Random Model

" Mean-field” model
graph: complete graph K,
weights: 1id uniform

A little history.

Frieze ('85): total weight converges to ((3)

Janson ('95): CLT
Aldous: degree of the node 1



Random Model

" Mean-field” model
graph: complete graph K,
weights: 1id uniform

A little history.

Frieze ('85): total weight converges to ((3)

Janson ('95): CLT
Aldous: degree of the node 1

But... all these informations are local

What is the global metric structure?



he continuum spanning tree

The rescaled minimum spanning tree

e [, the minimum spanning tree of K,

e n1/3d,, for d, the graph distance
® [, mass n~ ! on each vertex

Theorem (ABGM '13)

There exists a random compact metric space .Z s.t.
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Comparing metric spaces

Gromov-Hausdorff topology.
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Comparing measured metric spaces

Gromov-Hausdorff-Prokhorov topology.
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What does it look like?



A few properties of . #Z

Proposition.
1. A is a tree-like metric space

2. .# has maximum degree 3

3. for pu-almost every x, deg(x) =1




A few properties of .#

Proposition.
1. A is a tree-like metric space

2. .# has maximum degree 3

3. for pu-almost every x, deg(x) =1

Proposition.
A is not Aldous’ Continuum Random Tree (CRT)



Elements of proof

Random graphs

Phase transition

Scaling limit of large trees / CRT
Structure of critical random graphs

Minimum spanning tree



Erdos—Rényi random graphs

Definition. Random graph G(n, p)

graph on {1,2,...,n}

independently, take edges with probability p

C" the connected components in decreasing order of size

Phase transition: G(n,c/n)

c < 1:
c = 1:

c > 1:

Cr
Cr
Cr

= O(log n)
NG, |G e Pl

—Q(n), |Cf| = O(log n)



he phase transition in pictures
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In pictures

he phase transition
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When is the metric structure built?

T(n, p) portion of the MST that is in G(n, p)
T'(n,p) = (T1(n, p), T2(n,p),...)
Evolution of distances:
o forallp<(1—¢€)/n
deH(T(n, p); “empty graph”) = O(log n)

e forall p>(1+¢€)/n
den(T1(n, p); MST) = O(log® n)
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he phase transition

Theorem. (Aldous '97) For np =1 -
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he phase transition

Theorem. (Aldous '97) For np=1+XAn"%3 XeR
(n=22|CP]s(CF)) iz — (il s(70) iz

W Brownien
W2 = At — t2/2 + W,
Bt)‘ = W,_?‘ — infs<; WtA
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he phase transition

Theorem. (Aldous '97) For np=1+XAn"%3 XeR
(n=22|CP]s(CF)) iz — (il s(70) iz

W Brownien
WtA — )\t_ t2/2+ Wt
Bt)‘ — Wf‘ — infs<; WtA

Poisson rate 1 on ]R%r




he tree encoded by an excursion

excursion f tree 7¢

Definition: For a continuous excursion f

de(x,y)=f(x)+f(y)—2 inf  f(t)

XAy <t<xVy
x ~¢yifde(x,y) =0

([0,1]/~¢, df) is a tree-like metric space
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Aldous’ Continuum Random Tree (CR

Theorem. (Aldous '91)
T, a uniformly random tree on {1,2,...,n}

nY2T, 5 T




Aldous’ Continuum Random

ree (CR

Theorem. (Aldous '91)

T, a uniformly random tree on {1,2,...

=127, S 7o

e standard Brownian excursion
Tre : Continuum random tree

A




What does it look like?



Scaling critical random graphs

G(n,p) critical window: for pn =1+ An"1/3, A €R

e (" the ith largest c.c.

e distances rescaled by n—1/3

2/3

® mass n_ on each vertex

Theorem. (ABG'12) There exists a sequence of
random compact measured metric spaces s.t.

(C")i>1 < (¢7)i>1 for the GHP distance



A (limit) random connected component



A limit connected component |

|dentifying points in excursions
~ "Random foldings of a random tree”

}&(t)




A limit connected component |

|dentifying points in excursions
~ "Random foldings of a random tree”

e Poisson process rate one under €

For each point {e,e e} identify two points of 75z



A limit connected component |l

Structural approach:
1. Sample a connected 3-regular multigraph

with 2(s — 1) vertices and 3(s — 1) edges

2. respective masses of the bits (“=edges” ):
(X1, X3(s—1)) ~ Dirichlet(%, e %)

3. sample 3(s — 1) independent CRT with 2 distinguished points each

S—C
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1. Sample a connected 3-regular multigraph
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A limit connected component |l

Structural approach:
1. Sample a connected 3-regular multigraph

with 2(s — 1) vertices and 3(s — 1) edges
2. respective masses of the bits (“=edges”):

(X4, ..., X3(s_1)) ~ Dirichlet(3,..., 1)

3. sample 3(s — 1) independent CRT with 2 distinguished points each




A large connected graph
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A large connected graph




Use the coupling with G(n, p)

G(n, p) process

/
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Removing non-MST edges




Use the coupling with G(n, p)

G(n, p) process
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Forward-Backward approach

Strategy.
1. Build G(n, p): Add all edges until some weight p*

2. Remove the edges that should not have been put
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M

2'. Conditional on G(n, p) = G,
construct a tree distributed as MST(G)



Forward-Backward approach

Strategy.
1. Build G(n, p): Add all edges until some weight p*

M

2'. Conditional on G(n, p) = G,
construct a tree distributed as MST(G)

Cycle breaking: (e;);>1, i.i.d. uniformly random edges

While “not a tree”

Remove ¢; unless it disconnects the graph




Forward-Backward approach — the limit

Strategy.
1. Build G(n, p): Add all edges until some weight p*

2. Remove the edges that should not have been put

G(n, p) m} (Cgl,cgg, .. )

Cycle breaking for metric spaces:
(xj)i>1 i.i.d. random points on the cycle structure

While “not a tree”

Remove x; unless it disconnects the metric space



Construction of the limit

n— oo

G(n. p) . (6.

g cycle breaking g




Fractal dimension

(X, d) a compact metric space

N(X, r) = min number of balls of radius r to cover X

dim(X) = lim inf 2BNX 1)y i sup P8 NXL )

r—0 Iog(l/r) r—0 |Og(1/l’)

box-counting dimension
dim(X) is the common value, if they are equal

Example:
dim([0,1]) =1 N([0,1],r) = 1/r
dim([0,1]?) =2 N([0,1]%,r) = 1/r?




Dimensions of continuum random trees

Theorem. (ABGM 2013)
dim(.Z) =3 with probability one

while

Theorem.
dim(CRT) = 2 with probability one




Thank you!



Estimating the box-counting dimension

For p=1/n+ An"%3 X large

1. mass of the largest component ~ 2\
2. surplus of the largest component ~ 2\3/3

3. Each "tree” has mas ~ A2
4. Each tree has diameter ~ vV 1=2 = \~1

N(EP, A1) =< A3
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