Graph colorings, flows and arithmetic Tutte polynomial (joint work with Luca Moci)

Michele D'Adderio

Max Planck Institut für Mathematik

Bordeaux, February 2nd 2012

Journées de Combinatoire de Bordeaux

Michele D'Adderio

·□▶ <@▶ < ≧▶ < ≧▶ · ≧ · ○٩(

MPIM

Graphs			
Currel			
Graph	IS		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

MPIM

Michele D'Adderio

Graphs			
C 1			
Graph	S		

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4\}$ and
 $E := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$

MPIM

Michele D'Adderio

Graphs			
Colori	ings		

Michele D'Adderio

MPIM

Graphs			
Colori	ngs		

Michele D'Adderio

MPIM

Graphs			
Color	ings		

Michele D'Adderio

Michele D'Adderio

MPIM

Michele D'Adderio

Graphs			
Flows			

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero)* q-flow on an oriented graph $\mathcal{G}_{\theta} = (V, E_{\theta})$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z}) \setminus \{\overline{0}\}$ such that $\forall v \in V$, $\sum_{e^+=v; e \in E_{\theta}} w(e) - \sum_{e^-=v; e \in E_{\theta}} w(e) = \overline{0}$. The flow polynomial $\chi_{\mathcal{G}}^*(q)$ of \mathcal{G} is defined as the number of q-flows of \mathcal{G}_{θ} (it doesn't depend on θ).

Graphs			
Flows			

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) q-flow* on an oriented graph $\mathcal{G}_{\theta} = (V, E_{\theta})$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z}) \setminus \{\overline{0}\}$ such that $\forall v \in V$, $\sum_{e^+=v; e \in E_{\theta}} w(e) - \sum_{e^-=v; e \in E_{\theta}} w(e) = \overline{0}$. The *flow polynomial* $\chi^*_{\mathcal{G}}(q)$ of \mathcal{G} is defined as the number of *q*-flows of \mathcal{G}_{θ} (it doesn't depend on θ).

Graphs			
Flows			

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) q-flow* on an oriented graph $\mathcal{G}_{\theta} = (V, E_{\theta})$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z}) \setminus \{\overline{0}\}$ such that $\forall v \in V$, $\sum_{e^+=v; e \in E_{\theta}} w(e) - \sum_{e^-=v; e \in E_{\theta}} w(e) = \overline{0}$. The *flow polynomial* $\chi^*_{\mathcal{G}}(q)$ of \mathcal{G} is defined as the number of *q*-flows of \mathcal{G}_{θ} (it doesn't depend on θ).

Graphs			
Flows			

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) q-flow* on an oriented graph $\mathcal{G}_{\theta} = (V, E_{\theta})$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z}) \setminus \{\overline{0}\}$ such that $\forall v \in V$, $\sum_{e^+=v; e \in E_{\theta}} w(e) - \sum_{e^-=v; e \in E_{\theta}} w(e) = \overline{0}$. The *flow polynomial* $\chi_{\mathcal{G}}^*(q)$ of \mathcal{G} is defined as the number of *q*-flows of \mathcal{G}_{θ} (it doesn't depend on θ).

Let
$$\mathcal{G}_{\theta} := (V, E_{\theta})$$
, where $V := \{v_1, v_2, v_3\}$ and $E_{\theta} := \{(v_1, v_2), (v_3, v_2), (v_3, v_1)\}.$

For q = 4, $w((v_1, v_2)) = w((v_3, v_1)) = \overline{1}$ and $w((v_3, v_2)) = \overline{3}$ is a 4-flow of \mathcal{G} . While $\chi^*_{\mathcal{G}}(q) = q - 1$.

Graphs			
Flows			

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) q-flow* on an oriented graph $\mathcal{G}_{\theta} = (V, E_{\theta})$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z}) \setminus \{\overline{0}\}$ such that $\forall v \in V$, $\sum_{e^+=v; \ e \in E_{\theta}} w(e) - \sum_{e^-=v; \ e \in E_{\theta}} w(e) = \overline{0}$. The *flow polynomial* $\chi^*_{\mathcal{G}}(q)$ of \mathcal{G} is defined as the number of q-flows of \mathcal{G}_{θ} (it doesn't depend on θ).

Let
$$\mathcal{G}_{\theta} := (V, E_{\theta})$$
, where
 $V := \{v_1, v_2, v_3\}$ and
 $E_{\theta} := \{(v_1, v_2), (v_3, v_2), (v_3, v_1)\}.$

For q = 4, $w((v_1, v_2)) = w((v_3, v_1)) = \overline{1}$ and $w((v_3, v_2)) = \overline{3}$ is a 4-flow of \mathcal{G} . While $\chi_{\mathcal{G}}^*(q) = q - 1$.

Graphs			
Flows			

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) q-flow* on an oriented graph $\mathcal{G}_{\theta} = (V, E_{\theta})$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z}) \setminus \{\overline{0}\}$ such that $\forall v \in V$, $\sum_{e^+=v; \ e \in E_{\theta}} w(e) - \sum_{e^-=v; \ e \in E_{\theta}} w(e) = \overline{0}$. The *flow polynomial* $\chi^*_{\mathcal{G}}(q)$ of \mathcal{G} is defined as the number of q-flows of \mathcal{G}_{θ} (it doesn't depend on θ).

For q = 4, $w((v_1, v_2)) = w((v_3, v_1)) = \overline{1}$ and $w((v_3, v_2)) = \overline{3}$ is a 4-flow of \mathcal{G} . While $\chi^*_{\mathcal{G}}(q) = q - 1$.

Definition of Matroid

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

- If $A \subseteq X$, then $rk(A) \leq |A|$;
- **2** if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;
- **I** if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the rank of the matroid

The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

MPIM

Definition of Matroid

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

- 1 if $A \subseteq X$, then $rk(A) \leq |A|$;
- **2** if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;
- **3** if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the rank of the matroid

 $rk(\Lambda)$ is called the rank of the matroid.

The independent sublists determine the matroid structure:

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the rank of the matroid

The independent sublists determine the matroid stru

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

If $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \le rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*.

rk(X) is called the *rank* of the matroid

The independent sublists determine the matroid structure:

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \leq |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*

rk(X) is called the *rank* of the matroid

The independent sublists determine the matroid structure:

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure: rk(A) = |maximal independent sublist of A|.

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank *rk(X)* is called a *basis. rk(X)* is called the *rank* of the matroid. The independent sublists determine the matroid structure:

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure: rk(A) = |maximal independent sublist of A|.

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid.

The independent sublists determine the matroid structure: rk(A) = |maximal independent sublist of A|.

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid.

The independent sublists determine the matroid structure: rk(A) = |maximal| independent sublist of A|

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure:

	Matroid		
Evam	nles		

- X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|;
 - independent = cycle-free (forests).

Michele D'Adderio

 X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|; independent = cycle-free (forests).

 X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|; independent = cycle-free (forests).

- X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of addee of a graph G.
- 2 X a finite list of edges of a graph \mathcal{G} ; $rk(A) = |\max | \text{maximal subforest of } A|;$ independent = cycle-free (forests).

Michele D'Adderio

 X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G;

rk(A) = |maximal subforest of A|;independent = cycle-free (forests).

Michele D'Adderio

 X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|;

independent = cycle-free (forests).

Michele D'Adderio

- X is a finite list of vectors of a vector space (e.g. ℝⁿ);
 rk(A) = dim(span(A));
 independent = linearly independent;
- X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|; independent = cycle-free (forests).

Michele D'Adderio

Tutte Polynomial

The *Tutte polynomial* of the matroid $\mathfrak{M} = (X, rk)$ is defined as

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X) - rk(A)} (y-1)^{|A| - rk(A)}.$$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have 1 $\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q, 0);$ 2 $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0, 1-q).$

MPIM

Michele D'Adderio

The *Tutte polynomial* of the matroid $\mathfrak{M} = (X, rk)$ is defined as

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have 1 $\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q, 0);$ 2 $\chi_{\mathcal{G}}^*(q) = (-1)^{|E|-|V|+k} T_{\mathcal{G}}(0, 1-q).$

MPIM

Michele D'Adderio

The *Tutte polynomial* of the matroid $\mathfrak{M} = (X, rk)$ is defined as

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have

MPIM

1
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0);$$

2 $\chi_{\mathcal{G}}^*(q) = (-1)^{|\mathcal{E}|-|V|+k} T_{\mathcal{G}}(0,1-q)$

Michele D'Adderio

Deletion Contraction I

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - 釣A@

Michele D'Adderid

Michele D'Adderic

コントロント・ビット・ビックの企

Deletion Contraction I

Classical deletion of $\{v_2, v_3\}.$

Classical contraction of $\{v_2, v_3\}_{(\square \rightarrow A \square \rightarrow$

٧,

 V_1'

٧3

MPIM

Labelled graphs

Let (\mathcal{G}, ℓ) , where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$, $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the *regular edges*, $D := \{\{v_3, v_4\}\}$ the *dotted edges*, so that $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$ let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$, $\ell(\{v_3, v_4\}) = 6$ be the *labels*.

Michele D'Adderio

(日・・酉・・言・・言・・ 言・ 少々で

MPIM

Let
$$(\mathcal{G}, \ell)$$
, where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$,
 $R := \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}\}$ the *regular edges*,
 $D := \{\{v_3, v_4\}\}$ the *dotted edges*, so that
 $E = R \cup D = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\};$
let $\ell(\{v_1, v_2\}) = 1$, $\ell(\{v_2, v_3\}) = 2$, $\ell(\{v_2, v_4\}) = 3$,
 $\ell(\{v_3, v_4\}) = 6$ be the *labels*.

Oriented labelled graphs

Let
$$(\mathcal{G}, \ell)$$
, where $\mathcal{G} := (V, E)$, $V := \{v_1, v_2, v_3, v_4\}$,
 $R := \{(v_1, v_2), (v_3, v_2), (v_2, v_4)\}$ the regular edges,
 $D := \{(v_3, v_4)\}$ the dotted edges, so that
 $E = R \cup D = \{(v_1, v_2), (v_3, v_2), (v_2, v_4), (v_3, v_4)\};$
let $\ell((v_1, v_2)) = 1$, $\ell((v_3, v_2)) = 2$, $\ell((v_2, v_4)) = 3$,
 $\ell((v_3, v_4)) = 6$ be the labels.

Michele D'Adderio

For $q \in \mathbb{N} \setminus \{0\}$, a *(proper) arithmetic q-coloring* of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of arithmetic *q*-colorings of (\mathcal{G}, ℓ) .

For $q \in \mathbb{N} \setminus \{0\}$, a *(proper) arithmetic q-coloring* of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G}, ℓ) is define the number of arithmetic *q*-colorings of (\mathcal{G}, ℓ) .

Michele D'Adderio

For $q \in \mathbb{N} \setminus \{0\}$, a *(proper) arithmetic q-coloring* of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G}, ℓ) is defined as the number of arithmetic *q*-colorings of (\mathcal{G}, ℓ) .

For $q \in \mathbb{N} \setminus \{0\}$, a *(proper) arithmetic q-coloring* of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.

The arithmetic chromatic polynomial $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic *q*-colorings of (\mathcal{G},ℓ) .

Michele D'Adderio

For $q \in \mathbb{N} \setminus \{0\}$, a *(proper) arithmetic q-coloring* of a labelled graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic *q*-colorings of (\mathcal{G}, ℓ) .

For
$$q \in \mathbb{N} \setminus \{0\}$$
, a *(proper) arithmetic q-coloring* of a labelled
graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:
(1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
(2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.
The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as
the number of arithmetic *q*-colorings of (\mathcal{G},ℓ) .
Consider (\mathcal{G},ℓ) with $\mathcal{G} := (V, E)$,
 $V = \{v_1, v_2, v_3\}$,
 $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\}$,
 $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$,
 $\ell(e_1) = 2, \ell(e_2) = 3$ and $\ell(e_3) = 2$.
For $q = 6, c(v_1) = \overline{0}$ and $c(v_2) = c(v_3) = \overline{1}$ is an arithmetic
4-coloring of \mathcal{G} . For $q = 6h$, $\chi_{\mathcal{G},\ell}(q) = 2q(q-4) = 2q^2 - 8q$.

Michele D'Adderio

For
$$q \in \mathbb{N} \setminus \{0\}$$
, a *(proper) arithmetic q-coloring* of a labelled
graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:
(1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
(2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.
The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G}, ℓ) is defined as
the number of arithmetic *q*-colorings of (\mathcal{G}, ℓ) .
Consider (\mathcal{G}, ℓ) with $\mathcal{G} := (V, E)$,
 $V = \{v_1, v_2, v_3\}$,
 $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\}$,
 $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$,
 $\ell(e_1) = 2$, $\ell(e_2) = 3$ and $\ell(e_3) = 2$.
For $q = 6$, $c(v_1) = \overline{0}$ and $c(v_2) = c(v_3) = \overline{1}$ is an arithmetic
4-coloring of \mathcal{G} . For $q = 6h$, $\chi_{\mathcal{G},\ell}(q) = 2q(q - 4) = 2q^2 - 8q$.

For
$$q \in \mathbb{N} \setminus \{0\}$$
, a *(proper) arithmetic q-coloring* of a labelled
graph (\mathcal{G}, ℓ) is a map $c : V \to \mathbb{Z}/q\mathbb{Z}$ such that:
(1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$;
(2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$.
The *arithmetic chromatic polynomial* $\chi_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as
the number of arithmetic *q*-colorings of (\mathcal{G},ℓ) .
Consider (\mathcal{G},ℓ) with $\mathcal{G} := (V, E)$,
 $V = \{v_1, v_2, v_3\}$,
 $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\}$,
 $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$,
 $\ell(e_1) = 2, \ell(e_2) = 3$ and $\ell(e_3) = 2$.
For $q = 6, c(v_1) = \overline{0}$ and $c(v_2) = c(v_3) = \overline{1}$ is an arithmetic
4-coloring of \mathcal{G} . For $q = 6h$, $\chi_{\mathcal{G},\ell}(q) = 2q(q-4) = 2q^2 - 8q$.

 $c: V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. Consider (\mathcal{G}, ℓ) with $\mathcal{G} := (V, E)$, $V = \{v_1, v_2, v_3\},\$ $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\},\$ $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$, $\ell(e_1) = 2, \ \ell(e_2) = 3 \text{ and } \ell(e_3) = 2.$ For q = 6h, $\chi_{G,\ell}(q) = 2q(q-4) = 2q^2 - 8q$.

 $c: V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. Consider (\mathcal{G}, ℓ) with $\mathcal{G} := (V, E)$, $V = \{v_1, v_2, v_3\},\$ $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\},\$ $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$, $\ell(e_1) = 2, \ \ell(e_2) = 3 \text{ and } \ell(e_3) = 2.$ For q = 6h, $\chi_{G,\ell}(q) = 2q(q-4) = 2q^2 - 8q$. For $c(v_2)$: q choices.

 $c: V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. Consider (\mathcal{G}, ℓ) with $\mathcal{G} := (V, E)$, $V = \{v_1, v_2, v_3\},\$ $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\},\$ $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$, $\ell(e_1) = 2, \ \ell(e_2) = 3 \text{ and } \ell(e_3) = 2.$ For q = 6h, $\chi_{G,\ell}(q) = 2q(q-4) = 2q^2 - 8q$. For $c(v_2)$: q choices. $2c(v_3) = 2c(v_2) \Rightarrow c(v_3) = c(v_2)$ or $c(v_2) + q/2$: 2 choices.

 $c: V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. Consider (\mathcal{G}, ℓ) with $\mathcal{G} := (V, E)$, $V = \{v_1, v_2, v_3\},\$ $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\},\$ $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$, $\ell(e_1) = 2, \ \ell(e_2) = 3 \text{ and } \ell(e_3) = 2.$ For q = 6h, $\chi_{G,\ell}(q) = 2q(q-4) = 2q^2 - 8q$. For $c(v_2)$: q choices. $2c(v_3) = 2c(v_2) \Rightarrow c(v_3) = c(v_2)$ or $c(v_2) + q/2$: 2 choices.

 $c: V \to \mathbb{Z}/q\mathbb{Z}$ such that: (1) if $e := \{u, v\} \in R$, then $\ell(e) \cdot c(u) \neq \ell(e) \cdot c(v)$; (2) if $e := \{u, v\} \in D$, then $\ell(e) \cdot c(u) = \ell(e) \cdot c(v)$. Consider (\mathcal{G}, ℓ) with $\mathcal{G} := (V, E)$, $V = \{v_1, v_2, v_3\},\$ $R := \{e_1 := \{v_1, v_2\}, e_2 := \{v_1, v_2\}\},\$ $D := \{e_3 := \{v_2, v_3\}\}$ so $E = R \cup D$, $\ell(e_1) = 2, \ \ell(e_2) = 3 \text{ and } \ell(e_3) = 2.$ For q = 6h, $\chi_{G,\ell}(q) = 2q(q-4) = 2q^2 - 8q$. For $c(v_2)$: q choices. $2c(v_3) = 2c(v_2) \Rightarrow c(v_3) = c(v_2)$ or $c(v_2) + q/2$: 2 choices.

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_{\theta}} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_{\theta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z};$ (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The *arithmetic flow polynomial* $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic *q*-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ).

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_{\theta}} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_{\theta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z};$ (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The *arithmetic flow polynomial* $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic *q*-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ).

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_{\theta}} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_{\theta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The *arithmetic flow polynomial* $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic *q*-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ).

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_{\theta}} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_{\theta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z}$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The *arithmetic flow polynomial* $\chi^*_{g,\ell}(q)$ of (\mathcal{G}, ℓ) is defined as the

number of arithmetic q-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ).

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_{\theta}} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_{\theta}} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z};$ (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The *arithmetic flow polynomial* $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic *q*-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ).

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_e} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_e} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z};$ (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The arithmetic flow polynomial $\chi^*_{\mathcal{C},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic q-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ). Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), e_1 := (v_1, v_2)\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}, \ \ell(e_1) = 2, \ \ell(e_2) = 3$ and $\ell(e_3) = 2$.

Michele D'Adderio

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_e} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_e} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z};$ (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The arithmetic flow polynomial $\chi^*_{\mathcal{C},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic q-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ). Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), e_1 := (v_1, v_2)\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}, \ \ell(e_1) = 2, \ \ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6, $w(e_1) = \overline{3}$, $w(e_2) = \overline{2}$ and $w(e_3) = \overline{0}$ is an arithmetic 6-flow of \mathcal{G} . For q = 6h, $\chi^*_{\mathcal{G},\ell}(q) = 2(q-4) = 2q-8$.

Michele D'Adderio

For $q \in \mathbb{N} \setminus \{0\}$, a *(nowhere zero) arithmetic q-flow* on an oriented labelled graph $(\mathcal{G}_{\theta}, \ell)$ is a map $w : E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) for all $v \in V$, $\sum_{e^+=ve\in E_e} \ell(e) \cdot w(e) - \sum_{e^-=ve\in E_e} \ell(e) \cdot w(e) = \overline{0} \in \mathbb{Z}/q\mathbb{Z};$ (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. The arithmetic flow polynomial $\chi^*_{\mathcal{G},\ell}(q)$ of (\mathcal{G},ℓ) is defined as the number of arithmetic q-flows of $(\mathcal{G}_{\theta}, \ell)$ (it doesn't depend on θ). Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), e_1 := (v_1, v_2)\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}, \ \ell(e_1) = 2, \ \ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6, $w(e_1) = \overline{3}$, $w(e_2) = \overline{2}$ and $w(e_3) = \overline{0}$ is an arithmetic 6-flow of \mathcal{G} . For q = 6h, $\chi^*_{\mathcal{G}\ell}(q) = 2(q-4) = 2q-8$.

Michele D'Adderio

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), e_1 := (v_1, v_2)\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$.

Michele D'Adderio

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices.

Michele D'Adderio

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices.

Michele D'Adderio

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices.

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=ve \in E_\theta} \ell(e) \cdot w(e) - \sum_{e^-=ve \in E_\theta} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2)\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}, \ \ell(e_1) = 2, \ \ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{G,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices. $2w(e_1) - 3w(e_2) = \overline{0}$ and $2w(e_3) + 3w(e_2) - 2w(e_1) = \overline{0}$

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/q\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices. $2w(e_1) - 3w(e_2) = \overline{0}$: $w(e_2) = 2\overline{a} (q/2 \text{ choices}) \Rightarrow w(e_1) = 3\overline{a}$

Michele D'Adderio

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/a\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices. $2w(e_1) - 3w(e_2) = \overline{0}$: $w(e_2) = 2\overline{a} (q/2 \text{ choices}) \Rightarrow w(e_1) = 3\overline{a}$ or $3\overline{a} + q/2$ (2 choices), but $w(e_1) \neq \overline{0} \neq w(e_2) \Rightarrow$

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = 0$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/a\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices. $2w(e_1) - 3w(e_2) = \overline{0}$: $w(e_2) = 2\overline{a} (q/2 \text{ choices}) \Rightarrow w(e_1) = 3\overline{a}$ or $3\overline{a} + q/2$ (2 choices), but $w(e_1) \neq \overline{0} \neq w(e_2) \Rightarrow$

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = \overline{0}$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/a\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices. $2w(e_1) - 3w(e_2) = \overline{0}$: $w(e_2) = 2\overline{a} (q/2 \text{ choices}) \Rightarrow w(e_1) = 3\overline{a}$ or $3\overline{a} + q/2$ (2 choices), but $w(e_1) \neq \overline{0} \neq w(e_2) \Rightarrow$ $(w(e_1), w(e_2)) \neq (\overline{0}, \overline{0}), (\overline{0}, q/3), (\overline{0}, 2q/3), (q/2, \overline{0}): q-4$

 $w: E_{\theta} \to (\mathbb{Z}/q\mathbb{Z})$ such that: (1) $\forall v \in V$, $\sum_{e^+=v \in E_a} \ell(e) \cdot w(e) - \sum_{e^-=v \in E_a} \ell(e) \cdot w(e) = \overline{0}$; (2) for all $e \in R_{\theta}$, $w(e) \neq \overline{0} \in \mathbb{Z}/a\mathbb{Z}$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. For q = 6h, $\chi^*_{C,\ell}(q) = 2(q-4) = 2q-8$. $-2w(e_3) = \overline{0} \Rightarrow w(e_3) = \overline{0}$ or q/2: 2 choices. $2w(e_1) - 3w(e_2) = \overline{0}$: $w(e_2) = 2\overline{a} (q/2 \text{ choices}) \Rightarrow w(e_1) = 3\overline{a}$ or $3\overline{a} + q/2$ (2 choices), but $w(e_1) \neq \overline{0} \neq w(e_2) \Rightarrow$ $(w(e_1), w(e_2)) \neq (\overline{0}, \overline{0}), (\overline{0}, q/3), (\overline{0}, 2q/3), (q/2, \overline{0}): q-4$ choices

Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

Definition of Arithmetic Matroid

An arithmetic matroid is a pair (\mathfrak{M}_X, m) , where \mathfrak{M}_X is a matroid on a list of vectors X, and m is a multiplicity function, i.e. $m : \mathbb{P}(X) \to \mathbb{N} \setminus \{0\}$ has the following properties:

- if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup \{v\})$ divides m(A);
- if $A \subseteq X$ and $v \in X$ is independent on A, then m(A) divides $m(A \cup \{v\})$;
- if $A \subseteq B \subseteq X$ and B is a disjoint union $B = A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $rk(C) = rk(A) + |C \cap F|$, then $m(A) \cdot m(B) = m(A \cup F) \cdot m(A \cup T)$.

4 if
$$A \subseteq B \subseteq X$$
 and $rk(A) = rk(B)$, then
 $\mu_B(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(T) \ge 0;$
5 if $A \subseteq B \subseteq X$ and $rk^*(A) = rk^*(B)$, then
 $\mu_B^*(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(X \setminus T) \ge 0.$

Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

Definition of Arithmetic Matroid

An *arithmetic matroid* is a pair (\mathfrak{M}_X, m) , where \mathfrak{M}_X is a matroid on a list of vectors X, and m is a *multiplicity function*, i.e. $m : \mathbb{P}(X) \to \mathbb{N} \setminus \{0\}$ has the following properties:

- if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup \{v\})$ divides m(A);
- if $A \subseteq X$ and $v \in X$ is independent on A, then m(A) divides $m(A \cup \{v\})$;
- if $A \subseteq B \subseteq X$ and B is a disjoint union $B = A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $rk(C) = rk(A) + |C \cap F|$, then $m(A) \cdot m(B) = m(A \cup F) \cdot m(A \cup T)$.

a if
$$A \subseteq B \subseteq X$$
 and $rk(A) = rk(B)$, then
 $\mu_B(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(T) \ge 0;$
b if $A \subseteq B \subseteq X$ and $rk^*(A) = rk^*(B)$, then
 $\mu_B^*(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(X \setminus T) \ge 0.$

Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

Definition of Arithmetic Matroid

An *arithmetic matroid* is a pair (\mathfrak{M}_X, m) , where \mathfrak{M}_X is a matroid on a list of vectors X, and m is a *multiplicity function*, i.e. $m : \mathbb{P}(X) \to \mathbb{N} \setminus \{0\}$ has the following properties:

- if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup \{v\})$ divides m(A);
- 2 if $A \subseteq X$ and $v \in X$ is independent on A, then m(A) divides $m(A \cup \{v\})$;
- **3** if $A \subseteq B \subseteq X$ and B is a disjoint union $B = A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $rk(C) = rk(A) + |C \cap F|$, then $m(A) \cdot m(B) = m(A \cup F) \cdot m(A \cup T)$.

4 if
$$A \subseteq B \subseteq X$$
 and $rk(A) = rk(B)$, then
 $\mu_B(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(T) \ge 0;$
5 if $A \subseteq B \subseteq X$ and $rk^*(A) = rk^*(B)$, then
 $\mu_B^*(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(X \setminus T) \ge 0.$

Definition of Arithmetic Matroid

- Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.
- So any matroid is trivially an arithmetic matroid.
- In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
- But of course there are more interesting examples.

Definition of Arithmetic Matroid

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

- So any matroid is trivially an arithmetic matroid.
- In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
- But of course there are more interesting examples.

Definition of Arithmetic Matroid

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

- In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
- But of course there are more interesting examples.

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.

But of course there are more interesting examples.

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.

But of course there are more interesting examples.

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$. For $A \subseteq X$ we set

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$. For $A \subseteq X$ we set

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Michele D'Adderio

MPIM

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$. For $A \subseteq X$ we set

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci`

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$. For $A \subseteq X$ we set

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

$$\begin{split} m(A) &:= |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such } \\ & \text{that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty. \end{split}$$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1\mathbb{Z} \oplus \mathbb{Z}/d_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_s\mathbb{Z}$. For $A \subseteq X$ we set

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

MPIM

Michele D'Adderio

The arithmetic Tutte polynomial of the arithmetic mat

 (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

The *arithmetic Tutte polynomial* of the arithmetic matroid (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

MPIM

Michele D'Adderio

The arithmetic Tutte polynomial of the arithmetic matroid (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

			Arithmetic Tutte	
An e>	kample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_2\}) = 2$,
 $m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} =$
 $= (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) =$
 $x^2 + 5x + 6 + xy + 2y$.

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$
			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_2\}) = 2$,
 $m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)} =$
 $= (x-1)^2 + (3+2+3)(x-1) + (x-1)(y-1) + (6+9) + 3(y-1) =$
 $x^2 + 5x + 6 + xy + 2y$.

(ロ) (四) (注) (注) (注) (注)

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

(ロ) (四) (注) (注) (注) (注)

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)} = (x-1)^2 + (3+2+3)(x-1) + (x-1)(y-1) + (6+9) + 3(y-1) = x^2 + 5x + 6 + xy + 2y.$

(ロ) (四) (注) (注) (注) (注)

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)} = (x-1)^2 + (3+2+3)(x-1) + (x-1)(y-1) + (6+9) + 3(y-1) = x^2 + 5x + 6 + xy + 2y.$

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_2\}) = 2$,
 $m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} =$
 $= (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) =$
 $x^2 + 5x + 6 + xy + 2y$.

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)} = (x-1)^2 + (3+2+3)(x-1) + (x-1)(y-1) + (6+9) + 3(y-1) = x^2 + 5x + 6 + xy + 2y.$

(ロ) (四) (注) (注) (注) (注)

MPIM

Michele D'Adderio

			Arithmetic Tutte	
An ex	cample			

Let
$$X = \{v_1 := (3, 0), v_2 := (2, -2), v_3 := (-3, 3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$ Positive coefficients!

(ロ) (四) (注) (注) (注) (注)

			Arithmetic Tutte	
An ex	ample			

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$ Positive coefficients!

Theorem (D.-Moci)

The arithmetic Tutte polynomial has a combinatorial interpretation that generalizes Crapo's one for the classical Tutte polynomial.

From (\mathcal{G}, ℓ) to $\mathfrak{M}_{\mathcal{G}, \ell}$

MPIM

To $e = (v_i, v_i) \in E_{\theta}$ associate the vector $x_e \in \mathbb{Z}^{|V|}$ with $\ell(e)$ in the *i*-th position, $-\ell(e)$ in the *j*-th position, and 0 elsewhere.

MPIM

From (\mathcal{G}, ℓ) to $\mathfrak{M}_{\mathcal{G}, \ell}$

To $e = (v_i, v_i) \in E_{\theta}$ associate the vector $x_e \in \mathbb{Z}^{|V|}$ with $\ell(e)$ in the *i*-th position, $-\ell(e)$ in the *j*-th position, and 0 elsewhere. Set $X_D := \{x_e \mid e \in D\}, G := \mathbb{Z}^{|V|} / \langle X_D \rangle$, $X_R := \{\overline{x}_e \mid e \in R\} \subset G.$

From (\mathcal{G}, ℓ) to $\mathfrak{M}_{\mathcal{G}, \ell}$

To $e = (v_i, v_i) \in E_{\theta}$ associate the vector $x_e \in \mathbb{Z}^{|V|}$ with $\ell(e)$ in the *i*-th position, $-\ell(e)$ in the *j*-th position, and 0 elsewhere. Set $X_D := \{x_e \mid e \in D\}, G := \mathbb{Z}^{|V|} / \langle X_D \rangle$, $X_R := \{\overline{x}_e \mid e \in R\} \subset G.$ Take $\mathfrak{M}_{G,\ell}$ to be the one associated to $X_R \subseteq G$.

Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems From (\mathcal{C}, ℓ) to $\mathfrak{M}_{\mathcal{C},\ell}$

From (\mathcal{G}, ℓ) to $\mathfrak{M}_{\mathcal{G}, \ell}$

To $e = (v_i, v_j) \in E_{\theta}$ associate the vector $x_e \in \mathbb{Z}^{|V|}$ with $\ell(e)$ in the *i*-th position, $-\ell(e)$ in the *j*-th position, and 0 elsewhere. Set $X_D := \{x_e \mid e \in D\}$, $G := \mathbb{Z}^{|V|} / \langle X_D \rangle$, $X_R := \{\overline{x}_e \mid e \in R\} \subseteq G$. Take $\mathfrak{M}_{G,\ell}$ to be the one associated to $X_R \subseteq G$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), e_2 := (v_2, v_1)\}, D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}, \ell(e_1) = 2, \ell(e_2) = 3$ and $\ell(e_3) = 2$.

Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems From (C, l) to \mathfrak{M}_{2} .

From (\mathcal{G}, ℓ) to $\mathfrak{M}_{\mathcal{G}, \ell}$

To $e = (v_i, v_i) \in E_{\theta}$ associate the vector $x_e \in \mathbb{Z}^{|V|}$ with $\ell(e)$ in the *i*-th position, $-\ell(e)$ in the *j*-th position, and 0 elsewhere. Set $X_D := \{x_e \mid e \in D\}, G := \mathbb{Z}^{|V|} / \langle X_D \rangle$, $X_R := \{\overline{x}_e \mid e \in R\} \subset G.$ Take $\mathfrak{M}_{G,\ell}$ to be the one associated to $X_R \subseteq G$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), v_3\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. $e_1 \rightsquigarrow x_{e_1} = (2, -2, 0) \in \mathbb{Z}^3$, $e_2 \quad \rightsquigarrow \quad x_{e_2} = (-3, 3, 0) \in \mathbb{Z}^3$ $e_3 \rightsquigarrow x_{e_2} = (0, 2, -2) \in \mathbb{Z}^3$

From (\mathcal{G}, ℓ) to $\mathfrak{M}_{\mathcal{G}, \ell}$

To $e = (v_i, v_i) \in E_{\theta}$ associate the vector $x_e \in \mathbb{Z}^{|V|}$ with $\ell(e)$ in the *i*-th position, $-\ell(e)$ in the *j*-th position, and 0 elsewhere. Set $X_D := \{x_e \mid e \in D\}, G := \mathbb{Z}^{|V|} / \langle X_D \rangle$, $X_R := \{\overline{x}_e \mid e \in R\} \subset G.$ Take $\mathfrak{M}_{G,\ell}$ to be the one associated to $X_R \subseteq G$. Consider $(\mathcal{G}_{\theta}, \ell)$ with $\mathcal{G}_{\theta} := (V, E_{\theta})$, $V = \{v_1, v_2, v_3\}, R_{\theta} := \{e_1 := (v_1, v_2), e_1 := (v_1, v_2)\}$ $e_2 := (v_2, v_1)$, $D_{\theta} := \{e_3 := (v_2, v_3)\}$ so $E_{\theta} = R_{\theta} \cup D_{\theta}$, $\ell(e_1) = 2$. $\ell(e_2) = 3$ and $\ell(e_3) = 2$. $e_1 \rightsquigarrow x_{e_1} = (2, -2, 0) \in \mathbb{Z}^3$, $G := \mathbb{Z}^{|V|} / \langle X_D \rangle = \mathbb{Z}^3 / \langle x_{e_2} \rangle$ $e_2 \rightsquigarrow x_{e_2} = (-3, 3, 0) \in \mathbb{Z}^3$, $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subset G$ $e_3 \rightsquigarrow x_{e_2} = (0, 2, -2) \in \mathbb{Z}^3$ $X_R \subset G \iff \mathfrak{M}_{G \ell}$

Michele D'Adderio

		Eaberiea Braphio			111001011
Mai	n results				
	Set $\overline{\mathcal{G}}:=$ the ${\mathfrak{G}}$ We say that q	classical contraction is admissible for	ction of all dotted or (\mathcal{G},ℓ) if $\ell(e)$ di	edges of \mathcal{G} . vides <i>q</i> for all <i>e</i> e	∈ <i>E</i> .

For q admissible we have

$$I \chi_{\mathcal{G},\ell}(q) = (-1)^{|V|-k} q^k M_{\mathcal{G},\ell}(1-q,0).$$

$$2 \chi^*_{\mathcal{G},\ell}(q) = (-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1-q).$$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have

$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0);$$

2
$$\chi^*_{\mathcal{G}}(q) = (-1)^{|E| - |V| + k} T_{\mathcal{G}}(0, 1 - q).$$

Michele D'Adderio

MPIM

Graphs		Labelled graphs			Theorems
Mai	n results				
	Set $\overline{\mathcal{G}}:=$ the \mathfrak{G} We say that \mathfrak{q}	classical contra is admissible f	ction of all dotted or (\mathcal{G}, ℓ) if $\ell(e)$ di	l edges of <i>G</i> . ivides <i>q</i> for all <i>e</i>	∈ <i>E</i> .
					- vac

MPIM

Michele D'Adderio

Grap		Labelled graphs			Theorems
M	ain results				
	Set $\overline{\mathcal{G}} :=$ the cl We say that q	assical contra is admissible fo	ction of all dotted or (\mathcal{G},ℓ) if $\ell(e)$ di	l edges of \mathcal{G} . vides q for all $e \in$	E.

Theorem (D.-Moci)

For q admissible we have

- $2 \chi_{\mathcal{G},\ell}^*(q) = (-1)^{|R| |\overline{V}| + k} q^{|D| |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 q).$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have

1
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0);$$

2
$$\chi^*_{\mathcal{G}}(q) = (-1)^{|E| - |V| + k} T_{\mathcal{G}}(0, 1 - q).$$

Set $\overline{\mathcal{G}}$:= the classical contraction of all dotted edges of \mathcal{G} . We say that q is admissible for (\mathcal{G}, ℓ) if $\ell(e)$ divides q for all $e \in E$.

Theorem (D.-Moci)

For q admissible we have

1
$$\chi_{\mathcal{G},\ell}(q) = (-1)^{|\overline{V}|-k} q^k M_{\mathcal{G},\ell}(1-q,0).$$

$$2 \chi^*_{\mathcal{G},\ell}(q) = (-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1-q).$$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have

1
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0);$$

2
$$\chi_{\mathcal{G}}^*(q) = (-1)^{|\mathcal{E}| - |\mathcal{V}| + k} T_{\mathcal{G}}(0, 1 - q).$$

Michele D'Adderio

MPIM

Set $\overline{\mathcal{G}}$:= the classical contraction of all dotted edges of \mathcal{G} . We say that q is admissible for (\mathcal{G}, ℓ) if $\ell(e)$ divides q for all $e \in E$.

Theorem (D.-Moci)

For q admissible we have

1
$$\chi_{\mathcal{G},\ell}(q) = (-1)^{|\overline{V}|-k} q^k M_{\mathcal{G},\ell}(1-q,0).$$

$$2 \chi^*_{\mathcal{G},\ell}(q) = (-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1-q).$$

Theorem (Tutte 1954)

Let $\mathcal{G} = (V, E)$ with k connected components, and let $T_{\mathcal{G}}(x, y)$ the Tutte polynomial of \mathcal{G} . We have

1
$$\chi_{\mathcal{G}}(q) = (-1)^{|V|-k} q^k T_{\mathcal{G}}(1-q,0);$$

2
$$\chi^*_{\mathcal{G}}(q) = (-1)^{|\mathcal{E}| - |\mathcal{V}| + k} T_{\mathcal{G}}(0, 1 - q).$$

Michele D'Adderio

		Theorems

We have
$$x_{e_1} = (2, -2, 0), x_{e_2} = (-3, 3, 0), x_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio

We have $x_{e_1} = (2, -2, 0), x_{e_2} = (-3, 3, 0), x_{e_3} = (0, 2, -2), \text{ and}$ $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$ $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$ $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$ $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$ $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
Consider the matrix $\begin{pmatrix} 2 & -3 & 0 \\ -2 & 3 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ with columns $\mathbf{x}_{e_1}, \mathbf{x}_{e_2}, \mathbf{x}_{e_3}.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)^{|\mathcal{G}| + |\mathcal{G}| + |\mathcal{G}|$

Michele D'Adderio

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
Consider the matrix $\begin{pmatrix} 2 & -3 & 0 \\ -2 & 3 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ with columns $\mathbf{x}_{e_1}, \mathbf{x}_{e_2}, \mathbf{x}_{e_3}.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)^{|\mathcal{G}| + |\mathcal{G}| + |\mathcal{G}|$

Michele D'Adderio

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
Consider the matrix $\begin{pmatrix} 2 & -3 & 0 \\ -2 & 3 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ with columns $\mathbf{x}_{e_1}, \mathbf{x}_{e_2}, \mathbf{x}_{e_3}.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)^{|\mathcal{G},\mathbb{R}| + \frac{1}{2}} \mathbb{E} = \mathbb{E}$

Michele D'Adderio

MPIM

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
Consider the matrix $\begin{pmatrix} 2 & -3 & 0 \\ -2 & 3 & 2 \\ 0 & 0 & -2 \end{pmatrix}$ with columns $\mathbf{x}_{e_1}, \mathbf{x}_{e_2}, \mathbf{x}_{e_3}.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{G,\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{G,\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{G,\ell}(q)!!$

Michele D'Adderio

We have
$$x_{e_1} = (2, -2, 0), x_{e_2} = (-3, 3, 0), x_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio

We have
$$x_{e_1} = (2, -2, 0), x_{e_2} = (-3, 3, 0), x_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{\mathbf{x}}_{e_1}, \overline{\mathbf{x}}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(\mathbf{x}, \mathbf{y}) = \sum_{A \subseteq X_R} m(A)(\mathbf{x} - 1)^{rk(X) - rk(A)}(\mathbf{y} - 1)^{|A| - rk(A)} = 2(\mathbf{x} - 1) + (4 + 6) + 2(\mathbf{y} - 1) = 2\mathbf{x} + 6 + 2\mathbf{y}.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderic

We have
$$x_{e_1} = (2, -2, 0), x_{e_2} = (-3, 3, 0), x_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderic

We have
$$x_{e_1} = (2, -2, 0), x_{e_2} = (-3, 3, 0), x_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle x_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{x_{e_1}\}) = 4, m(\{x_{e_2}\}) = 6, m(\{x_{e_1}, x_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderic

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderic

We have
$$\mathbf{x}_{e_1} = (2, -2, 0), \mathbf{x}_{e_2} = (-3, 3, 0), \mathbf{x}_{e_3} = (0, 2, -2), \text{ and}$$

 $X_R = \{\overline{x}_{e_1}, \overline{x}_{e_2}\} \subseteq G := \mathbb{Z}^3 / \langle \mathbf{x}_{e_3} \rangle.$
 $m(\emptyset) = 2, m(\{\mathbf{x}_{e_1}\}) = 4, m(\{\mathbf{x}_{e_2}\}) = 6, m(\{\mathbf{x}_{e_1}, \mathbf{x}_{e_2}\}) = 2.$
 $M_{\mathcal{G},\ell}(x, y) = \sum_{A \subseteq X_R} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = 2(x - 1) + (4 + 6) + 2(y - 1) = 2x + 6 + 2y.$
 $(-1)^{|\overline{V}| - k} q^k M_{\mathcal{G},\ell}(1 - q, 0) = (-1)q(2(1 - q) + 6) = 2q^2 - 8q = \chi_{\mathcal{G},\ell}(q)!!$
 $(-1)^{|R| - |\overline{V}| + k} q^{|D| - |V| + |\overline{V}|} M_{\mathcal{G},\ell}(0, 1 - q) = = (-1)(6 + 2(1 - q)) = 2q - 8 = \chi_{\mathcal{G},\ell}^*(q)!!$

Michele D'Adderio
Deletion Contraction II

▲口▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - わえの

Michele D'Adderic

Graph colorings, flows and arithmetic Tutte polynomial

Michele D'Adderio

MDIM

Graph colorings, flows and arithmetic Tutte polynomial

Deletion of $\{v_2, v_3\}$.

Michele D'Adderio

Graph colorings, flows and arithmetic Tutte polynomial

THE END

References

- M. D'Adderio, L. Moci, Graph colorings, flows and arithmetic Tutte polynomial, preprint
- 2 M. D'Adderio, L. Moci, *Arithmetic matroids, Tutte polynomial and toric arrangements*, preprint
- **3** C. De Concini, C. Procesi, *Topics in hyperplane arrangements, polytopes and box-splines*, Springer 2010.
- L. Moci, A Tutte polynomial for toric arrangements, to appear on Trans. Am. Math. Soc.

THANKS!

References

- M. D'Adderio, L. Moci, Graph colorings, flows and arithmetic Tutte polynomial, preprint
- 2 M. D'Adderio, L. Moci, *Arithmetic matroids, Tutte polynomial and toric arrangements*, preprint
- **3** C. De Concini, C. Procesi, *Topics in hyperplane arrangements, polytopes and box-splines*, Springer 2010.
- L. Moci, A Tutte polynomial for toric arrangements, to appear on Trans. Am. Math. Soc.