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1 Introduction
List coloring is a variant of proper coloring, it was invented independently by Vizing [Viz76], and by Erdős, Rubin
and Taylor [ERT79] in the 70’.

" Definition 1 (list coloring).
Let G “ pV ,Eq be a graph, and L be a list assignment of G , ie a mapping that maps each vertex of G to a list of
integers. The graph G is called L-colorable, if there exists a proper coloring ϕ of the vertices s.t. for each vertex v ,
ϕpvq P Lpvq.

" Definition 2. The minimum integer k s.t. G is L-colorable for any list assignement L s.t. for any vertex v ,
|Lpvq| “ k is called the choosability number of G , and is denoted by chpGq (or χl pGq).

Similarly to the chromatic number χpGq, the question is usually to minimize chpGq.

Example 3.

• chpC2p`1q “ 3,

• chpKk q “ k ` 1,

• chpGq ď∆pGq` 1,

• chpGq ď k ` 1 if G is k-degenerate,

• chpGq ď 5 if G is planar (see section 3),

• chpLpGqq “χpLpGqq if G is bipartite (see section 4).

1.1 General bounds
As proper coloring is just a special case of list coloring (where all the lists are the same for all the vertices), it is
clear that:
" chpGq ěχpGq ěωpGq.

Moreover, using a greedy algorithm, we also have that:
" If G is k-degenerate, then chpGq ď k ` 1.
(recall that: a graph is k-degenerate if all its subgraphs have a vertex of degree at most k).
(˚) Alon proved in 2000 [Alo00] that the choice number can also be bounded from below as a function of the
minimum degree δpGq.

(˚)Theorem 1 (Alon). chpGq ď p1{2 ` op1qq ¨ log pδpGqq.

Moreover, Erdős, Rubin and Taylor [ERT79] proved that chpKδ,δq “ p1`op1q¨ log pδq (the complete bipartite
graph on 2 ¨δ vertices). So the bound of Alon is tight up to a factor 2. The proof of Alon uses a probabilistic
method called the containers method.

Sketch of proof. The proof uses the probabilistic method. We have a graph G with minimum degree δ, and an
integer s s.t. d ą

4¨ps2`1q2

log2peq2 ¨ 22s . The principle is to find a list assignment L with lists of size s, with color set
t1, ¨ ¨ ¨ , s2u s.t G does not have a L-coloring. We consider a set S of vertices where S is build as follows:
we pick each vertex uniformly at random with probability 1?

δ
. Then we prove that at least half of the vertices of

the graph are good ie:
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• they are not in S

• for any set of colors C containing half of the available colors (the containers), a good vertex has a neighbor
u in S with Lpuq Ă C .

So if ϕS is a partial L-coloring of G where only the vertices which are not in S are colored, each good vertex will
see strictly more than half of the colors, so it has strictly less than half of the colors available to it. This, combined
the fact that we have at least half of the vertices which are good guarantees that there is a list assignment L s.t.
G is not L-colorable.

1.2 Arbitrary large gap between chpGq and χpGq

One idea would be to try to find a upper bound of chpGq as a function of χpGq, however, such a function does not
exist. We can build a family G of bipartite graph, (so for any G P G , χpGq “ 2), s.t. for any integer k , there exists
g P G with chpGq ą k , ie, there exists a list assignment L s.t. the sizes of the lists are k , G is not L-colorable.

1.2.1 " Construction of G

Let k be an integer, we will build a bipartite graph G s.t. G is not L-colorable for lists of size k . Let us consider
the complete bipartite graph Kk,kk , and let us call X “ tx0, , xk´1u the part with k vertices and Y the other part.
We now have to assign the list to the vertices, the lists will be subsets of the set of colors t0, ¨ ¨ ¨ ,kk ´ 1u.
For each i , each vertex xi will be assigned the list Lpxi q “ ti ˆk, i ˆk `1, ¨ ¨ ¨ , i ˆk `k ´1u, and for each vertex
y of Y we assign a list Lpyq “ tc0, ¨ ¨ ¨ ,ck´1u where for any i , ci P Lpxi q, and the lists are pariwise disjoint (note
that there are exactly kk such distinct lists, so each y P Y can be assigned a different list, and each different
combination of colors appears exactly once) .

Proof. " We now prove that G is not L-colorable. Toward contradiction, assume that G has a L-coloring ϕ, and
wlog, assume that @i ‰ 0,ϕpxi q “ i ˆ k . We now prove that there is no color available for x0. For each i , let
us denote by yi the vertex of Y with the list ti ,k,2k, ¨ ¨ ¨ ,pk ´ 1q ˆ pk ´ 1qu. As each xi is colored pi ˆ kq, and
is connected to all the vertices of Y , each yi has only one color available, each vertex yi has to be colored with
color i . So the vertex x0 is connected to vertices with every color in the range t0, ¨ ¨ ¨ ,k ´ 1u, so it does not have
an available color; a contradiction.

Figure 1: The construction for k “ 2.

2 An analog of Brooks theorem
We can also bound the choice number with a function of the degree of the vertices, in this section we will see an
analog of the Brooks theorem for list coloring.
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Definition 4 (degree-list assignment). A list assignment L is called a degree-list assignment, if for every vertex v ,
we have |Lpvq| “ dpvq where dpvq is the degree of v .

Gallai proved that any graph with a degree-list assignment L is L-colorable unless it is aGallai forest. Actually
the two exceptions of the Brooks theorem appear in the definition of a Gallai forest.

" Definition 5 (k-connectivity). A graph G is k-connected, if one needs to remove at least k vertices of G to
disconnect it.

" Definition 6 (block decomposition). A block is a maximal 2-connected component of a graph, ie a maximal
component with no cut vertex. Let G be a graph, if we merge each block of G into one vertex, we obtain a tree T
where each vertex of T represents a block of G . This tree T is called the block decomposition of the G .

" Definition 7 (Gallai tree). A graph G is called a Gallai tree if each block is an odd cycle or a clique. A Gallai
forest is a graph where each connected component is a Gallai tree.

We are now ready to state the theorem.

" Theorem 1 (Gallai). Let G be a connected graph and L a degree-list assignment, then G is L-colorable unless G
is a Gallai tree.

In order to prove the theorem, we first need to prove this weaker Lemma.

Lemma 8 (Erdős & al). Let G be a connected graph, and let L be a list assignment s.t.:

• @u, |Lpuq| ě dG puq and

• Dv s.t. |Lpvq| ą dG pvq.

then G is L-colorable.

Proof. LetG be a minimum counterexample, and let v be the vertex with Lpvq ą dG pvq. Let us consider the graph
G 1 “ Gztvu. In each component Gi of G 1 we have a vertex u that was a neighbor of v in G , so in Gi , we have that
|Lpuq| ą dGi pvq, and |Lpwq| ě dGi pwq for any other vertex w . By the minimality of G , we can find a L-coloring
of each Gi . As |Lpvq| ą dG pvq we still have one available color for v , and so we can extend this L-coloring of the
Gi to a L-coloring of G .

We are now ready to prove the theorem.

Proof of Gallai’s theorem. Let G be a minimal counterexample along with a degree-list assignment L, we need to
distinguish wheteher G is 2-connected nor not.
Case 1 (G is 2-connected). If G is 2-connected, we will prove that G is L-colorable unless every vertex of G has
the same list; as it is a degree-list assignment it would mean that G is L-colorable unless G is a k-regular graph
which is not k-colorable: by Brooks theorem the only two exceptions are odd cycles and cliques.

Toward contradiction, assume that two vertices x and y have two different lists. If two such vertices exist,
then two adjacent vertices x and y have different lists. Let α be a color of Lpyq which does not appear in Lpxq

(such a color always exists up to inverting the role of x and y). We consider a new assignment L1 where we
remove the color α from every neighbor of y (this does not change the list of x by definition of α). We now
consider the graph G 1 “ Gztyu, note that as G is 2-connected, G 1 is a connected graph. For each vertex u of G 1

which is not x we have |L1puq| ě dG1 , and for x, we have that |Lpuq| ą dG1 puq, so by the previous Lemma, we
can find a L1-coloring of G 1. It suffices to give the color α to y to get a L-coloring of G . So each vertex in G has
the same list.
Case 2 (G has a cut vertex). We consider the block decomposition T of G . As T is a tree, it has at least two leaves
B1, B2 which are blocks of G . Let x1 be a vertex of B1 which is not a cut vertex of G (unless |B1| “ 1, such a
vertex always exists as B1 is 2-connected), and let α be a color of Lpx1q. We consider a new list-assignment L1

where we remove the color α from the list of the neighbors of x1, and we consider the graph G 1 “ Gztx1u. The
graph G 1 is connected, and for every vertex v , |L1pvq| “ dpvq, so if G 1 is not a Gallai tree, by the minimality of
G , we can find a list coloring of G 1 which is easily extendable to G by giving the color α to x1. If G 1 is a Gallai
tree, it means that B1 is the only block of G which is not a complete graph or an odd cycle, and that B1ztx1u is a
complete graph or an odd cycle; it suffices to take a vertex x2 from B2, and we have that G2 “ Gztx2u which is
not a Gallai tree.
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3 Planar graphs
A graph is planar if it can be drawn on the plane without edge crossing. One of the most famous result in graph
theory, and especially in graph coloring is the 4-color theorem. This theorem guarantees that, to properly color
the vertices of a planar graph, 4 colors always suffice.

The question of the choosability of planar graphs remained an open questions for decades. It was conjectured
that planar graphs are 5-choosable, and it took 20 years to Thomassen [Tho94] to find an easy and elegant proof to
this theorem, independent from the previous proof of the 5-color theorem (a planar graph is always 5-colorable).

" Theorem 2 (Thomassen). Let G be a planar graph, chpGq ď 5.

The proof is done by induction on the number of vertices, however, to prove the theorem, we actually prove
this stronger Lemma.

Lemma 9. Let G be a near triangulation and L a list assignment s.t.:

• For two special adjacent vertices u and v of the outerface, we have that |Lpuq| “ |Lpvq| and LpuqXLpvq “ H,

• for any other vertex w of the outerface, we have that |Lpwq| “ 3,

• for all the other vertices, we have a list of size 5.

|L(u)| = 1

|L(v)| = 1

|L(w′)| = 5

|L(w)| = 3

Figure 2: The graph and the sizes of the lists as stated in the Lemma

Before proving the Lemma, we prove that the theorem is a direct consequence of the Lemma.

Proof. Let G be a planar graph and L a 5-list assignment. We add to G edges until we obtain a triangulation G 1

where uv w is the outerface ofG 1. We then pick a color for u and v respectively in Lpuq and Lpvq and remove these
colors from Lpwq, and we can finally apply the Lemma to find a L-coloring of G 1 which is clearly a L-coloring of
G .

We now prove the Lemma.

Proof of Lemma 9. We first prove that G is 2-connected and that the outerface has no chord. Let G be a minimum
counter example with respect to the number of vertices, along with a list assignment L as stated.

Claim 1. G has no cut vertex

Proof. Assume that G has a cut vertex w . Either w P tu, vu, or u and v belong to the same component G1 of
Gztwu “

Ť

Gi . For any i , the Gi are smaller than G , moreover, G1 verifies the three properties of the Lemma, so
we can find a L-coloring ofG1. We can then find a L-coloring of the otherGi , as only w is already colored (ie only
w has a list of size 1), it suffices to pick any available color for a neighbor of w in each Gi to find a L-coloring of
each Gi , so finally we have a coloring for G .

Claim 2. The outerface of G has no chord
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Proof. Assume that the outerface Fo “ tw1, ¨ ¨ ¨ , wk u of G has a chord wi w j . Similarly to the previous case, u
and v are in the same component G1 of Gztw w 1u “ G1 YG2. So by the minimalty of G we can find a L-coloring
of G1. We can then find a L-coloring of G2, as only w and w 1 are already colored in G2 (ie they have lists of size
1), so finally we obtian a coloring of G .

We are now ready to finish the prove of the Lemma. Let us denote by Fo “ tu, v, w2, ¨ ¨ ¨ , wk u the outerface of
G . As G is a near-triangulation and Fo has no chord, the neighbors of wk form a path tu “ u1, ¨ ¨ ¨ ,ul “ wk´1u

from u to wk´1. Let α and β be two colors of Lpwk q which are not in Lpuq, we now consider the graph G 1 “

Gztwk u, and the list assignment L1 defined as follows:

• @s R tu1, ¨ ¨ ¨ ,ul´1u, L1psq “ Lpsq,

• @s P tu1, ¨ ¨ ¨ ,ul´1u, L1psq “ Lpsqztα,βu

The graphG 1 is smaller thanG , and as the outerface F 1
o ofG 1 is exactly tu, v, w2, ¨ ¨ ¨ , wk´1 “ ul ,ul´1, ¨ ¨ ¨ ,u2u.

Each vertex of F 1
o has a list of size 3, except u and v which have lists of size 1, so by the minimality of G , we can

find a L1-coloring of G 1. We now have to find an available color for wk to extend the coloring to G . The only
neighbor of wk that can be colored α or β is wk´1 as Lpwk´1q is the only list of the neighbors of wk which still
contains the colors α and β in L1, so we are guaranteed to have an available color for wk .

vu = u1

u2

wk

wk−1 = ul

u3

u4
ul−2

ul−1

Figure 3: Illustration of the last case

So all planar graphs are 5-choosable, however, contrary to proper vertex coloring, not all planar graphs are
4-choosable. Mirzakhani discovered a planar graph which is not 4-choosable. She was in her last year of high
school when she’s discovered it, and not only this graph is relatively small and elegant, but it is 3-colorable. We
won’t discuss here how to build it, but you can have a teaser on the next Figure (see [Mar17]).
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Figure 4: A planar graph with a list assignment such that the graph is not colorable: each list Li contains all
colors from 1 to 5, except color i . The top veertex is connected to every other vertex which is not in the center
of one of the “squares".

4 Edge-choosability
The notion of list coloring can also be generalized to edge-coloring. However, due to Vizing’s theorem it is easy
to bound the list coloring index as a function of the chromatic index. Recall that we have χ1pGq ď∆pGq` 1, and
that ∆pLpGqq “ 2∆pGq ´ 2, so we have that ch1pGq ď 2χ1pGq, where χ1pGq and ch1pGq respectively denote the
chromatic index, and the list chromatic index of the graph.

Dignitz conjectured that for any graphG , ch1pGq “χ1pGq, ie the fact that the edges only have specific available
colors does not change anything to the coloring problem. This conjecture is still widely open, and has only been
proven for a few classes of graphs, among them, bipartite graphs (by Galvin, see [Gal95]).

" Theorem 3 (Galvin). Let G be a bipartite graph, then ch1pGq “χ1pGq.

The original statement of this theorem is about multigraphs, but we will only focus on the case of simple
graphs here. The proof of this theorem relies on the following Lemma by Bondy, Boppana and Siegel cited by
Alon and Tarsi [AT92] which uses an orientation of the graph to guarantee the existence of a list coloring. The
use of graph orientation to find a coloring is pretty natural, for instance when applying a greedy algorithm to
find a coloring, one just assign an orientation of the edges with respect to the order one has chosen to color the
vertices (we orient each edge from the vertex which is not colored yet to the vertex already colored): we obtain
an orientation where the outdegree of each vertex is at most ∆. Similarly, for the case of k-degenerate graphs, we
obtain an orientation where the outdegree of each vertex is at most k . The principle of this Lemma is the same:
finding an orientation such that each outdegree is at most the size of the list.

But before stating the lemma, we need one more concept: a kernel of a directed graph, an analog of indepen-
dent dominating set for directed graphs.

" Definition 10 (kernel). Let G be a directed graph. A set K of V pGq is a kernel if:

• K is an independent set

• @v P V , v P K or Du P K s.t. there is an arc from v to u.

We are now ready to state the Lemma and to prove it.

Lemma 11. Let G be a graph, and L a list assignment of G . If G has an orientation H s.t. for each vertex v ,
d`pvq ă |Lpvq|, and each induced subgraph of H has a kernel, then G is L-colorable.

Proof. Let G be a minimum counterexample with a list assignment L, clearly |V pGq| ą 0. Let us consider an
orientation H of G as stated, and a color α which appears at least once. We consider the graph H 1 induced by
the vertices of H which have the color α in their list, by hypothesis, H 1 has a kernel K 1. We start by coloring
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the vertices of K 1 with α, and removing α from the list of the other vertices of H 1, we denote by L1 this new
list assignment. Since each vertex of H 1zK 1 sends an edge to a vertex of K 1, we still have that d`

HzK 1pvq ă L1pvq.
But as H2 “ HzK 1 is smaller than H , by the minimality of G , we can find a L1-coloring of H2, this coloring does
not use the color α by definition, so we can color the vertices of K 1 with the color α to complete the coloring of
G .

Here is a sketch of the proof of Galvin’s theorem.

Sketch Galvin’s proof. Let G be a bipartite graph where V pGq “ pX ,Y q with X and Y the two parts of the bipar-
tition of G , with a list assignment L. The principle of the proof is to find a good orientation H of LpGq s.t. each
vertex has an outdegree less than the size of its list, and then to prove that each subgraph of H has a kernel. To
do this, Galvin’s uses a proper edge coloring of G , as G is bipartite, by Vizing’s theorem [Viz64], we can obtain
a ∆-coloring ϕ of G . We now consider LpGq, the linegraph of G . Each pair of edge e , e1 of G sharing a vertex
v P V pGq are adjacent in LpGq, we orient the edge ee1 of LpGq according to ϕ as follows:

• e Ñ e1 if v P X and ϕpeq ăϕpe1q,

• e1 Ñ e if v P X and ϕpeq ąϕpe1q,

• e Ñ e1 if v P Y and ϕpeq ąϕpe1q,

• e1 Ñ e if v P Y and ϕpeq ăϕpe1q.

Proving the bound on the outdegree is easy, and we leave as an exercise to the reader the “kernal part" of the
proof.

X Y

1

2

3

4

1

2

3

4

Figure 5: The edges of LpGq (in red) are oriented according to the colors of the edges of G (in blue).
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