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Graphs

Let G := (V ,E ), where
V := {v1, v2, v3, v4} and
E := {{v1, v2}, {v2, v3},
{v2, v4}, {v3, v4}}.
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Colorings

For q ∈ N \ {0}, a (proper) q-coloring of G is a map
c : V → Z/qZ such that if {x , y} ∈ E then c(x) 6= c(y).
The chromatic polynomial χG(q) of G is defined as the number of
q-colorings of G.
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V := {v1, v2, v3, v4} and
E := {{v1, v2}, {v2, v3},
{v2, v4}, {v3, v4}}.
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For q = 4, c(v1) = c(v3) = 0, c(v2) = 1 and c(v4) = 3 is a
4-coloring of G.
While χG(q) = q(q − 1)2(q − 2) = q4 − 4q3 + 5q2 − 2q.
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Flows

For q ∈ N \ {0}, a (nowhere zero) q-flow on an oriented graph
Gθ = (V ,Eθ) is a map w : Eθ → (Z/qZ) \ {0} such that ∀v ∈ V ,∑

e+=v ; e∈Eθ
w(e)−

∑
e−=v ; e∈Eθ

w(e) = 0.
The flow polynomial χ∗G(q) of G is defined as the number of
q-flows of Gθ (it doesn’t depend on θ).

Let Gθ := (V ,Eθ), where
V := {v1, v2, v3} and
Eθ := {(v1, v2), (v3, v2),
(v3, v1)}.

V3

V1 V2

For q = 4, w((v1, v2)) = w((v3, v1)) = 1 and w((v3, v2)) = 3 is a
4-flow of G. While χ∗G(q) = q − 1.
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Definition of Matroid

We use the word list for multiset (repetitions allowed).

A matroid M = MX = (X , rk) is a list of vectors X with a rank
function rk : P(X ) → N ∪ {0} such that:

1 if A ⊆ X , then rk(A) ≤ |A|;
2 if A,B ⊆ X and A ⊆ B, then rk(A) ≤ rk(B);

3 if A,B ⊆ X , then rk(A ∪ B) + rk(A ∩ B) ≤ rk(A) + rk(B).

In particular rk(∅) = 0.
We say that a sublist A is independent ⇔ rk(A) = |A|.
An independent sublist of maximal rank rk(X ) is called a basis.
rk(X ) is called the rank of the matroid.
The independent sublists determine the matroid structure:
rk(A) = |maximal independent sublist of A|.

Michele D’Adderio MPIM
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Examples

1 X is a finite list of vectors of a vector space (e.g. Rn);
rk(A) = dim(span(A));
independent = linearly independent;

2 X a finite list of edges of a graph G;
rk(A) = |maximal subforest of A|;
independent = cycle-free (forests).

Michele D’Adderio MPIM
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Tutte Polynomial

The Tutte polynomial of the matroid M = (X , rk) is defined as

TX (x , y) :=
∑
A⊆X

(x − 1)rk(X )−rk(A)(y − 1)|A|−rk(A).

Theorem (Tutte 1954)

Let G = (V ,E ) with k connected components, and let TG(x , y)
the Tutte polynomial of G. We have

1 χG(q) = (−1)|V |−kqkTG(1− q, 0);

2 χ∗G(q) = (−1)|E |−|V |+kTG(0, 1− q).

Michele D’Adderio MPIM
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Deletion Contraction I
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Classical deletion of
{v2, v3}.
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Classical contraction of
{v2, v3}.
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Labelled graphs

Let (G, `), where G := (V ,E ), V := {v1, v2, v3, v4},
R := {{v1, v2}, {v2, v3}, {v2, v4}} the regular edges,
D := {{v3, v4}} the dotted edges, so that
E = R ∪ D = {{v1, v2}, {v2, v3}, {v2, v4}, {v3, v4}};
let `({v1, v2}) = 1, `({v2, v3}) = 2, `({v2, v4}) = 3,
`({v3, v4}) = 6 be the labels.
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Oriented labelled graphs

Let (G, `), where G := (V ,E ), V := {v1, v2, v3, v4},
R := {(v1, v2), (v3, v2), (v2, v4)} the regular edges,
D := {(v3, v4)} the dotted edges, so that
E = R ∪ D = {(v1, v2), (v3, v2), (v2, v4), (v3, v4)};
let `((v1, v2)) = 1, `((v3, v2)) = 2, `((v2, v4)) = 3,
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Arithmetic colorings

For q ∈ N \ {0}, a (proper) arithmetic q-coloring of a labelled
graph (G, `) is a map c : V → Z/qZ such that:
(1) if e := {u, v} ∈ R, then `(e) · c(u) 6= `(e) · c(v);
(2) if e := {u, v} ∈ D, then `(e) · c(u) = `(e) · c(v).
The arithmetic chromatic polynomial χG,`(q) of (G, `) is defined as
the number of arithmetic q-colorings of (G, `).

Consider (G, `) with G := (V ,E ),
V = {v1, v2, v3},
R := {e1 := {v1, v2}, e2 := {v1, v2}},
D := {e3 := {v2, v3}} so E = R ∪ D,
`(e1) = 2, `(e2) = 3 and `(e3) = 2.

V3V1 V2

2 2

3

For q = 6, c(v1) = 0 and c(v2) = c(v3) = 1 is an arithmetic
4-coloring of G. For q = 6h, χG,`(q) = 2q(q − 4) = 2q2 − 8q.
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For q = 6h, χG,`(q) = 2q(q − 4)= 2q2 − 8q.
For c(v2): q choices.
2c(v3) = 2c(v2) ⇒ c(v3) = c(v2) or c(v2) + q/2: 2 choices.
2c(v1) 6= 2c(v2) and 3c(v1) 6= 3c(v2) ⇒ c(v1) 6= c(v2),
c(v2) + q/2, c(v2) + q/3, c(v2) + 2q/3: q − 4 choices.
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Arithmetic flows

For q ∈ N \ {0}, a (nowhere zero) arithmetic q-flow on an oriented
labelled graph (Gθ, `) is a map w : Eθ → (Z/qZ) such that:
(1) for all v ∈ V ,∑

e+=v e∈Eθ
`(e) · w(e)−

∑
e−=v e∈Eθ

`(e) · w(e) = 0 ∈ Z/qZ;

(2) for all e ∈ Rθ, w(e) 6= 0 ∈ Z/qZ.
The arithmetic flow polynomial χ∗G,`(q) of (G, `) is defined as the
number of arithmetic q-flows of (Gθ, `) (it doesn’t depend on θ).

Consider (Gθ, `) with Gθ := (V ,Eθ),
V = {v1, v2, v3}, Rθ := {e1 := (v1, v2),
e2 := (v2, v1)}, Dθ := {e3 := (v2, v3)}
so Eθ = Rθ ∪ Dθ, `(e1) = 2, `(e2) = 3
and `(e3) = 2.

V3V2

2 2

3V1

For q = 6, w(e1) = 3, w(e2) = 2 and w(e3) = 0 is an arithmetic
6-flow of G. For q = 6h, χ∗G,`(q) = 2(q − 4) = 2q − 8.
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For q = 6h, χ∗G,`(q) = 2(q − 4)= 2q − 8.

−2w(e3) = 0 ⇒ w(e3) = 0 or q/2: 2 choices.
2w(e1)− 3w(e2) = 0 : w(e2) = 2a (q/2 choices) ⇒ w(e1) = 3a
or 3a + q/2 (2 choices), but w(e1) 6= 0 6= w(e2) ⇒
(w(e1),w(e2)) 6= (0, 0), (0, q/3), (0, 2q/3), (q/2, 0): q − 4
choices.
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Consider (Gθ, `) with Gθ := (V ,Eθ),
V = {v1, v2, v3}, Rθ := {e1 := (v1, v2),
e2 := (v2, v1)}, Dθ := {e3 := (v2, v3)}
so Eθ = Rθ ∪ Dθ, `(e1) = 2, `(e2) = 3
and `(e3) = 2.

V3V2

2 2

3V1

For q = 6h, χ∗G,`(q) = 2(q − 4)= 2q − 8.

−2w(e3) = 0 ⇒ w(e3) = 0 or q/2: 2 choices.
2w(e1)− 3w(e2) = 0 : w(e2) = 2a (q/2 choices) ⇒ w(e1) = 3a
or 3a + q/2 (2 choices), but w(e1) 6= 0 6= w(e2) ⇒
(w(e1),w(e2)) 6= (0, 0), (0, q/3), (0, 2q/3), (q/2, 0): q − 4
choices.
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Definition of Arithmetic Matroid

An arithmetic matroid is a pair (MX ,m), where MX is a matroid
on a list of vectors X , and m is a multiplicity function, i.e.
m : P(X ) → N \ {0} has the following properties:

1 if A ⊆ X and v ∈ X is dependent on A, then m(A ∪ {v})
divides m(A);

2 if A ⊆ X and v ∈ X is independent on A, then m(A) divides
m(A ∪ {v});

3 if A ⊆ B ⊆ X and B is a disjoint union B = A ∪ F ∪ T such
that for all A ⊆ C ⊆ B we have rk(C ) = rk(A) + |C ∩ F |,
then m(A) ·m(B) = m(A ∪ F ) ·m(A ∪ T ).

4 if A ⊆ B ⊆ X and rk(A) = rk(B), then
µB(A) :=

∑
A⊆T⊆B(−1)|T |−|A|m(T ) ≥ 0;

5 if A ⊆ B ⊆ X and rk∗(A) = rk∗(B), then
µ∗B(A) :=

∑
A⊆T⊆B(−1)|T |−|A|m(X \ T ) ≥ 0.
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Definition of Arithmetic Matroid

Setting m(A) = 1 for all A ⊆ X we get a trivial multiplicity
function, which essentially does not add anything to the matroid
structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization
of the one of a matroid.
But of course there are more interesting examples.
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The main example

Let X be a finite list of elements of a finitely generated abelian
group G ∼= Zr ⊕ Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dsZ.
For A ⊆ X we set

rk(A) := maximal rank of a free abelian subgroup of 〈A〉;

m(A) := |GA : 〈A〉|, where GA is the maximal subgroup of G such
that 〈A〉 ≤ GA and |GA : 〈A〉| < ∞.

Theorem (D.-Moci)

If we set MX := (X , rk), then (MX ,m) is an arithmetic matroid.
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A concrete example

Let X = {v1 := (3, 0), v2 := (2,−2), v3 := (−3, 3)} ⊆ G := Z2.

Consider the matrix

(
3 2 −3
0 −2 3

)
whose columns are v1, v2, v3.

Remark

The multiplicity of A ⊆ X is the GCD of the minors of maximal
rank in the submatrix corresponding to A.

So m(∅) = 1, m({v2}) = 2, m({v1, v2, v3}) = 3, m({v2, v3}) = 1,
m({v1, v2}) = 6, m({v1}) = m({v3}) = 3, m({v1, v3}) = 9.

Michele D’Adderio MPIM
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Arithmetic Tutte Polynomial

The arithmetic Tutte polynomial of the arithmetic matroid
(MX ,m) is defined as

MX (x , y) :=
∑
A⊆X

m(A)(x − 1)rk(X )−rk(A)(y − 1)|A|−rk(A).

For the trivial multiplicity function m(A) = 1 for all A ⊆ X we get
the Tutte polynomial TX (x , y) of MX .

Michele D’Adderio MPIM
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An example

Let X = {v1 := (3, 0), v2 := (2,−2), v3 := (−3, 3)} ⊆ G := Z2.

Consider the matrix

(
3 2 −3
0 −2 3

)
whose columns are v1, v2, v3.

Then m(∅) = m({v2, v3}) = 1, m({v1, v2}) = 6, m({v2}) = 2,
m({v1}) = m({v3}) = m({v1, v2, v3}) = 3, m({v1, v3}) = 9.

MX (x , y) =
∑

A⊆X m(A)(x − 1)rk(X )−rk(A)(y − 1)|A|−rk(A) =

= (x − 1)2+(3 + 2 + 3)(x − 1)+(x − 1)(y − 1)+(6 + 9)+3(y − 1)=
x2 + 5x + 6 + xy + 2y .

Theorem (D.-Moci)

The arithmetic Tutte polynomial has a combinatorial interpretation
that generalizes Crapo’s one for the classical Tutte polynomial.
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From (G, `) to MG,`

To e = (vi , vj) ∈ Eθ associate the vector xe ∈ Z|V | with `(e) in the
i-th position, −`(e) in the j-th position, and 0 elsewhere.
Set XD := {xe | e ∈ D}, G := Z|V |/〈XD〉,
XR := {xe | e ∈ R} ⊆ G .
Take MG,` to be the one associated to XR ⊆ G .

Consider (Gθ, `) with Gθ := (V ,Eθ),
V = {v1, v2, v3}, Rθ := {e1 := (v1, v2),
e2 := (v2, v1)}, Dθ := {e3 := (v2, v3)}
so Eθ = Rθ ∪ Dθ, `(e1) = 2, `(e2) = 3
and `(e3) = 2.

V3V2

2 2

3V1

e1  xe1 = (2,−2, 0) ∈ Z3,
e2  xe2 = (−3, 3, 0) ∈ Z3,
e3  xe3 = (0, 2,−2) ∈ Z3

G := Z|V |/〈XD〉 = Z3/〈xe3〉,
XR = {xe1 , xe2} ⊆ G
XR ⊆ G ! MG,`.

Michele D’Adderio MPIM
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Main results

Set G := the classical contraction of all dotted edges of G.
We say that q is admissible for (G, `) if `(e) divides q for all e ∈ E .

Theorem (D.-Moci)

For q admissible we have

1 χG,`(q) = (−1)|V |−kqkMG,`(1− q, 0).

2 χ∗G,`(q) = (−1)|R|−|V |+kq|D|−|V |+|V |MG,`(0, 1− q).

Theorem (Tutte 1954)

Let G = (V ,E ) with k connected components, and let TG(x , y)
the Tutte polynomial of G. We have

1 χG(q) = (−1)|V |−kqkTG(1− q, 0);

2 χ∗G(q) = (−1)|E |−|V |+kTG(0, 1− q).

Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial
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An example

V3V2

2 2

3V1

We have xe1 = (2,−2, 0), xe2 = (−3, 3, 0), xe3 = (0, 2,−2), and
XR = {xe1 , xe2} ⊆ G := Z3/〈xe3〉.
m(∅) = 2, m({xe1}) = 4, m({xe2}) = 6, m({xe1 , xe2}) = 2.
MG,`(x , y) =

∑
A⊆XR

m(A)(x − 1)rk(X )−rk(A)(y − 1)|A|−rk(A) =
2(x − 1)+(4 + 6)+2(y − 1) =2x + 6 + 2y .

(−1)|V |−kqkMG,`(1− q, 0) = (−1)q(2(1− q) + 6) =
= 2q2 − 8q =χG,`(q)!!

(−1)|R|−|V |+kq|D|−|V |+|V |MG,`(0, 1− q) =
= (−1)(6 + 2(1− q)) =2q − 8 =χ∗G,`(q)!!

Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial
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Contraction of {v2, v3}.

Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial



Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

Deletion Contraction II

V3

V4

V1 V2

1 2

3 6

V3

V4

V1 V2

1

3 6

Deletion of {v2, v3}.

V3

V4

V1 V2

1 2

3 6

Contraction of {v2, v3}.

Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial



Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

Deletion Contraction II

V3

V4

V1 V2

1 2

3 6

V3

V4

V1 V2

1

3 6

Deletion of {v2, v3}.

V3

V4

V1 V2

1 2

3 6

Contraction of {v2, v3}.
Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial



Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

THE END

References

1 M. D’Adderio, L. Moci, Graph colorings, flows and arithmetic
Tutte polynomial , preprint

2 M. D’Adderio, L. Moci, Arithmetic matroids, Tutte
polynomial and toric arrangements, preprint

3 C. De Concini, C. Procesi, Topics in hyperplane arrangements,
polytopes and box-splines, Springer 2010.

4 L. Moci, A Tutte polynomial for toric arrangements, to appear
on Trans. Am. Math. Soc.

Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial



Graphs Matroid Labelled graphs Arithmetic Matroid Arithmetic Tutte Theorems

THE END

THANKS!

References

1 M. D’Adderio, L. Moci, Graph colorings, flows and arithmetic
Tutte polynomial , preprint

2 M. D’Adderio, L. Moci, Arithmetic matroids, Tutte
polynomial and toric arrangements, preprint

3 C. De Concini, C. Procesi, Topics in hyperplane arrangements,
polytopes and box-splines, Springer 2010.

4 L. Moci, A Tutte polynomial for toric arrangements, to appear
on Trans. Am. Math. Soc.

Michele D’Adderio MPIM

Graph colorings, flows and arithmetic Tutte polynomial


	Graphs
	Matroid
	Labelled graphs
	Arithmetic Matroid
	Arithmetic Tutte Polynomial
	Theorems

