
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Latour - a tree visualisation system

I. Herman, G. Melançon, M.M. de Ruiter, M. Delest

Information Systems (INS)

INS-R9904 April 1999

Submitted for publication



Report INS-R9904
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Latour — a tree visualisation system

I. Herman, G. Melançon, M.M. de Ruiter
 CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

email: {Ivan.Herman,Guy.Melancon, Behr.de.Ruiter }@cwi.nl

M. Delest
LaBRI, Université Bordeaux I

351, cours de la Libération, 33405 Talence Cedex, France

email: Maylis.Delest@labri.u-bordeaux.fr

ABSTRACT

This paper presents some of the most important features of a tree visualisation system called Latour, developed for
the purposes of information visualisation. This system includes a number of interesting and unique characteristics,
for example the provision for visual cues based on complexity metrics on graphs, which represent general principles
that, in our view, graph based information visualisation systems should generally offer.

1991 Computing Reviews Classification System:  D.2.2, G.2.1, G.2.2, H.5.2, I.3.6, I.3.8.
Keywords and Phrases: information visualisation, tree visualisation, graph visualisation, user interfaces
Note: The work was carried out under the INS3.1 project “Information Visualization”. The on–line version of this re-
port contains the figures in colour.

1. INTRODUCTION

Information visualisation is one of the relatively new areas of research and development in computer science; its
fundamental goal, i.e., the ability to visualise and to navigate in large, abstract datastructures, is often regarded as
one of the crucial tasks in bringing computers closer to the general public[3]. Visualising graphs plays a very special
role in this area, because they can often be used to visualise abstract datastructures. Practical examples include hy-
permedia structures (like the Web), database query results, or organisational charts of companies. Experimental sys-
tems to visualise large graphs have come to the fore in the last years; the NicheWorks system of Wills[23], the fsviz
system of Carrière and Kazman[4], or daVinci of the University of Bremen[8] are just some typical examples1.
These systems usually draw on the rich research heritage in the graph drawing community which, over the years, has
explored some of the mathematical problems related to graph drawings, like optimal placement algorithms, com-
plexity issues, planarity, etc.[2]. Putting these research results into practice is not a simple task, however. Practical
issues raised by, for example, the large size of graphs in information visualisation, the need for navigation and inter-
action, user interface and ergonomic issues, etc., create new challenges, or cast a new light on well–accepted prac-
tices[18]. Consequently, none of the current graph drawing systems could claim to be complete; experiences with
these systems are still to be gathered to gain a better understanding of the kind of drawing and navigation facilities
which are necessary for a really successful system.

The goal of this paper is to contribute to this “gathering”. It describes an application framework called Latour2,
whose goal is to incorporate interactive graph (primarily tree) visualisation and navigation techniques into other
applications. At present, Latour is used or tested as a toolkit to visualise, and to interact with, abstract data for the
following applications areas:

                                                          
1 There are a number of Web site which contain further links to such systems; our site, http://www.cwi.nl/InfoVisu, beyond providing addi-

tional information on Latour and the current state of our work, also includes such links.

2 The reader should not look for a sophisticated abbreviation behind the term “Latour”. Because the framework has been developed in co–
peration with the University of Bordeaux I, France, we decided to name the framework after a venerable claret, Chateaux Latour…



2

• internal data structures of programs (in our case, the internals of a configurable compiler called COSY, produced
at ACE b.v., in Amsterdam);

• deployment results of large Petri nets;

• trace information produced by running a massively parallel application based on a co–ordination language;

• result of text and content retrieval systems;

• evolution of genetic algorithms;

• Web site content.

Other application areas are still to come.

While developing this framework, some of the practical problems required more concentrated research efforts,
which also led to interesting and general results; these have been presented in separate papers or reports[10,11,16].
The goal of this paper is different; its aim is to describe a number of issues which, albeit not deserving separate arti-
cles by themselves, together constitute a body of experiences which we felt is worth sharing with R&D community.

2. GRAPH/TREE LAYOUT

The classic survey of Battista et al.[1], which is already 5 years old, lists more than 300 papers, mostly on various
graph layout algorithms. New results have been published since this survey, and a recent book by the same authors
gives a very comprehensive overview of the field[2]. In spite of all these results on graph drawing, it is not simple to
choose a specific algorithm for information visualisation. Information visualisation, which is inherently interactive,
raises a number of issues that are not necessarily covered by the classical research on graph drawing. Apart from
obvious problems such as speed (in the case of a graph with 3–4000 nodes, the display of the graph should not take
more than a second), there remain two important aspects:

• Predictability. Two different runs of the algorithm, involving the same or similar graphs, should not lead to radi-
cally different visual representation. This is very important if the graph is interactively changed, for example by
(temporarily) hiding some nodes or making them visible again. If, as a result of such interaction, the graph
drawing algorithm creates a radically different view of the graph, the user will be “lost”, and the application may
become unusable1. Consequently, great care should be taken on which layout algorithm is chosen. For example, a
number of graph layout algorithms use optimisation techniques; if the graph changes, a new local minimum may
lead to a dramatically different visual representation, which is unacceptable for interactive use.

• Navigation on large or unusual graphs. The size of the compiler data structures, related to a simple “Hello
World” C program, might contain 50–60 nodes already. Practical applications lead to thousands, or possibly tens
of thousands of nodes. To cope with such numbers, navigation tools, search facilities, hierarchical views, etc., are
necessary. The implementation of such tools may also require the usage of suboptimal layout algorithms. This
should not be considered as a major problem: a rich navigation environment is more important than a pretty lay-
out.

The bulk of the Latour system concentrates on trees, where the usual layout algorithms are quite predictable and
fast. Although this section concentrates on tree layout algorithms only, the requirements above should nevertheless
be kept in mind for more general graphs, too (see also Section 4).

It was not the goal of Latour to develop new layout algorithms; instead, the goal was to concentrate on the issues
raised by data exploration and interaction. Three different tree layout algorithms have been implemented: a (classi-
cal) hierarchical view, a radial view, and a so–called “balloon” view. The reason for having these views was simply
user demand; various user communities have their own traditions, habits, or requirements, and an application
framework cannot impose one single view on its users. In what follows, a short overview of these views will be
given. Other layout methods based on cone trees[19], or treemaps[13], could also be considered in future; the
modular nature of Latour makes it easy to include new layout algorithms.

                                                          
1 The term “preserving the mental model” is also used to describe this requirement, see [15].



3

2.1. Hierarchical view

The hierarchical view of the tree is based on the well–known algorithm of Reingold and Tilford[20] revisited by
Walker[22]. The layout algorithm is simple, fast, and completely predictable (in the sense described in the previous
section). It has trivial variations, as depicted on Figure 1. All these variations are mathematically identical and im-
plementors may be tempted to include arbitrarily one of these variations only. This would be a mistake: one should
recognise that the way of looking at trees may depend on the application areas. For example, the top–down grid
view is the widespread way of looking at family trees, whereas biological evolution schemas often use a left–to–
right grid. The conclusion for an application developer is simple, albeit important: give the user the choice; he/she
should be able to choose among the different views (or customise the range of available views for a specific appli-
cation area).

2.2. Radial view

The radial view (see Figure 2) is based on an algorithm described in Eades[7] (see also in di Battista et al[2]). This
algorithm recursively places the children of a subtree into circular wedges; the central angle of these wedges are
proportional to the width of the respective subtrees, i.e., the number of leaves. If this was the only layout rule, addi-
tional edge intersections would occur if the angle on the node became too large; to avoid this, a “convexity con-
straint” is introduced which, essentially, forces the wedge to remain convex. Such, or similar, view is favoured, for
example, by some web site viewers, which do not want to overemphasise the role of a root.

The algorithm is very simple, but it is not optimal in using
the available space (this can clearly be seen on the figure). We
spent some time in trying to optimise the algorithm. The idea
was to use the statistical distribution of the width of a subtree
at a node, which can be approximated with a normal distribu-
tion (see the paper of Drmota[6]). Using this distribution one
can “predict” whether a subtree is excessively large or narrow,
and one can therefore modify the default re–distribution of a
wedge at a node. If a subtree is “large”, which means that it
has, statistically, many leaves compared to its size, it gets a
higher share of the wedge. If, conversely, the number of
leaves is unusually low compared to its size, its share is re-
duced. (For details of the statistics, the reader should consult
[10] where these formulae were used for other purposes). The
improvements were not significant, however; this turned out
to be the consequence of the relative “strength” of the con-
vexity constraint whose effect seems to dominate other opti-
misation attempts.

A possibility to overcome this problem is to simply drop the convexity. Although this is not mathematically correct,
the occurrence of extra intersections is not very frequent after all. On the other hand, the image fills the available
space much better. Figure 3 shows the same tree as on Figure 2 with the statistically improved radial placement but
without the convexity check. This shows that, in some cases, it is not necessary to look for a mathematically perfect
algorithm for a graph layout; the mathematical “faults” may not be significant in practice. The weaknesses (like the
extra intersections) of the algorithm become apparent only if very big trees are used, where the few extra intersec-

Figure 1 Different hierarchical views of a tree

Figure 2 Radial view with convexity check



4

Figure 4 Balloon view

tions are not really disturbing any more (the image is
very complex anyway). Problems with navigation,
zooming, etc. (see the next section) should become pre-
dominant in that case, and it is not really worth to opti-
mise the layout any further. A fast, better looking, albeit
mathematically incorrect algorithm might sometimes be
the good choice after all. (It is interesting to note that, for
example, the NicheWorks system of Wills[23] uses a
similar radial algorithm, but without the convexity con-
straint; the same seems to be true for [5].)

For the sake of completeness, we decided to include
both the optimal (i.e., with convexity check) and the,
shall we say, sub–optimal radial layout algorithm into
Latour.

2.3. Balloon view

The request for a “balloon” view (see Figure 4) came from an application dealing with the retrieval of keywords and
their relations from a database. The notion of a “root” is temporary for such application: the user should be able to
move from one node to the other interactively, and the tree on the screen should reflect the relationships using this
temporary focus. Neither the hierarchical nor the radial view was seen as appropriate; both emphasise the role of the
root in a way that was seen to be misleading for the users. The balloon view seems to fulfil these needs.

The balloon view is the only layout algorithm, which has been developed during the work on Latour. The de-
tailed explanation of the algorithm would go beyond the
scope of this paper; the interested reader should consult
a separate report on the subject[16]. The balloon view
gives satisfactory results for well–balanced trees; other
placement algorithms (for example, by drawing the pro-
jection of a spatial cone tree placement, see, for example
the approach used in fsviz and described in [4]) could
also be used. The important issue to remember at this
point is the necessity for a “re–root” facility: i.e., that the
user can interactively pick an arbitrary node on the
screen, and reorganise the full tree with the newly picked
node as a root. This ability of Latour is essential for
large classes of applications.

3. INTERACTION AND NAVIGATION

Information visualisation is an inherently interactive
application; the user has to move around in information space, explore details, hide unnecessary parts of a tree, etc.
Obviously, a good system must offer a whole range of tools in order to make the exploration of a graph easy, or in-
deed possible.

3.1. Zoom, pan, fish–eye

Some of the techniques, implemented in Latour now are standard: zoom, pan, fish–eye (the latter based on the paper
of Sarkar and Brown[21]). As much as possible, the factors controlling these effects (e.g., the distortion factor of the
fish–eye view) are settable interactively by the end–user.

The fish–eye view has one drawback, though, which implementors should be aware of. The essence of a fish–
eye view is to distort the position of each node, using a convex function applied on the distance between the focal
point and the node’s position. The function can be a relatively simple rational polynomial. However, if the distortion
were to be applied faithfully, the edges connecting the nodes should be distorted, too. Mathematically, the result of

Figure 3 Radial view without convexity  check and
with statistical modifications



5

this distortion is a general curve. Usual graphics systems (e.g., the Java’s AWT or Java2D packages) do not offer the
necessary facilities to transform lines into these curves easily (they can be, mathematically, fairly complex). The
implementer’s only choice is, therefore, to approximate the original line segments with a high number of points,
transform those points, and display a polyline to approximate the ideal, transformed curve. The problem is that the
number of approximating points must be relatively high if a smooth impression is sought (on average 60 points per
edge), which leads to a prohibitively large amount of calculation and make the responsiveness of the system sink to
an unacceptably low level. The only viable solution is to apply the fish–eye distortion on the node co–ordinates only,
and to connect the transformed nodes by straight–line edges (this is the approach taken by Sarkar and Brown,
too[21]). The consequence of this inexact solution is that new edge intersections might occur, for example when the
radial or the balloon views are used. Though inelegant, this brute force approach did not prove to be disturbing in
practice.

The approach of Sarkar and Brown might be characterised as an “image space algorithm”, to borrow a terminol-
ogy from computer graphics: the distortion occurs once the geometric positions of the nodes are already determined
by the layout algorithm. Another form of distortion may be achieved by controlling the parameters governing the
layout itself, thereby producing a fish–eye like distortion. For example, in the case of the balloon view (see Section
2.3), one can interactively “inflate” a circle determined by a particular node; the algorithm would automatically ad-
just (i.e., deflate) the other circles, yielding a fish–eye view like image. Not all layout algorithms are appropriate for
such control, though.

3.2. Complexity visual cues

The well–known problem in using zoom and pan is that the user looses the “context”. This is why fish–eye view is
used: it provides a “focus+context”[14] view of the tree. However, when the tree is large, zoom and pan cannot be
avoided and other techniques become necessary, too. A unique feature of Latour is a technique to provide visual
cues based on the structural complexity of the tree. This technique works as follows.

A so–called “metric” value is calculated for each node of the tree. This metric should represent the complexity of
the subtree stemming at the node. Several different metric functions are possible and, ultimately, the choice among
these should be application dependent. Examples for such metric include the width of the subtree (i.e., the number of
leaves), the sum of the lengths of all paths between the node and the leaves of the subtree, the so–called Strahler
numbers derived from a complexity measure widely used in combinatorics (see [10]), or the “degree of interest”
function used by Furnas[9]. These (structural) complexity metric values can be controlled further by assigning an
application dependent weight to each node (either interactively, or via the background application); this weight is
then taken into consideration, too, when the final complexity values are calculated.

Using these metric values, and visual tools like colour saturation, linewidth, etc, Latour can highlight the “back-
bone” of a tree, i.e., those edges which hold larger, more complex subtrees. The effect is clearly visible on Figure 5.
The image on the left is a simple zoomed–in image: the user barely knows where to move with the pan, if complex
areas are searched; it is also not clear whether the node on the left which looks like a root node is indeed the root of
the tree or not. The right–hand image shows the same portion of the graph, with the metric based visual cue. It

Figure 5 Effects of complexity cues



6

clearly shows, for example, that the node on the left is indeed the root and that one of the edges going toward the left
leads to a complex portion of the tree, whereas the other one is probably less interesting.

Another possible usage of the metric
numbers is presented on Figure 6: this
is the so–called schematic view of a
tree. Based on the complexity metrics
of the nodes, Latour displays, in a “tra-
ditional” graph form, only those nodes
whose metric value is greater than a
specific cut–off, yielding what we have
called the skeleton of the tree. All other
nodes are encapsulated in schematic
“shapes” (triangles in this case), whose
size and geometry is proportional to
the hidden portion of the tree. Obvi-
ously, the cut–off value can be con-
trolled interactively by the user. The
result is a better overall view of the
tree which, combined with other navi-
gation techniques, provides a powerful
interactive tool to the user to explore
the graph.  This schematic view approach bears some resemblance with the so–called generalised fish–eye views of
Furnas[9] although our schematic views can be applied to any metric and gives a general view of the whole tree in-
stead of focusing on one node.

It is worth noting that, although all our examples so far were for trees, the visual cue techniques based on a com-
plexity metric represent a general principle which can be applied for more general graphs, too; the interested reader
should refer to [11].

3.3. Animation

Latour is an interactive system; the user navigates in different portions of the tree, zooms, pans, etc. Some of these
actions result in an immediate, real–time feedback (for example, zoom), some other actions may lead to a more radi-
cal reorganisation of the screen (for example, folding a subtree into a node, or unfolding a folded subtree). These
steps may be notoriously disturbing for the user, who may easily loose track, forcing him/her to “relocate” on the
screen searching, for example, for a particular node. To reduce this problem, Latour gracefully animates all possible
changes from one view to the other, avoiding any radical changes as far as possible. The animation step itself is
straightforward: for example, if the layout algorithm is changed, each node “moves” along a linear path to its new
position, creating a movie–like effect (other systems have also adopted the similar approaches; see, for example, the
paper of Huang et al[12]).

Although originally only included in Latour to reduce possible ergonomic problems, this basic animation feature
turned out to be a very useful tool for various applications, too. There are indeed applications whose goal is to ex-
plore a sequence of trees, instead of a single one, often representing the evolution of data in time. This is the case,
for example, of the application exploring genetic algorithms, or the traces of parallel program runs. Therefore, the
input possibilities of Latour have been extended: it can not only accept the description of a single tree, but also a
“generation” of trees, i.e., a basic tree plus a sequence of difference trees. This sequence of trees can then be visual-
ised systematically with again a graceful animation at each change.

3.4. Miscellaneous techniques

Latour offers some other interaction tools, too, which are worth mentioning without going into further details:

• interactive tools to fold/unfold a subtree at a node (note that the predictability of the layout is of an utmost im-
portance for this);

• ability to visualise a subtree in a separate, pop–up window;

Figure 6 Schematic view of a tree



7

• “non–geometric” navigation tools, like a search on the name or each node, or on a set of application–dependent
attributes which can be assigned to each node;

• re–root of the tree (this has already been mentioned, in relation to the balloon view).

4. BEYOND TREES

Latour is primarily a tree visualisation tool but, obviously, applications may want to handle more general structures,
too. Although we are currently working on the implementation of a more general tool, some extensions have been
added to Latour already. These added features are interesting because they show that, through a moderate amount of
extra work, a tree visualisation system may become useful for a larger class of applications, too.

4.1. Packed forests

Packed forests are, in fact, special data structures. The need for these data structures have arisen through the appli-
cation concerned with the visualisation of the internal data structures of compilers, but has proven to be useful in
general, too. (The name for the structure originates from its usage in computational linguistics.)

Instead of giving an abstract definition, the concept is presented through an example. For a compiler, the stan-
dard internal representation of a string is a list. The leaves of the list represent the individual characters of the string,

and intermediate nodes are used to build
up a list structure. Such list can be repre-
sented as a simple tree, like the left–hand
one Figure 7.

However, such a representation may be
too “verbose”. An expert in compiler tech-
nology knows the internal representation
for a string and does not necessarily need
the full list version of the relevant portion
of the graph; the tree on the right–hand
side of Figure 7 is enough to convey all the
necessary information. What the user
wants is to be able to “switch” between the
two representations, the two “alternatives”

(as they are called within Latour), interactively. A switch between the two alternatives means, mathematically, to
change between two trees differing in the subtree of a specific node only. Latour has the possibility to store, inter-
nally, a set of such alternatives for each node, and offers interactive means to switch among those. In effect, what
Latour stores as a data structure is a forest packed in one entity.

Managing packed forests require the adaptation of the navigation tools, the visual cues, and other interactive fa-
cilities. For example, if a node has several stored alternatives, additional metric values can be calculated represent-
ing the average of the complexity values for each alternative taken individually (of course, these calculations should
be performed recursively). Non–geometric navigation tools are also provided: for example, an attribute can be as-
signed to each alternative in the forest, and the changes among alternatives can be controlled globally (a simple ex-
ample might be to change from, say, ‘expert’ mode to ‘novice’ mode, and make a global change from the succinct
string representation to the more verbose one, where applicable).

Packed forests turned out to be extremely useful in practice. As a slightly extreme example, some of the demon-
stration graphs used by our compiler builder partner is, initially, a tree consisting of 2–3 nodes only. However, when
the same graph has all its most complex alternatives extended, it turns into a tree of about 100 nodes. Similar data
structures are used routinely in computational linguistics; the concept of “level of details”, of an utmost importance
in virtual reality scenes, is another example which can be represented through these structures. In other words,
packed forests provide a very efficient, and application dependent, way of imposing a manageable hierarchy on the
visualised data structures, hence their importance.

Figure 7 Example of a packed forest



8

4.2. Dag’s

Dag’s (Directed Acyclic Graphs) represent the next logical step when trying to generalise from trees. This is
achieved by a simple extension of Latour, which allows the storage of additional links (“stepchildren” and “ances-
tor” links) for each node of the underlying tree. This means, mathematically, that a spanning tree is provided, and
Latour uses its tree–related structure to visualise the dag by simply adding the additional links to the tree picture.
The spanning tree may have two origins: either the application generates it, or the spanning is tree is calculated for
the dag.

4.2.1. Spanning trees provided by the application

Requesting the application to generate a spanning tree is not such a strong requirement as one might think. For a
number of applications, there is an inherent tree structure in the data, and visualising this tree, with the additional
edges added to the tree, yields a natural representation of the dag. Munzner, for example, argues in her paper[17]
that a large number of Web sites do have an inherent tree
structure, and a Web visualiser should take advantage of
this. Although this might not be true for all Web sites, our
experiences concur with hers for a large number of cases.
Figure 8, which indeed represents the structure of a (small)
Web site, differs from Figure 2 by having some additional
edges added to the picture. These additional edges do not
represent any difficulties in navigating through the graph.

Figure 9 shows another example where a spanning tree
is used to visualise a dag. The interesting feature is that the
spanning tree consists of three branches and all “non–tree”
edges are used to connect these branches. We can refer to
such graphs as “multipartite” trees. Similar, bipartite trees
occur when describing virtual reality scenes, for example
(where one branch describe an object hierarchy, the other
the real instances). These “multipartite” graphs occur fre-
quently in applications, and constitute a set of examples
where the simple extension of Latour works out very well in
practice.

4.2.2. Automatic generation of spanning trees

Relying on a spanning tree to layout a large graph is com-
mon practice and is indeed often a necessity in situations
where interactive time response is critical. Automatic com-
putation of a spanning tree can be done in many different
ways, mainly because of the high degree of liberty one has
for computing one. Our main concern was to compute a
spanning tree that would lead to a best layout for a dag,
based on the choice of a spanning tree.

Many spanning tree algorithms try to find a tree, which is optimal with respect to a certain criterion, such as
minimising the sum of weights of the nodes in the tree. To achieve this, one obvious way is to consider all the
neighbours of a node already in the tree, and to choose among those the one with the corresponding minimal edge.
By repeating this process iteratively, a spanning tree is generated.

Nodes of a dag are implicitly assigned a layer number, namely the maximal length of a path connecting it with a
top node of the dag. Using this value as a weight, and applying the simple algorithm described above, we were able
to produce spanning trees for dag’s in an efficient and simple way.

4.2.3. Adapting the tree layout to dag’s

The Reingold and Tilford algorithm makes use of the depth of nodes in the tree; all nodes with equal depth will ac-
tually appear on a horizontal line on the screen. We had to adapt this feature of the R&T algorithm so that a node

Figure 8 A tree with added links

Figure 9 A tripartite tree



9

would be placed on its proper layer in the dag. Indeed, in most cases the depth of a node in the spanning tree does
not coincide with its layer number. To handle this
problem, we insert dummy nodes in the spanning
tree, i.e., nodes that are used by the R&T algo-
rithm, but are not displayed as nodes on the final
image. Incidentally, as test cases we used dag’s
extracted from graphs submitted at Graph Draw-
ing contests. Surprisingly enough, the layouts we
obtained compared quite well with the winner
layouts. Figure 10 shows an example based  on
sample B of the GD ‘95 contest.

5. IMPLEMENTATION

Latour has been implemented as a stand alone
Java application. The reason of choosing Java was
to achieve the highest possible portability among
various Unix platforms, Windows and Macintosh.
The famous slogan of Sun “write once, run eve-
rywhere” did not quite work out in practice: when
porting the system from the original Unix devel-
opment platform to Windows NT, the behaviour
of the user interface (based on the AWT toolkit)
was slightly different (mainly due to a small dif-
ference in handling mouse), which required some
further testing and adjustments. Nevertheless,
porting was indeed a matter of a few days only
and we routinely work today on different plat-
forms without problems. Such a level of portabil-
ity would have been much more difficult to
achieve, had we used C++, for example.

Beyond portability, Java offered some additional tools, which have proven to be extremely useful. It was our goal to
provide a very high level of flexibility in using Latour, to be able to adapt it to the end user’s needs and taste easily,
and that such adaptation should also be doable by any expert user. The dynamic loading facilities of Java have
proven to be of invaluable help in this respect: by providing the name of a class, a Java program can easily load a
new class and use it as if it was part of the original distribution. This means that the user of Latour can write his/her
own class implementations for specific aspects of the system, use a property mechanism to convey the name of these
classes to a Latour system already executing, and the system will use these classes instead of the default ones. Of
course, a proper specification of some standard super–classes was necessary, but this was routine work. Here are
some aspects of Latour, which can be adapted by the user:

• colouring of edges, nodes;

• display of individual nodes (replacing the node by an icon, controlling the appearance of the node’s name, etc.);

• details of the animations (speed, linear or not linear, etc.);

• tree layout algorithms;

• application–dependent complexity metric functions;

• global control of alternatives in a packed forest.

The class containing the final menus can also be overridden by the user; for example, a sub–set of every metrics in
the system can be chosen, hiding those that are irrelevant for a specific application area. Moreover, most of these
aspects can be controlled on a graph by graph basis, too: if a certain graph is better adapted to a balloon view, for
example, than this view can be set as its default. This kind of flexibility makes it quite easy to incorporate Latour
into new applications; this is why Latour can be considered as a framework rather than a single application.

Figure 10 A dag drawn with a generated spanning tree



10

Of course, not everything was easy with Java. The biggest problem we have today is the disappointingly bad per-
formance of the Java2D implementation in Java 1.2. Although the features offered by Java2D, which provide a
much better control over the final outlook of the image, would be extremely valuable for us, it is way too slow for
interactive use. We are therefore forced to continue using the basic graphics of Java 1.1, in the hope that a next re-
lease of Java 1.2 will overcome this problem.

6. CONCLUSIONS

The implementation of Latour has resulted in a very flexible system, which is well adaptable to various user com-
munities. It concentrates on interaction and visual feed–back, rather than complicated layout algorithms, which
makes it one of its strengths. It has also taught us some important lessons: that a proper balance has to be found be-
tween the mathematical correctness and the requirements of navigation and interaction, that the end–user has to have
a maximal control over the appearance and the attributes of the visual representation, we learned about the impor-
tance of metric functions on graphs in general. In developing a more general graph–based information visualisation
framework these experiences will become of an utmost importance.

ACKNOWLEDGEMENTS

The development of Latour was based partly on a co–operation within CWI and the University of Bordeaux, within
the framework of the Franco–Dutch intergovernmental agreement “van Gogh”, and partly on a co–operation with
ACE b.v., Amsterdam and with other research groups at CWI, within the framework of the Dutch national funding
“High Performance Visualisation”. Let us thank Job Ganzevoort (ACE), Farhad Arbab and Scott Marshall (CWI),
and Jean–Philippe Domenger (LaBRI) for their valuable comments. Finally, our thanks to Peter Eades (Newcastle,
Australia) for pointing at some recent results in the area of tree placement; he has saved us some unnecessary de-
tours.

REFERENCES

1. G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis: “Algorithms for drawing graphs: an annotated bibliography”. In:
Computational Geometry: Theory and Applications, 4(5), 1994.

2. G. di Battista, P. Eades, R. Tamassia and I.G. Tollis: Graph drawing: algorithms for the visualisation of graphs, Prentice
Hall, 1999.

3. S.K. Card, J.D. Mackinlay, B. Shneiderman (eds): Readings in Information Visualization. Morgan Kaufmann Publishers,
1999.

4. J. Carrière, R. Kazman: “Interacting with huge trees: beyond cone trees”. In: Proceedings IEEE Information Visualisation
'95, IEEE CS Press, 1995.

5. M.C. Chuah: “Dynamic Aggregation with circular visual designs”. In: Proceedings of the IEEE Symposium on Information
Visualisation (InfoVis'98), G. Wills and J. Dill (eds.), IEEE CS Press, 1998.

6. M. Drmota: “Systems of functional equations”. In: J. Random Structures and Algorithms, 10(1–2), 1997.
7. P. Eades: “Drawing free trees”. In: Bulletin of the Institute for Combinatorics and its Applications, 5, 1992.
8. M. Fröhlich, M. Werner: “Demonstration of the interactive graph visualization system daVinci”. In: Proceedings of

DIMACS Workshop on Graph Drawing '94, R. Tamassia, I. Tollis (eds.), Lecture Notes in Computer Science No. 894,
Springer Verlag, 1995. (See also the project's current homepage for the current status: http://www.informatik.uni-
bremen.de/~davinci/).

9. G.W. Furnas: “Generalized fisheye views”. In: Proceedings of the ACM CHI’86 Conference, ACM Press, 1986.
10. I. Herman, M. Delest and G. Melançon: “Tree visualisation and navigation clues for information visualisation”. In: Com-

puter Graphics Forum, 17(2), 1998.
11. I. Herman, S.M. Marshall, G. Melançon, D.J. Duke, M. Delest, J.P. Domenger: “Skeletal images as visual cues for graph

visualisation".  In: Proceedings of the Joint Eurographics–IEEE TCCG Symposium on Visualization, Vienna, eds. E.
Gröller and W. Ribarsky, Springer Verlag, Wien, 1999. Also in: Reports of the Centre for Mathematics and Computer Sci-
ences (CWI), INS–R9813, ftp://ftp.cwi.nl/pub/CWIreports/INS/INS-R9813.ps.Z, 1998.

12. M.L. Huang, P. Eades, and R.F. Cohen: “WebOFDAV — navigating and visualizing the Web on–line with animated con-
text swapping”. In: Computer Networks and ISDN Systems (Proceedings of the 7th World Wide Web Conference), 30(1-7),
1998.

13. B. Johnson and B. Schneiderman: “Tree–maps: a space–filling approach to the visualisation of hierarchical information
structures”. In: Proceedings of IEEE Visualisation ’91, IEEE CS Press, 1991.

14. J. Lamping, R. Rao, and P. Pirolli: “A focus+context technique based on hyperbolic geometry for viewing large hierar-
chies”. In: Proceedings of the ACM CHI'95 Conference, ACM Press, 1995.



11

15. K. Misue, P. Eades, W. Lai, and K. Sugiyama: “Layout adjustment and the mental map”, Journal of Visual Languages and
Computing, 6, 1995.

16. G. Melançon, I. Herman: “Circular drawing of rooted trees”. Reports of the Centre for Mathematics and Computer Sci-
ences (CWI), INS–R9817, http://www.cwi.nl/InfoVisu/Papers/circular.pdf, 1998.

17. T. Munzner: “H3: Laying out large directed graphs in 3D hyperbolic space”. In: Proceedings of the 1997 IEEE Symposium
on Information Visualization, IEEE CS Press, 1997.

18. H. Purchase: “Which Aesthetic has the Greatest Effect on Human Understanding?”, In: 5th International Symposium,
Graph Drawing ‘97, Rome, Italy, Lectures Notes in Computer Science 1353, Springer Verlag, 1997.

19. G.G. Robertson, J.D. Mackinlay, and S.K. Card: “Cone trees: animated 3D visualizations of hierarchical information”. In:
Proceedings of the ACM SIGSHI Conference on Human Factors in Computing Systems, ACM Press, 1992.

20. E.M. Reingold, J.S. Tilford: “Tidier drawing of trees”. In: IEEE Transactions on Software Engineering, SE–7(2), 1981.
21. M. Sarkar, M.H. Brown: “Graphical fisheye views”. In: Communication of the ACM, 37(12), 1994.

22. J.Q. Walker II: “A node-positioning algorithm for general trees”. In: Software — Practice and Experience, 20(7), 1990.

23. G.J. Wills: “Niche Works — interactive visualization of very large graphs”. In: 5th International Symposium, Graph
Drawing ‘97, Rome, Italy, Lectures Notes in Computer Science 1353, Springer Verlag, 1997.


