
Latour | a Tree Visualisation System

Ivan Herman1, Guy Melan�con1, Maurice M de Ruiter1, and Maylis Delest2

1 Centrum voor Wiskunde en Informatica, P.O. Box 94079
1090 GB Amsterdam, The Netherlands

fIvan.Herman,Guy.Melancon, Behr.de.Ruiterg@cwi.nl
2 LaBRI, Universit�e Bordeaux I

351, cours de la Lib�eration, 33405 Talence Cedex, France
Maylis.Delest@labri.u-bordeaux.fr

Abstract. This paper presents some of the most important features of a
tree visualisation system called Latour, developed for the purposes of in-
formation visualisation. This system includes a number of interesting and
unique characteristics, for example the provision for visual cues based on
complexity metrics on graphs, which represent general principles that, in
our view, graph based information visualisation systems should generally
o�er.

1 Introduction

Information visualisation is one of the relatively new areas of research and de-
velopment in computer science; its fundamental goal, i.e., the ability to visualise
and to navigate in large, abstract datastructures, is often regarded as one of the
crucial tasks in bringing computers closer to the general public [2]. Visualising
graphs plays a very special role in this area, because they can often be used to
visualise abstract datastructures. Practical examples include hypermedia struc-
tures (like the Web), database query results, or organisational charts of compa-
nies. Systems to visualise large graphs have come to the fore in the last years; the
NicheWorks system of Wills [17], the fsviz system of Carri�ere and Kazman [3], or
daVinci of the University of Bremen [6] are just some typical examples. These
systems usually draw on the rich research heritage in the graph drawing com-
munity which, over the years, has explored some of the mathematical problems
related to graph drawings [1]. Putting these research results into practice is not
a simple task, however. Practical issues raised by, for example, the large size
of graphs in information visualisation, the need for navigation and interaction,
user interface and ergonomic issues, etc., create new challenges, or cast a new
light on well{accepted practices [13]. Consequently, none of the current graph
drawing systems could claim to be complete; experiences with these systems are
still to be gathered to gain a better understanding of the kind of drawing and
navigation facilities which are necessary for a really successful system.

The goal of this paper is to contribute to this \gathering". It describes an
application framework called Latour, whose goal is to incorporate interactive

International Symposium on Graph Drawing GD'99,Springer–Verlag, 1999.© Springer–Verlag



graph (primarily tree) visualisation and navigation techniques into other appli-
cations. At present, Latour is used or tested as a toolkit to visualise, and to
interact with, various application data, for example internal data structures of
programs, deployment results of large Petri nets, evolution of genetic algorithms,
etc.

While developing this framework, some of the practical problems required
more concentrated research e�orts, which also led to interesting and general
results [8, 9, 12]. The goal of this paper is to describe a number of issues which,
albeit not deserving separate articles by themselves, together constitute a body of
experiences which we felt is worth sharing with the R&D community. A technical
report available online [10] contains further details which, because of lack of
place, could not be included in the present paper.

2 Graph/Tree layout

In spite of all the results on graph drawing [1], it is not simple to choose a
speci�c algorithm for information visualisation. Information visualisation, which
is inherently interactive, raises a number of issues that are not necessarily covered
by the classical research. Apart from obvious problems such as speed (in the case
of a graph with 3{4000 nodes, the display of the graph should not take more
than a second), there remain two important aspects:

{ Predictability. Two di�erent runs of the algorithm, involving the same or
similar graphs, should not lead to radically di�erent visual representation.
This is very important if the graph is interactively changed, for example
by (temporarily) hiding some nodes or making them visible again. Great
care should be taken on which layout algorithm is chosen. For example,
a number of graph layout algorithms use optimisation techniques; if the
graph changes, a new local minimum may lead to a dramatically di�erent
visual representation, which is unacceptable for interactive use. (The term
\preserving the mental model" is also used to describe this requirement,
see [11].)

{ Navigation on large or unusual graphs. Practical applications lead to thou-
sands, or possibly tens of thousands of nodes. To cope with such numbers,
navigation tools, search facilities, hierarchical views, etc., are necessary. The
implementation of such tools may also require the usage of suboptimal layout
algorithms.

The bulk of the Latour system concentrates on trees, where the usual layout
algorithms are quite predictable and fast. It was not the goal of Latour to develop
new layout algorithms; instead, the goal was to concentrate on the issues raised
by data exploration and interaction. Three di�erent tree layout algorithms have
been implemented. Various user communities have their own traditions, habits,
or requirements, and an application framework cannot impose one single view
on its users. In what follows, a short overview of these views will be given.



2.1 Hierarchical view

The hierarchical view of the tree is based on the well{known algorithm of Rein-
gold and Tilford [14] revisited by Walker [16]. The layout algorithm is simple,
fast, and completely predictable. Various variants exist: grid{based, left{to{right
or top{down, etc. All these variations are mathematically identical and imple-
menters may be tempted to include arbitrarily one of these variations only. This
would be a mistake: one should recognise that the way of looking at trees may
depend on the application areas. For example, the top{down grid view is the
widespread way of looking at family trees, whereas biological evolution schemas
often use a left{to{right grid. The conclusion is simple, albeit important: give
the user the choice; he/she should be able to choose among the di�erent views.

2.2 Radial view

The radial view is based on an algorithm described in Eades [5] (see also [1]).

This algorithm recursively places the children of a subtree into circular wedges;

Fig. 1: Radial view without
convexity check

the central angle of these wedges are proportional to
the width of the respective subtrees, i.e., the number
of leaves. If this was the only layout rule, additional
edge intersections would occur if the angle on the
node became too large; to avoid this, a \convexity
constraint" is introduced which, essentially, forces
the wedge to remain convex. This type of view is
favoured, for example, by some web site viewers,
which do not want to overemphasise the role of a
root.

The algorithm is very simple, but it is not optimal in using the available
space. We spent some time in trying to optimise the algorithm. The idea was
to use the statistical distribution of the width of a subtree at a node, which can
be approximated with a normal distribution (see [4]). The improvements were
not signi�cant, however; this turned out to be the consequence of the convexity
constraint whose e�ect seems to dominate other optimisation attempts. A possi-
bility to overcome this problem is to simply drop the convexity check. Although
this is not mathematically correct, the occurrence of extra intersections is not
very frequent after all. It is not necessary to look for a mathematically perfect
algorithm for a graph layout; the mathematical \faults" may not be signi�cant in
practice. Problems with navigation, zooming, etc. (see the next section) should
become predominant in that case, and it is not really worth to optimise the
layout any further. For the sake of completeness, we decided to include both the
optimal (i.e., with convexity check) and the, shall we say, sub{optimal radial
layout algorithm into Latour. See [10] for a comparison of both layouts including
�gures.



2.3 Balloon view

The request for a \balloon" view (see Fig. 2) came from an application dealing

with the retrieval of keywords and their relations from a database. The notion of a

Fig. 2: Balloon view

\root" is temporary for such application: the
user should be able to move from one node
to the other interactively, and the tree on the
screen should reect the relationships using
this temporary focus. The balloon view seems
to ful�l this need. The detailed explanation of
the algorithm would go beyond the scope of
this paper [12]. Other placement algorithms
could also be used [3].

3 Interaction and Navigation

Information visualisation is an inherently interactive application; the user has
to move around in information space, explore details, hide unnecessary parts of
a tree, etc. Obviously, a good system must o�er a whole range of tools in order
to make the exploration of a graph easy, or indeed possible.

3.1 Zoom, pan, �sh{eye

Some of the techniques, implemented in Latour are now standard: zoom, pan,
and geometric �sh{eye [15]. As much as possible, the factors controlling these
e�ects (e.g., the distortion factor of the �sh{eye view) are settable interactively
by the end{user.

The �sh{eye view has one drawback, though, which implementers should be
aware of. The essence of a �sh{eye view is to distort the position of each node,
using a concave function applied on the distance between the focal point and the
node's position. If the distortion were to be applied faithfully, the edges connect-
ing the nodes should be distorted into general curves. Usual graphics systems do
not o�er the necessary facilities to draw these curves easily. The implementer's
only choice is to approximate these curves with dense polylines. This leads to
a prohibitively large amount of calculation and makes the responsiveness of the
system sink to an unacceptably low level. The only viable solution is to apply
the �sh{eye distortion on the nodes only, and to connect them by straight{line
edges. The consequence of this inexact solution is that new edge intersections
might occur. Though inelegant, this brute force approach did not prove to be
disturbing in practice.

3.2 Complexity visual cues

The well{known problem in using zoom and pan is that the user looses the
\context". This is why �sh{eye view is used: it provides a \focus+context" view



of the tree. However, when the tree is large, zoom and pan cannot be avoided
and other techniques become necessary, too. A unique feature of Latour is a
technique to provide visual cues based on the structural complexity of the tree.
This technique works as follows.

A metric value is calculated for each node of the tree. This metric should

represent the complexity of the subtree stemming at the node. Several di�erent
metric functions are possible and, ultimately, the choice among these should be
application dependent. Examples for such metric include the width of the sub-
tree (i.e., the number of leaves), the sum of the lengths of all paths between the
node and the leaves of the subtree, the so{called Strahler numbers [8], or the
\degree of interest" function used by Furnas [7]. Using these metric values, and

Fig. 3: Visual Cues

visual tools like colour saturation, linewidth, etc,
Latour can highlight the \backbone" of a tree, i.e.,
those edges which hold larger, more complex sub-
trees. The e�ect is clearly visible on Fig. 3. Without
the backbone the user would barely know where to
move with the pan, if complex areas are searched.
The backbone on the �gure clearly shows, for ex-
ample, that one of the edges going toward the left
leads to a complex portion of the tree, whereas the
other ones are probably less interesting.

Another possible usage of the metric numbers is presented on Fig. 4: this

is the so{called schematic view of a tree. Based on the complexity metrics
of the nodes, Latour displays only those nodes whose metric value is greater
than a speci�c cut{o�, yielding what we have called the skeleton of the tree.
All other nodes are encapsulated in triangular shapes, whose size and geom-
etry is proportional to the hidden portion of the tree. The result is a better

Fig. 4: Schematic view of a tree

overall view of the tree which, com-
bined with other navigation tech-
niques, provides a powerful interac-
tive tool. It is worth noting that, al-
though all our examples so far were
for trees, the visual cue techniques
based on a complexity metric rep-
resent a general principle which can
be applied for more general graphs,
too; the interested reader should re-
fer to [9].

3.3 Animation

Latour is an interactive system; the user navigates in di�erent portions of the
tree, zooms, pans, etc. Some of these actions result in an immediate, real{time
feedback (for example, zoom), some other actions may lead to a more radical



reorganisation of the screen (for example, folding a subtree into a node, or un-
folding a folded subtree). Latour animates all possible changes from one view to
the other, avoiding any radical changes as far as possible. Although originally
only included in Latour to reduce possible ergonomic problems, this basic anima-
tion feature turned out to be a very useful tool for various applications exploring
a sequence of trees, instead of a single one. This is the case, for example, of the
application exploring genetic algorithms, or the traces of parallel program runs.
Therefore, the input possibilities of Latour have been extended: it can not only
accept the description of a single tree, but also a \generation" of trees, i.e., a
basic tree plus a sequence of di�erence trees. This sequence of trees can then be
visualised systematically with again a graceful animation at each change.

4 Beyond trees

Latour is primarily a tree visualisation tool but, obviously, applications may
want to handle more general structures, too. We have added some extensions to
Latour which are worth mentioning here.

4.1 Packed forests

Packed forests are special data structures. The need for these data structures has
arisen through an application concerned with the visualisation of the internal
data structures of compilers, but has proven to be useful in general, too.

Instead of giving an abstract de�nition, the concept is presented through

an example. For a compiler, the standard internal representation of a string is
a list. The leaves of the list represent the individual characters of the string,
and intermediate nodes are used to build up a list structure. Such list can be
represented as a simple tree, like the left{hand one in Fig. 5. However, such a
representation may be too \verbose". An expert in compiler technology knows
the internal representation for a string and does not necessarily need the full list

L

L

EH

O

OLLEH

Fig. 5: A packed forest

version of the relevant portion of the graph;
the tree on the right{hand side of Fig. 5 is
enough to convey all the necessary informa-
tion. What the user wants is to be able to in-
teractively \switch" between di�erent repre-
sentations. Latour has the possibility to store,
internally, a set of such alternatives for each

node, and o�ers interactive means to switch among those.

Packed forests turned out to be extremely useful in practice. As a slightly ex-
treme example, some of the demonstration graphs used by our compiler builder
partner is, initially, a tree consisting of 2{3 nodes only. However, when the same
graph has all its most complex alternatives extended, it turns into a tree of about



100 nodes. Similar data structures are used routinely in computational linguis-
tics; the concept of \level of details", of an utmost importance in virtual reality
scenes, is another example which can be represented through these structures.
Packed forests provide a very e�cient way of imposing a manageable hierarchy
on the visualised data structures.

4.2 Dag's

Dag's (Directed Acyclic Graphs) represent the next logical step when trying to
generalise from trees. This is achieved by a simple extension of Latour, which
allows the storage of additional links for each node of the underlying tree. This
means that a spanning tree is provided, and Latour uses its tree{related structure
to visualise the dag by simply adding the additional links to the tree picture.
The spanning tree may have two origins: either the application generates it, or
the spanning is tree is calculated for the dag.

Requesting the application to generate a spanning tree is not such a strong
requirement. A number of applications have an inherent tree structure in the
data, and visualising this tree, with the additional edges added to the tree,
yields a natural representation of the dag.

Fig. 6 shows an example where a spanning tree is used to visualise a dag.
The interesting feature in this case is that the spanning tree consists of three
branches and most of the \non{tree" edges are used to connect nodes in di�erent
branches. We can refer to such graphs as \multipartite" trees. Similar, but bipar-

Fig. 6: A tree with added links

tite trees occur when describing virtual real-
ity scenes, for example (where one branch de-
scribe an object hierarchy, the other the real
instances). These \multipartite" graphs oc-
cur frequently in applications, and constitute
a set of examples where the simple extension
of Latour works out very well in practice. Au-
tomatic generation of spanning trees raises a
number of issues not developed here. For fur-

ther details see [10].

5 Conclusions

The implementation of Latour has resulted in a very exible system, which is well
adaptable to various user communities. It concentrates on interaction and visual
feed{back, rather than complicated layout algorithms, which makes it one of its
strengths. It has also taught us some important lessons: that a proper balance
has to be found between the mathematical correctness and the requirements of
navigation and interaction, that the end{user has to have a maximal control over
the appearance and the attributes of the visual representation, we learned about
the importance of metric functions on graphs in general. In developing a more
general graph{based information visualisation framework these experiences will
become of an utmost importance.



References

1. Battista, G. di, Eades, P., Tamassia, R., Tollis, I.G.: Graph drawing: algorithms

for the visualisation of graphs. Prentice Hall (1999).
2. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds): Readings in Information

Visualization. Morgan Kaufmann Publishers (1999).
3. J. Carri�ere, J., Kazman, R.: Interacting with huge trees: beyond cone trees. In:

Proceedings IEEE Information Visualisation '95, IEEE CS Press (1995), 74{81.
4. Drmota, M.: Systems of functional equations. In: J. Random Structures and Al-

gorithms, 10(1{2), (1997), 103{124.
5. Eades, P.: Drawing free trees. In: Bulletin of the Institute for Combinatorics and

its Applications, 5, (1992), 10{36.
6. Fr�ohlich, M., Werner, M.: Demonstration of the interactive graph visualization

system daVinci. In: Proceedings of DIMACS Workshop on Graph Drawing '94,

Springer{Verlag, (1995).
7. Furnas, G.W.: Generalized �sheye views. In: Human Factors in Computing Sys-

tems, CHI'95 Conference Proceedings, ACM Press (1995), 16{23.
8. Herman, I., Delest, M., Melan�con, G.: Tree visualisation and navigation clues for

information visualisation. In: Computer Graphics Forum, 17(2), (1998), 153{165.
9. Herman, I., Marshall, S.M., Melan�con, G., Duke, D.J., Delest, M., Domenger, J.{

P.: Skeletal images as visual cues for graph visualisation. In: Data Visualization

'99, Proceedings of the Joint Eurographics IEEE TCVG Symposium on Visual-

ization, Springer{Verlag, (1999), 13{22.
10. Herman, I., Melan�con, G., Ruiter, M.M. de, Delest, M.: La-

tour | a tree visualisation system. Reports of the Centre
for Mathematics and Computer Sciences (CWI), INS{R9904,
http://www.cwi.nl/InfoVisu/papers/LatourOverview.pdf, (1999).

11. Misue, K.,Eades, P., Lai W., Sugiyama, K.: Layout adjustment and the mental
map. In: Journal of Visual Languages and Computing, 6, (1995), 183{210.

12. Melan�con, G., Herman, I.: Circular drawing of rooted trees. Reports of
the Centre for Mathematics and Computer Sciences (CWI), INS{R9817,
http://www.cwi.nl/InfoVisu/papers/circular.pdf, (1998).

13. Purchase, H.: Which Aesthetic has the Greatest E�ect on Human Understanding?
In: Proceedings of the Symposium on Graph Drawing GD'97, Springer{Verlag
(1998), 248{261.

14. Reingold, E.M., Tilford, J.S.: Tidier drawing of trees. In: IEEE Transactions on

Software Engineering, SE{7(2), (1981), 223{228.
15. Sarkar, M., Brown, M.H.: Graphical �sheye views. In: Communication of the

ACM, 37(12), (1994), 73{84.
16. Walker II, J.Q.: A node{positioning algorithm for general trees. In: Software |

Practice and Experience, 20(7), (1990), 685{705.
17. Wills, G.J.: Niche Works | interactive visualization of very large graphs. In:

Proceedings of the Symposium on Graph Drawing GD'97, Springer{Verlag (1998),
403{415.


