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Abstract. Robertson and Seymour conjectured that the treewidth of a pla-
nar graph and the treewidth of its geometric dual differ by at most one.
Lapoire solved the conjecture in the affirmative, using algebraic techniques.
We give here a much shorter proof of this result.

1 Introduction

The notions of treewidth and tree decomposition of a graph have been introduced by
Robertson and Seymour in [14] for their study of minors of graphs. These notions
have been intensively investigated for algorithmical purposes since many NP-hard
problems become polynomial and even linear when restricted to classes of graphs
with bounded treewidth.

Robertson and Seymour conjectured in [13] that the treewidth of a planar graph
and the treewidth of its geometric dual differ by at most one. Lapoire [11] solved
this conjecture in the affirmative, in fact he proved a more general result. In order
to prove his result, Lapoire worked on hypermaps and introduced the notion of
splitting of hypermaps, his approach is essentially an algebraic one.

Computing the treewidth of an arbitrary graph is NP-hard. Nevertheless, the
treewidth can be computed in polynomial time for several well-known classes of
graphs, for example chordal bipartite graphs [9], circle and circular-arc graphs [8]
[16], permutation graphs [2] and weakly triangulated graphs [3]. Actually all these
classes of graphs have a polynomial number of minimal separators, we proved in
[4] that we can compute, in polynomial time, the treewidth of a graph in any class
having a polynomial number of minimal separators.

For classes of graphs having an exponential number of minimal separators, we
know very few, for instance the problem remains NP-hard on AT-free graphs [1] and
it is polynomial for rectangular grids. Maybe the most challenging open problem is
the computation of the treewidth for planar graphs. In [15], Seymour and Thomas
gave a polynomial time algorithm that approximate the treewidth of planar graph
within a factor of 3
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.

In this paper, we give a new approach to tackle the problem of the treewidth
computation for planar graphs. First, we recall how to obtain minimal chordal
embeddings of graphs by completing some families of minimal separators. Secondly,
we show that we can interpret minimal separators of planar graphs as Jordan curves
of the plane. Then, we study the structure of Jordan curves that give a minimal
triangulation of the graph. Next, given a family of curves of the plane, we show how
to build a minimal triangulation of the geometric dual of the graph. Finally, given
an optimal triangulation w.r.t. treewidth of the initial graph, we give a triangulation
of the dual graph whose maximal cliquesize is no more than the maximal cliquesize
of the original graph plus one. So, we get a new proof of the conjecture of Robertson
and Seymour which is much simpler than the proof of Lapoire.



2 Preliminaries

Throughout this paper we consider simple, finite, undirected graphs.
A graph G = (V,E) is planar if it can be drawn in the plane such that no two

edges meet in a point other than a common end. The plane will be denoted by Σ. A
plane graph G = (V,E) is a drawing of a planar graph. That is, each vertex v ∈ V
is a point of Σ, each edge e ∈ E is a curve between two vertices, distinct edges have
distinct sets of endpoints and the interior of an edge contains no point of another
edge. A face of the plane graph G is a region of Σ \G. F (G) denotes the set of faces
of G. Sometimes we will also use plane multigraphs, i.e. we allow loops and multiple
edges.

Let G = (V,E) a plane graph. The dual G∗ = (F,E∗) of G is a plane multigraph
obtained in the following way: for each face of G, we place a point f into the face,
and these points form the vertex set of G∗. For each edge e of G, we link the two
vertices of G∗ corresponding to faces incident to e in G, by an edge e∗ crossing e; if
e is incident with only one face, then e∗ is a loop.

A graph H is chordal (or triangulated) if every cycle of length at least four has
a chord. A triangulation of a graph G = (V,E) is a chordal graph H = (V,E′)
such that E ⊆ E′. H is a minimal triangulation if for any intermediate set E′′ with
E ⊆ E′′ ⊂ E′, the graph (V,E′′) is not triangulated. We point out that in this
paper, a triangulation of a planar graph G will always mean a chordal embedding
of G. Thus, a triangulation of G is clearly not equivalent to a planar triangulation
(that is, a planar supergraph such that each face of the supergraph is a triangle) of
G.

Definition 1. Let G = (V,E) be a graph. The treewidth of G, denoted by tw(G),
is the minimum, over all triangulations H of G, of ω(H) − 1, where ω(H) is the
the maximum cliquesize of H. The treewidth of a multigraph is the treewidth of the
corresponding simple graph.

The aim of this paper is to prove the following assertion, stated by Robertson
and Seymour in [13]:

Problem 1. For any plane graph G = (V,E),

tw(G∗) ≤ tw(G) ≤ tw(G∗) + 1.

We say that a graph G′ is a minor of a graph G if we can obtain G′ from G by
repeatedly using the following operations: vertex deletion, edge deletion and edge
contraction. Kuratowski’s theorem states that a graph G is planar if and only if the
graphs K3,3 and K5 are not minors of G. It is well-known that if G′ is a minor of
G, then tw(G′) ≤ tw(G). We reffer to [5] for more details on these results.

When we compute the treewidth of a graph G, we are searching for a triangula-
tion of G with smallest cliquesize, so we can restrict our work to minimal triangu-
lations. We need a characterization of the minimal triangulations of a graph, using
the notion of minimal separator.

A subset S ⊆ V is an a, b-separator for two nonadjacent vertices a, b ∈ V if the
removal of S from the graph separates a and b in different connected components.
S is a minimal a, b-separator if no proper subset of S separates a and b. We say
that S is a minimal separator of G if there are two vertices a and b such that S is
a minimal a, b-separator. Notice that a minimal separator can be strictly included
into another. We denote by ∆G the set of all minimal separators of G.

Let G be a graph and S be a minimal separator of G. We denote by CG(S) the
set of connected components of G\S. A component C ∈ CG(S) is full if every vertex
of S is adjacent to some vertex of C. For the following lemma, we refer to [7].
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Lemma 1. A set S of vertices of G is a minimal a, b-separator if and only if a and
b are in different full components of S.

Definition 2. Two separators S and T cross, denoted by S♯T , if there are some
distinct components C and D of G\T such that S intersects both of them. If S and
T do not cross, they are called parallel, denoted by S‖T .

It is easy to prove that these relations are symmetric.
Let S ∈ ∆G be a minimal separator. We denote by GS the graph obtained

from G by completing S, i.e. by adding an edge between every pair of non-adjacent
vertices of S. If Γ ⊆ ∆G is a set of separators of G, GΓ is the graph obtained by
completing all the separators of Γ . The results of [10], concluded in [12], establish
a strong relation between the minimal triangulations of a graph and its minimal
separators.

Theorem 1. Let Γ ∈ ∆G be a maximal set of pairwise parallel separators of G.
Then H = GΓ is a minimal triangulation of G and ∆H = Γ .

Let H be a minimal triangulation of a graph G. Then ∆H is a maximal set of
pairwise parallel separators of G and H = G∆H . Moreover, for each S ∈ ∆H , the
connected components of H \ S are exactly the connected components of G \ S.

In other terms, every minimal triangulation of a graph G is obtained by con-
sidering a maximal set Γ of pairwise parallel separators of G and completing the
separators of Γ . The minimal separators of the triangulation are exactly the ele-
ments of Γ .

3 Minimal separators as curves

We show in this section that, in plane graphs, we can associate to each minimal
separator S a Jordan curve such that, if S separates two vertices of the graph, then
the curve separates the corresponding points in the plane.

Definition 3. Let G = (V,E) be a planar graph. We fix a plane embedding of G.
Let F be the set of faces of this embedding. The intermediate graph GI = (V ∪F,EI)
has vertex set V ∪F . We place an edge in GI between an original vertex v ∈ V and
a face-vertex f ∈ F whenever the corresponding vertex and face are incident in G.

Proposition 1. Let G be a 2-connected plane graph. Then the intermediate graph
GI is also 2-connected.

Proof. Let us prove that, for any couple of original vertices x and y of GI and for
any face or original vertex a, there is an x, y-path in GI avoiding a. Let µ = [x =
v1, v2, . . . , vp = y] an x, y-path of G. If a ∈ V (G), since {a} is not an x, y separator
of G, we can choose µ such that a 6∈ µ. For each edge ei = vi, vi+1, 1 ≤ i < p,
let fi be a face incident to ei in G. If a is a face-vertex, we use the fact that in a
2-connected plane graph each edge is incident to at least two faces and we choose
fi 6= a. Then [v1, f1, v2, f2, . . . , vp] is an x, y-path of GI , avoiding a. It follows that,
for any x, y ∈ V (G) and for any a ∈ V (G) ∪ F (G), {a} is not an x, y-separator of
GI . Each face-vertex is adjacent in GI to at least two original vertices. It follows
easily that for any a ∈ V ∪ F , {a} is not a separator of GI . ⊓⊔

The following propositions show that a minimal separator of G can be viewed
as a cycle in the intermediate graph GI . This result of Eppstein appears in [6], in a
slightly different form.
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Proposition 2. Consider a cycle ν of GI . Its drawing defines a Jordan curve ν̃ in
the plane. Removing ν̃ separates the plane into two regions. If both regions contain
at least one original vertex, then the original vertices of ν form a separator of G.

Proof. Let x and y be two original vertices, separated by the curve ν̃ in the plane.
Clearly, no edge of G crosses an edge of GI , and therefore no edge of G crosses the
curve ν̃. Every path µ connecting x and y in G intersects ν̃, so µ has a vertex in ν.
It follows that ν ∩ V is a x, y-separator of G. ⊓⊔

Proposition 3. Let S be a minimal separator of a 2-connected plane graph G and
C be a full component associated to S. Then S corresponds to an elementary cycle
νS(C) of GI , of the same original vertices and of equal number of face-vertices in
GI , such that GI \ νS(C) has at least two connected components. Moreover, the
original vertices of one of these components are exactly the vertices of C.

Proof. Let C be a full component associated to S, let GC be formed by contracting
C into a supervertex, and let S′ be the set of faces and vertices adjacent in GC to
the contracted supervertex. Then S′ is neighborhood of the supervertex in GCI , so
it has the structure of a cycle in GCI and therefore in GI . This cycle will be denoted
νS(C). Since C is a full component associated to S in G, we have that S = NG(C),
so the original vertices of S′ are exactly vertices of S. The cycle separates C from
V \ {S ∪ C} in GI . ⊓⊔

The cycle νS(C) defined in the previous proposition will be called the cycle
associated to S and C, close to C.

Remark 1. Any cycle ν of GI forms a Jordan curve in the plane. We denote ν̃ this
curve. Removing ν̃ separates the plane into two open regions. Consider the cycle
νS(C) of GI associated to a minimal separator S and a full component C of G \ S,
close to C. Then one of the regions defined by ν̃S(C) contains all the vertices of C
and the other contains all the vertices of V \ (S ∪ C).

4 Some technical lemmas

In the next section we show how to associate to each minimal separator S of the
3-connected plane graph G a unique cycle of GI having good separation properties.
We group here some technical lemmas that will be used in the next sections.

Lemma 2. Let G be a 3-connected planar graph and S be a minimal separator of
G. Then G \ S has exactly two connected components.

Proof. By Lemma 1, there are two distinct full components C1 and C2 associated to
S. Suppose there is another component C3 ofG\S and let S3 = N(C3). Clearly, S3 is
a separator of G, so |S3| ≥ 3. Let x1, x2, x3 be three distinct vertices of S3. Consider
the plane graph G′ obtained from G by contracting each component C1, C2 and C3

into a supervertex. The three supervertices are adjacent in G′ to x1, x2, x3, so G′

contains a subgraph isomorphic to K3,3 – contradicting Kuratowski’s theorem. ⊓⊔

Proposition 4. Let S be a minimal separator of a 3-connected planar graph G.
Then S is also an inclusion minimal separator of G.

Proof. Suppose there is a separator T of G such that T ⊂ S. There is a connected
component C of G \ T such that C ∩ S = ∅. Indeed, if S intersects each component
of G \ T , then S and T cross, and since the crossing relation is symmetric T must
intersect two connected components of G \S, contradicting T ⊂ S. Since S ∩C = ∅
and T ⊂ S, C is also a connected component of G \ S. By Lemma 1, there are
two full components D1, D2 associated to S. Notice that C is not a full component
associated to S, because N(C) = T ⊂ S. It follows that D1, D2 and C are three
distinct components associated to S in G, contradicting Lemma 2. ⊓⊔
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Lemma 3. Let G be a plane graph and ν be a cycle of GI such that ν̃ separates two
original vertices a and b in the plane. Consider two vertices x and y of ν. Suppose
there is a path µ from x to y in GI , such that a, b 6∈ µ and µ does not intersect the
cycle ν except in x and y.

The vertices x and y split ν into two x, y-paths of GI , denoted µ1 and µ2. Con-
sider the cycles ν1 (respectively ν2) of Gi formed by the paths µ and µ1 (respectively
µ and µ2). Then ν̃1 or ν̃2 separate two original vertices in the plane.

Proof. Let R1, R2 be the two regions obtained by removing ν̃ from the plane. By
hypothesis, both R1 and R2 contain original vertices, say a ∈ R1 and b ∈ R2.
Suppose w.l.o.g. that the path µ is contained in R1 ∪ {x, y}. Then the drawing of µ
splits R1 into two regions: R′1, bordered by the curve ν̃1, and R′′1 , bordered by ν̃2.
If a ∈ R′1 then ν̃1 separates a and b in the plane, otherwise a ∈ R′′1 so ν̃2 separates
a and b in the plane. ⊓⊔

Lemma 4. Let S be a minimal separator of a 3-connected plane graph G. Consider
a cyle νS of GI such that the original vertices of νS are the elements of S. Suppose
that ν̃S separates in the plane two original vertices of G.

If two original vertices of S are at distance two in GI (i.e. they are incident to
a same face of G), these vertices are also at distance two on the cycle νS.

Proof. Let νS = [v1, f1, . . . , vp, fp], where vi (respectively fi) are the original (re-
spectively face) vertices of νS . The conclusion is obvious if p ≤ 3. Suppose there
are two vertices x, y ∈ S at distance two in GI , but not in νS . W.l.o.g., we suppose
x = v1 and y = vi, 3 ≤ i ≤ p − 2. Let f be a face vertex adjacent to v1 and vi in
GI .

If f 6∈ νS(C), we apply Lemma 3 with cycle νS and path [v1, f, vi], so one
of the cycles ν1 = [v1, f1, v2, f2, . . . , vi, f ] or ν2 = [v1, f, vi, fi, vi+1, fi+1, . . . , vp, fp]
separates two original vertices in the plane (see figure 1a). By proposition 2, the
original vertices of ν1 or ν2 form a separator T in G. But T is strictly contained in
S, contradicting proposition 4.

v1

vi

f

(a)

v2

f1

vi+1

fi

ν̃S

v1

fi

f

(b)

v2

f1

fi+1

vi+1
ν̃S

Fig. 1. Proof of Lemma 4

The case f ∈ νS is very similar. There is some j, 1 ≤ j ≤ p such that f = fj .
Since v1 and vi are not at distance two on νS , we have that j 6∈ {1, p} or j 6∈
{i− 1, i+ 1}. Suppose w.l.o.g. that f is not consecutive to v1 on the cycle νS . We
apply Lemma 3 with cycle νS and path [v1, f ]. We obtain that one of the cycles
ν1 = [v1, f1, . . . , vj , fj ] or ν2 = [v1, fj , vj+1, fj+1, . . . , vp, fp] (see figure 1b) separates
two original vertices of G, so the original vertices of ν1 or ν2 form a separator T of
G. In both cases, T ⊂ S, contradicting proposition 4. ⊓⊔

Lemma 5. Let G = (V,E) be a plane graph and x, y ∈ V such that at least three
faces are incident to both x and y. Then {x, y} is a separator of G.
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Proof. Let f1, f2, f3 be three faces incident to both x and y. Consider the three
paths µi = [x, fi, y], 1 ≤ i ≤ 3 of the intermediate graph GI . The drawings of these
paths split the plane into three regions: R1 bordered by the cycle ν1 = [x, f2, y, f3],
R2 bordered by ν2 = [x, f1, y, f3] and R3 bordered by ν3 = [x, f1, y, f2]. We show
that at least two of the three regions contain one or more original vertices.

Suppose that R2 and R3 do not contain original vertices. In the graph G, each
face is incident to at least three vertices, so f1 has a neighbor z, different from x
and y. The edge f1z of Gi does not cross any of the paths µ1, µ2, µ3, so z is in one
of the regions R2 or R3, incident to f1. This contradicts our assumption that R2

and R3 do not contain original vertices.

We proved that at least two of the three regions R1, R2, R3 – say R1 and R2

– contain original vertices. Then ν̃1, the Jordan curve bordering R1, separates two
original vertices of G. By proposition 2, the original vertices of µ1, namely {x, y},
form a separator of G. ⊓⊔

Lemma 6. Let G = (V,E) be a 3-connected plane graph and x, y ∈ V .

1. If xy ∈ E, there are exactly two faces incident to both x and y.

2. If xy 6∈ E, there is at most one face of G incident to both x and y.

Proof. The graph G is 3-connected, so by Lemma 5 there are at most two faces
incident to both x and y.

The first statement is obvious since the edge xy is incident to two faces of G.
For the second statement, suppose there are two faces f1 and f2 incident to x and y.
Consider the plane graph G′ obtained from G by adding the edge xy, drawn in the
face f1. Then the face f1 of G is splitted into two faces f ′1 and f ′′1 , both incident to
x and y in G′. So, in G′, the three faces f ′1, f

′′
1 and f2 are incident to both x and y.

But G′ is clearly a 3-connected planar graph, and by Lemma 5 we have that {x, y}
is a separator of G′ – a contradiction. ⊓⊔

Proposition 5. Let G be a 3-connected plane graph. Consider two cycles ν and ν′

of GI , such that ν and ν′ only differ by their face vertices. Then ν̃ separates two
original vertices a and b in the plane if and only if ν̃′ also separates a and b in the
plane.

Proof. It is sufficient to prove our statement for two cycles that only differ by one
face vertex, say ν = [v1, f1, v2, f2, . . . , vp, fp] and ν′ = [v1, f

′
1, v2, f2, . . . , vp, fp], such

that f1 6= f ′1. Since v1 and v2 are incident to both f1 and f ′1 in G, it comes by
Lemma 6 that v1 and v2 are adjacent in G. Thus, f1 and f ′1 are the faces incident
in G to the edge e = v1v2.

Consider the cycle ν′′ = [v1, f1, v2, f
′
1] of GI and let R be the region bordered

by ν̃′′ and containing the interior of the edge e. Clearly, the region R contains no
original or face vertex of GI .

Let R1, R2 be the two regions obtained by removing ν̃ from the plane. Suppose
that the edge e, and thus the face f ′1, is inR2. Then the regions obtained by removing
ν̃′ from the plane are exactly R′1 = R1 ∪R∪ [v1, f1, v2] and R′2 = R2 \R \ [v1, f

′
1, v2].

Since R contains no original vertices, the original vertices of R′1 (respectively R′2)
are the original vertices of R1 (respectively R2). ⊓⊔

Lemma 7 ([5], proposition 4.2.10). Let G be a 3-connected plane graph. For
any face f , the set of vertices incident to f do not form a separator of G.

Lemma 8. Let G be a 3-connected plane graph and S be a minimal separator of G.
Then each face of G is incident to at most two vertices of S.
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Proof. Suppose there are three vertices x, y, z of S incident to a same face f . Let
C be a full component associated to S in G and νS(C) be the cycle associated
to S in GI , close to C. Consider first the case |S| ≥ 4, so there is some vertex
t ∈ S \ {x, y, z}. Suppose w.l.o.g. that νS(C) encounters x, y, z and t in this order.
Then x and z are not at distance 2 on the cycle νS(C), contradicting Lemma 4.

If |S| = 3, let T be the set of vertices incident to f , so S ⊆ T . Thus, T is a
separator of G, contradicting Lemma 7. ⊓⊔

5 Minimal separators in 3-connected planar graphs

Consider a minimal separator S of G and two full components C and D associated
to S. We can associate to S two cycles of GI , namely νS(C) and νS(D), closed to
C, respectively D. In general, the two cycles are distinct, although they represent
for us the same minimal separator S. In the case of 3-connected planar graphs, we
slightly modify the construction of proposition 3 in order to obtain a unique cycle
representing S in GI .

Let G be a 3-connected plane graph. Consider two original vertices x and y
situated at distance two in GI . We know that x an y are incident to a same face
in G, but this face is not necessarily unique. For each pair of vertices x, y ∈ V at
distance two in GI , we fix a unique face f(x, y) of G incident to both x and y. Let
ν = [vi, f1, v2, f2, . . . , vp, fp] be a cycle of GI , where vi are the original vertices and
fi are the face vertices of ν. We say that a cycle ν is well-formed if, for each pair
of consecutive original vertices vi, vi+1 of ν we have fi = f(vi, vi+1) (1 ≤ i ≤ p,
vp+1 = v1).

Given a minimal separator S of G we construct a unique well-formed cycle νS
associated to S as follows.

Let C,D be the full components associateds to S in G and let νS(C) = [v1, f1, v2,
f2, . . . , vp, fp] be the cycle associated to S in GI , close to C. We denote ν′S(C) =
[v1, f

′
1, v2, f

′
2, . . . , vp, f

′
p] where f ′i = f(vi, vi+1) ∀i, 1 ≤ i ≤ p. Notice that ∀i, j, 1 ≤

i < j ≤ p we have f ′i 6= f
′
j by Lemma 8, so ν′S(C) is an elementary cycle of GI .

The cycle νS(D), associated to S and close to D, has the same original vertices
as νS(C), encountered in the same order: νS(D) = [v1, f

′′
1 , v2, f

′′
2 , . . . , vp, f

′′
p ]. Thus,

ν′S(D) = ν′S(C) and from now on this cycle will be denoted νS . By proposition 5,
ν̃S separates C and D in the plane:

Proposition 6. Let G be a 3-connected planar graph and S be a minimal separator
of G. Let C, D be the two connected components of G\S. Then ν̃S separates C and
D in the plane.

Definition 4. Two Jordan curves ν̃1 and ν̃2 cross if ν̃1 intersects the two regions
of Σ \ ν̃2. Otherwise, they are parallel. Two cycles ν1 and ν2 of GI cross if and only
if ν̃1 and ν̃2 cross.

Notice that the parallel and crossing relation between curves and cycles are
symmetric.

Proposition 7. Two minimal separators S and T of a 3-connected plane graph G
are parallel if and only if the corresponding cycles νS and νT of GI are parallel.

Proof. We prove that if S and T cross, then νS and νT cross. Let C and D be the
two connected components of G\S. By definition of crossing separators, T intersects
two connected components of G\S, so T intersects C and D. The curve ν̃S separates
C and D in the plane, by proposition 6. Thus, ν̃T intersects two different regions of
Σ \ ν̃S , so νT crosses νS .
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We prove that if νS crosses νT , then S crosses T . Let R and R′ be the regions
of Σ \ ν̃S . We show that at least one original vertex of νT is in R. Since νS crosses
νT , ν̃T intersects R. Thus, an original vertex or a face-vertex of νT is in R. Suppose
that νT has no original vertex in R and let f be a face-vertex of νT ∩ R. On the
cycle νT , the face-vertex f is between two original vertices x and x′. Notice that x
is also a vertex of νS . Indeed, x 6∈ R, and x cannot be in R′, because the edge xf
of GI cannot cross the drawing of the cycle νS . It follows that x ∈ ν̃S . So x and
x′ are both vertices of νS . Since x and x′ are adjacent to a same face-vertex of GI ,
they are on a same face of G. By Lemma 4, x and x′ are at distance two on the
cycle νS , and let f ′ be the face-vertex of νS between x and x′. Since νS and νT are
well-formed cycles, we have f ′ = f(x, y) = f , so f ∈ νS . This contradicts the fact
that f is in one of the regions of Σ \ ν̃S .

We showed that νS has original vertices in region R, and for similar reasons it has
original vertices in R′. So ν̃S separates two original vertices of νT in the plane, and
by proposition 6 S separates these vertices in G. Thus, S crosses T . ⊓⊔

6 Block regions

Let ν̃ be a Jordan curve in the plane. Let R be one of the regions of Σ \ ν̃. We say
that (ν̃, R) = ν̃ ∪R is a one-block region of the plane, bordered by ν̃.

Definition 5. Let C̃ be a set of curves such that for each ν̃ ∈ C̃, there is a one-
block region (ν̃, R(ν̃)) containg all the curves of C̃. We define the region between
the elements of C̃ as

RegBetween(C̃) =
⋂

ν̃∈C̃

(ν̃, R(ν̃))

We say that the region between the curves of C̃ is bordered by C̃.

Definition 6. A subset BR ⊆ Σ of the plane is a block region if one of the follow-
ing holds:

– BR = Σ.

– There is a curve ν̃ such that BR is a one-block region (ν̃, R).

– There is a set of curves C̃ such that BR = RegBetween(C̃).

Remark 2. According to our definition, block regions are always closed sets.

µ̃2
µ̃1 µ̃3

(a) (b)

Fig. 2. Block regions
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Example 1. In figure 2a, we have a block region (in grey) bordered by four Jordan
curves. Figure 2b presents three interior-disjoint paths µ̃1, µ̃2 and µ̃3 having the
same endpoints. Consider the three curves ν̃1 = µ̃2∪µ̃3, ν̃2 = µ̃1∪µ̃3 and ν̃3 = µ̃1∪µ̃2.
Notice that the block-region between ν̃1, ν̃2 and ν̃3 is exactly the union of the three
paths.

Consider a set C̃ of pairwise parallel Jordan curves of the plane. These curves
split the plane into several block regions. Consider the set of all the block regions
bordered by some elements of C̃. We are interested by the inclusion-minimal elements
of this set, that we call minimal block regions formed by C̃. The following proposition
comes directly from the definition of the minimal block-regions:

Proposition 8. Let C̃ be a set of pairwise parallel curves in the plane Σ. A set of
points A of the plane are contained in a same minimal block-region formed by C̃ if
and only if for any ν̃ ∈ C̃, there is a one-block region (ν̃, R(ν̃)) containing A.

7 Minimal triangulations of G

Let G be a 3-connected planar graph and let H be a minimal triangulation of
G. According to Theorem 1, there is a maximal set of pairwise parallel separators
Γ ⊆ ∆G such that H = GΓ . Let C(Γ ) = {νS |S ∈ Γ} be the cycles associated to
the minimal separators of Γ and let C̃(Γ ) = {ν̃S |S ∈ Γ} be the curves associated
to these cycles. According to proposition 7, the cycles of C(Γ ) are pairwise parallel.
Thus, the curves of C̃(Γ ) split the plane into block regions. We show that any
maximal clique Ω of H corresponds to the original vertices contained in a minimal
block region formed by C̃(Γ ).

If BR is a block region, we denote by BRG the vertices of G contained in BR.

Theorem 2. Let H = GΓ be a minimal triangulation of a 3-connected planar graph
G. Ω ⊆ V is a maximal clique of H if and only if there is a minimal block region
BR formed by C̃(Γ ) such that Ω = BRG.

Proof. Let BR be a minimal block region formed by C̃(Γ ), we show that Ω = BRG
is a clique of H . Suppose there are two vertices x, y ∈ Ω, non adjacent in H . Thus,
there is a minimal separator S of H separating x and y in H . Then S is also
a minimal separator of G, separating x and y in G (cf. Theorem 1). Therefore,
ν̃S ∈ C̃(Γ ) separates x and y in the plane, contradicting proposition 8.

Let Ω be a clique of H . For any minimal separator S of H there is a connected
component C(S) of H \S such that Ω ⊆ S ∪C(S). By Theorem 1, S ∈ Γ and C(S)
is a connected component of G\S, so we deduce that the points of Ω are contained
in a same one-block region (ν̃S , R(ν̃S)) defined by ν̃S . This holds for each S ∈ Γ ,
because the minimal separators of H are exactly the elements of Γ . We conclude by
proposition 8 that Ω is contained in some minimal block BR formed by C̃(Γ ). ⊓⊔

8 Triangulations of the dual graph G∗

Let G be a plane graph and C be a set of pairwise parallel cycles of GI . The family
C̃ of curves associated to these cycles splits the plane into block regions. Let G∗ be
the dual of G. We show in this section how to associate to C a triangulation H(C)
of G∗ such that each clique of H(C) corresponds to the face-vertices contained in
some minimal block-region defined by C̃.

Definition 7. Consider a planar embedding of the graph G = (V,E) and let G∗ =
(F,E∗) the dual of G. Let C be a set of pairwise parallel cycles of GI . We define the
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graph H(C) = (F,EH) with vertex set F , we place an edge between two face-vertices
f and f ′ of H if and only if f and f ′ are in same a minimal block region defined
by C̃.

Theorem 3. H(C) is a triangulation of G∗. Moreover, for any clique Ω∗ of H(C)
there is some minimal block region BR defined by C̃ such that Ω∗ is formed by the
face-vertices contained in BR.

Proof. We show that H is a supergraph of G∗. Let ff ′ be an edge of G∗, clearly no
cycle of GI crosses the edge ff ′ in the plane. Thus, for any cycle ν̃ of C̃, ν̃ does not
separate the points f and f ′. By proposition 8, f and f ′ are in a same block region
formed by C̃, so ff ′ is an edge of H(C).

We prove now that H(C) is chordal. Suppose there is a chordless cycle νH of
H(C), having at least four vertices. Let f, f ′ be two non-adjacent vertices of νH . By
proposition 8, there is a curve ν̃ ∈ C̃ separating the points f and f ′ in the plane.
Consider the two interior-disjoint paths µ1 and µ2 from f to f ′ in νH . We show
that at least one face-vertex of each of these paths belongs to ν̃. Let µ1 = [f =
f1, f2, . . . , fp = f ′].

Let R and R′ be the regions of Σ \ ν̃ containing f , respectively f ′. Let fj the
last point of µ1 contained in R, so 1 ≤ j < p. We prove that fj+1 ∈ ν̃. Indeed,
if fj+1 6∈ ν̃, then fj+1 ∈ R′, so ν̃ separates in the plane the points fj and fj+1.
By proposition 8, fj and fj+1 are not in a same minimal block region formed by
C̃, contradicting the fact that fjfj+1 is an edge of H(C). We conclude that µ1 has
a face-vertex on ν̃, and in a similar way µ2 has a face-vertex on ν̃. We denote f1,
respectively f2 these face-vertices. Clearly f1, f2 are non-consecutive vertices of
the cycle νH . Since we assumed that νH is chordless, f1 and f2 are not adjacent in
H(C). Therefore, by proposition 8, there is a cycle ν̃′ ∈ C̃ separating f1 and f2 in
the plane. So ν̃′ separates two vertices of ν̃, contradicting the fact that the curves
of C̃ are pairwise parallel.

We show that any clique Ω∗ of H(C) is contained in some minimal block region
defined by C̃.

By proposition 8, for any cycle ν ∈ C, Ω∗ is contained in some one-block region
(ν̃, R(ν̃)). It follows directly that Ω∗ is contained in some minimal block defined by
C̃.

Finally, for any minimal block-region BR formed by C̃, the face-vertices of BR
induce a clique in H(C), by definition of H(C). ⊓⊔

9 Main Theorem

In this section, we investigate more deeply the structure of the block regions defined
by pairwise parallel cycles of GI which will allow us to compare the number of
vertices in G and G∗ for all block regions. Before this, we need to state two technical
lemmas. These lemmas are stated on an arbitrary 2-connected plane graph, but they
will be used on the intermediate graph GI .

Lemma 9. Let G be a 2-connected plane graph and let C be a set of pairwise parallel
cycles of G. For any block region BR formed by C̃, the vertices contained in BR
induce in G a 2-connected subgraph.

Proof. Let BR = ∩ki=1(ν̃i, R(ν̃i)) be a block-region of G, we proceed by induction
on k, the number of cycles bordering the block region.
If k = 0, then BRG = G and the result is obvious.
Suppose now k > 0. Let x and y two vertices of BRG, by induction hypothesis there
exists a cycle ν′ containing x and y inside ∩ki=2(ν̃i, R(ν̃i)). If ν′ intersects ν1 in at
most one vertex then the cycle ν′ is inside BR.
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Otherwise, let µx (resp. µy) be the path of ν′ that contains x (resp. y) and whose
the only vertices in common with ν1 are its ends x1 and x2 (resp. y1 and y2). If
µx = µy then we can complete µx in a simple cycle that belongs to (ν̃1, R(ν̃1)) by
following ν1 from x1 to x2. If µx 6= µy, on the cycle ν1, the vertices x1 and x2 and
the vertices y1 and y2 are juxtaposed (see figure 3). There are two disjoint paths µ1

and µ2 of ν1 whose ends are x1 and x2, respectively y1 and y2. The four paths µ1,
µ2, µx and µy form a simple cycle that lies inside (ν̃1, R(ν̃1)).

ν̃′

µ2

µ1

x2 y2

x1 y1

x y
ν̃

Fig. 3. Cycle inside the block-region

Moreover in both cases, since ν1 also lies inside ∩ni=2(ν̃i, R(ν̃i)) the new cycle
lies inside ∩ni=2(ν̃i, R(ν̃i)) and so inside BR.

In any case, we can exhibit a cycle inside BR passing through x and y so BRG
is 2-connected. ⊓⊔

Lemma 10. Le G = (V,E) be a 2-connected planar graph, consider a family C of
pairwise parallel cycles. Let BR be a block-region defined by a subfamily C̃′ of C̃ and
ν ∈ C′.

Either all vertices BRG are on ν or there exists a path µ ⊆ BRG which intersects
ν only in its extremities.

Proof. Suppose there exists a vertex x ∈ BRG which is not on ν. We know by
Lemma 9 that BRG is 2-connected. Take two vertices y and z on ν, applying Dirac’s
fan lemma to x and {y, z}, we get two disjoint paths except in x, µy and µz in BRG,
connecting respectively x to y and x to z. Cutting µy (resp. µz) at the first vertex
y′ (resp. z′) on ν, we obtain two paths µy′ and µz′ which intersect ν only in y′ and
z′. Then the concatenation of µy′ and µz′ is a suitable path µ. ⊓⊔

Theorem 4. Let G = (V,E) be a 3-connected planar graph. Let C be an inclusion
maximal family of pairwise parallel cycles of GI . Consider a minimal block-region
BR of GI defined by C̃ then either BRGI = ν or BRGI = ν ∪ µ, where ν is in C
and µ is a path which touches ν only in its ends.

Proof. If BRGI is not a cycle, we know by Lemma 10 that there exists a path µ
inside BRGI that intersects ν only on its extremities x and y. The vertices x and
y define two subpaths ν1 and ν2 of ν, so we have three cycles contained in BRGI ,
namely ν, µν1 and µν2. These cycles are pairwise parallel and parallel to the cycles
of C, so by maximality of C they are in C. These three cycles define a block-region
BR′ which is exactly ν̃ ∪ µ̃. Since BR′ = ν̃ ∪ µ̃ ⊆ BR and BR is a minimal block-
region we can conclude that BR′ = BR. ⊓⊔
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Theorem 5. Let G = (V,E) be a 3-connected planar graph without loops. Then

tw(G) − 1 ≤ tw(G∗) ≤ tw(G) + 1.

Proof. By duality, it is sufficient to prove the second inequality. Since G is 3-
connected without loops, G, G∗ and, by proposition 1, GI are 2-connected without
loops. Let C be a family of cycles of GI that gives a triangulation H of G with
ω(H) − 1 = tw(G). We complete C into a maximal family C′ of pairwise parallel
cycles of GI .

According to Theorem 3, the family C′ defines a triangulation H∗ of G∗. Let
BR be a minimal block-region with respect to C̃′. By Theorem 4, either BRGI = ν
or BRGI = ν ∪ µ. In the first case, since GI is bipartite we have |BRGI ∩ V | =
|BRGI ∩ V

∗|. In the later case, the difference between the number of vertices of
G and G∗ of BRGI comes from µ. Once again, since GI is bipartite the difference
can be at most one. But each minimal block-region formed by C̃′ is contained in a
minimal block-region formed by C̃, so, by Theorem 2, BRGI ∩ V is a clique of H .
Therefore the maximal cardinality of a clique in H∗ is the maximal cardinality of a
clique in H plus one and the second inequality is proved. ⊓⊔

10 Planar graphs which are not 3-connected

We have proved that, for any 3-connected planar graph G, the treewidth of its dual
is at most the treewidth of G plus one. We extend this result to arbitrary planar
graphs.

The following lemma is a well-known result, see for example [12] for a proof:

Lemma 11. Let G = (V,E) be a graph (not necessarily planar) and S be a sepa-
rator of G such that G[S] is a complete graph. Let V1, V2 ⊆ V such that S, V1 and
V2 form a partition of V and S separates each vertex of V1 from each vertex of V2.
Then tw(G) = max(tw(G[S ∪ V1]), tw(G[S ∪ V2])).

Lemma 12. Let G = (V,E) be a graph, not necessarily planar. Suppose that G has
a minimal separator S = {x, y} of size two. Let Gxy = (V,E ∪ {xy}) be the graph
obtained from G by adding the edge xy. Then tw(Gxy) = tw(G).

Proof. If xy is an edge of G, then Gxy = G. Suppose that xy is not an edge of G.
Since G is a minor of Gxy, we have tw(G) ≤ tw(Gxy), so it remains to show that
tw(G) ≥ tw(Gxy).
S is also a minimal separator of G′, so let C be a full component associated to

S in G and let V2 = V \ (C ∪ S). Let G1 = Gxy[S ∪ C] and G2 = G[S ∪ V2]. By
Lemma 12, we have tw(Gxy) = max(tw(G1), tw(G2)). It is sufficient to prove that
tw(G1) ≤ tw(G) and tw(G2) ≤ tw(G). We show that G1 and G2 are minors of G.

By Lemma 1, there is a full component D associated to S different from C,
so D ⊆ V2. There is a path µ from x to y in G[D ∪ {x, y}], and the interior of
µ avoids the vertices of G1. Therefore, G1 is a minor of G[S ∪ C ∪ µ], so G1 is
a minor of S. In a similar way, there is a path µ′ from x to y in G[C ∪ {x, y}],
so G2 is a minor of G[V2 ∪ S ∪ µ′] and thus a minor of G. We conclude that
tw(G) ≥ max(tw(G1), tw(G2)) = tw(Gxy). ⊓⊔

Lemma 13. Suppose there is a plane graph G not satisfying tw(G∗) ≤ tw(G) + 1
and there is a separator S = {x, y} of G. Then GS also contradicts tw(G∗S) ≤
tw(GS) + 1.

Proof. By Lemma 12, tw(GS) = tw(G). We also have that GS is planar and G∗ is
a minor of G∗S . Indeed, if xy is not an edge of G, let C be a full component of G \S
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and νS(C) the cycle associated to S and C, close to C. Then νS(C) = [x, f, y, f ′],
so x, y are incident to a same face f . We obtain a plane drawing of GS by adding
the edge xy in the face f . The new edge will split the face f into two faces f1
and f2, and clearly the dual of G is obtained from the dual of GS by contracting
the edge f1f2 into a single vertex f . Therefore, tw(G∗) ≤ tw(G∗S). Consequently, if
tw(G∗S) ≤ tw(GS) + 1, then tw(G∗) ≤ tw(G) + 1. ⊓⊔

Theorem 6. For any plane graph G,

tw(G∗) ≤ tw(G) + 1.

Proof. Suppose there is a graph G such that tw(G∗) > tw(G) + 1. We take G with
minimum number of vertices. It is easy to check that G must have at least four
vertices.

By Theorem 5, G is not 3-connected, so let S be a minimal separator of G with
at most two vertices. According to Lemma 13, we can consider that S is a clique
in G. Let C be a connected component of G \ S, we denote G1 = G[S ∪ C] and
G2 = G[V \C] (if G is not connected, then S = ∅ and C is a connected component
of G). By Lemma 11, tw(G) = max(tw(G1), tw(G2)).

The graphs G1 and G2 are clearly planar and they have less vertices that G, so
tw(G∗1) ≤ tw(G1) + 1 and tw(G∗2) ≤ tw(G2) + 1. It remains to prove that tw(G∗) ≤
max(tw(G∗1), tw(G∗2)).

Consider the case when G is 2-connected. By proposition 3 there is a cycle
νS(C) of GI associated to S and C, close to C. The cycle contains four vertices,
ν̃S(C) = [x, f, y, f ′]. Let R1 (respectively R2) be the region of Σ \ νS(C) containing
C (respectively V \ (S ∪ C)). Notice that the vertices of G1 (respectively G2) are
exactly the original vertices of (ν̃S(C), R1) (respectively (ν̃S(C), R2)). Let F1 and F2

be the face-vertices of GI contained in R1, respectively R2. We denote Sf = {f, f ′}.

Let Gf1 be the graph obtained from G∗[Sf ∪ F1] by adding the edge ff ′. Consider
the plane drawing of G1 obtained by restricting the drawing of G at the one-block
region (ν̃S(C), R1) and by adding the edge xy through the regionR2. It is easy to see

that Gf1 is exactly the dual of G1. In a similar way, we define the graph Gf2 obtained
from G∗[Sf ∪ F2] by adding the edge ff ′. If we consider the plane drawing of G2

obtained by restricting the drawing of G to the one-block region (ν̃S(C), R2) and by

adding the edge xy through R2, then Gf2 is the dual of G2. By the minimality of G,

we have tw(Gf1 ) ≤ tw(G1) + 1 and tw(Gf2 ) ≤ tw(G2) + 1. Observe now that in the
graph G∗Sf obtained from G∗ by adding the edge xy, Sf separates F1 from F2. By

Lemma 11, tw(G∗Sf ) = max(tw(Gf1 ), tw(G2
f )), so tw(G∗Sf ) ≤ max(tw(G1), tw(G2))+

1 = tw(G) + 1. We conclude that tw(G∗) ≤ tw(G) + 1.

The case when G is not 2-connected is similar. Suppose that G is connected
but no 2-connected, so S has a unique vertex x. There is a face f of GI such that
we can draw a Jordan curve ν̃S passing through x and f , contained in the face f
(except the point x), and the curve separates C from V \ (C ∪ {x})). If G is not
connected, we can take a connected component C and a face f such that a Jordan
curve ν̃S contained in the face f , passing through f , separates C from V \ C. As
in the case of 2-connected graphs, we consider the regions R1 (respectively R2) of
Σ \ ν̃S containing C (respectively V \ (C ∪ S)). We take Sf = {f} and we denote
F1 (respectively F2) the face-vertices of GI contained in R1 (respectively R2). Then

G
f
1 = G∗[Sf ∪ F1] is the dual of G1 and Gf2 = G∗[Sf ∪ F2] is the dual of G2.

We conclude that tw(G∗) = max(tw(Gf1 ), tw(Gf2 )) ≤ max(tw(G1), tw(G2)) + 1, so
tw(G∗) ≤ tw(G) + 1. ⊓⊔
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