Graph Homomorphism

In general, a homomorphism on a certain structure is an application that preserves essential properties of that structure. For graphs, this means preserving the presence of edges.

Definition. A homomorphism is an application ϕ from a graph *G* to a graph *H* such that for all vertices *u* and *v* of *G*, $uv \in E(G) \Rightarrow \phi(u)\phi(v) \in E(H)$.

We denote the existence of a homomorphism from *G* to *H* by $G \rightarrow H$. A way to see a homomorphism form *G* to *H* is to give labels (numbers fo instance) to the vertices of *H*, and give the number of a vertex $v \in H$ to every vertex *u* such that $\phi(u) = v$. Then we just have to make sure that for every edge in *G*, the corresponding vertices in *H* also share an edge

Examples:

- If *H* is a subgraph of *G*, then $H \rightarrow G$ trivially.
- Every bipartite graph has a homomorphism to K_2 (just map every vertex of one of the two independent sets to the same vertex, and the other vertices to the other vertex of K_2).
- For every $n \in \mathbb{N}$, $C_{n+2} \to C_n$: from $v_1 \dots v_{n+2}$ to $u_1 \dots u_n$, we map v_i to u_i for $i \le n$, v_{n+1} to u_{n-1} and v_{n+2} to u_n .

Figure 1: Exemples of isomorphisms. The graph on the left has a homomorphism to the graph on the right, defined as: every vertex is mapped to the vertex on the right with the same number.

Beware, the notion of homomorphism must not be mixed up with that of isomorphism.

Definition. An isomorphism from a graph *G* to a graph *H* is an application ϕ from *V*(*G*) to *V*(*H*) such that for all vertices *u* and *v* of *G*, $uv \in E(G) \Rightarrow \phi(u)\phi(v) \in E(H)$, and $u \neq v \land uv \notin E(G) \Rightarrow \phi(u) \neq \phi(v) \land \phi(u)\phi(v) \notin E(H)$.

We often do not differentiate between distinct isomorphic graphs, and only consider the graphs up to isomorphism. Two isomorphic graphs are essentially "the same" graphs.

Definition. An endomorphism is a homomorphism from a graph G to an induced subgraph H of G. If such an endomorphism exists, the induced subgraph H is called a substract of G.

Exemple: Any bipartite graph *G* with at least one edge uv has an endomorphism to G[uv]. G[uv] is thus a substract of *G*.

Definition. An endomorphism that is an isomorphism, i.e. an isomorphism from a graph to itself, is an automorphism.

Exemples: On any graph, the identity is an endomorphism, and even au automorphism. A function on a cycle $v_0v_1v_2v_3v_4$ that maps for all $i v_i$ to $v_{i+1[4]}$, is an automorphism. On a clique, any shuffling of the vertices is an automorphism.

 \bigwedge Finding a homomorphism from a graph *G* to K_k is exactly the same thing as finding a proper *k*-coloring of *G*. Finding a homomorphism form K_k to *G* is exactly the same as finding a clique of size *k* in *G*.

 $\wedge \rightarrow$ is a *preorder* relation (it is reflexive and transitive).

Proof. **reflexivity**: the identity is a homomorphism, so for all $G, G \rightarrow G$.

transitivity: if ϕ is a homomorphism from *G* to *H*, and ψ is a homomorphism from *H* to *Q*, then $\psi \circ \phi$ is a homomorphism from *G* to *Q*: if $uv \in E(G)$, then $\phi(u)\phi(v) \in E(H)$, and thus $\psi(\phi(u))\psi(\phi(v)) \in E(Q)$.

Property. \bigwedge *If* $G \rightarrow H$ *, then:*

- $\omega(G) \le \omega(H)$
- $\chi(G) \leq \chi(H)$

Proof. (*)This is a direct consequence of the fact that \rightarrow is transitive.

Since *G* has a clique of size $\omega(G)$, we know that $K_{\omega(G)} \to G$, and as $G \to H$, we also have $K_{\omega(G)} \to H$, so *H* has a clique of size $\omega(H)$, and thus $\omega(G) \le \omega(H)$.

Since *H* is $\chi(H)$ -colorable, we know that $H \to K_{\chi(H)}$, and as $G \to H$, we also have $G \to K_{\chi(H)}$, so *G* is $\chi(H)$ -colorable, and $\chi(G) \leq \chi(H)$.

Let \leftrightarrow be the associated equivalence relation, that is $G \leftrightarrow H$ if and only if $G \rightarrow H$ and $H \rightarrow G$. An *equivalence class* of this relation is a set of graphs that are all equivalent (that is a set *S* of graphs such that for any two graphs *G* and *H* in *S*, $G \leftrightarrow H$.

Definition. A core is a smallest element (in terms of number of vertices) in its equivalence class.

Lemma. \bigwedge Every equivalence class has a unique core up to isomorphism. That is, if two cores are equivalent, then they are isomorphic.

Proof. (*)Suppose *G* and *H* are cores and $G \leftrightarrow H$. Let ϕ be a homomorphism from *G* to *H* and ψ be a homomorphism from *H* to *G*. As *G* and *H* are cores, and thus minimal, the images of ϕ and ψ cannot be proper subsets of *V*(*H*) and *V*(*G*) respectively. They are bijections. Moreover, $\psi \circ \phi$ is a homomorphism from *G* to *G*. It maps each edge edge to an edge, and because the number of edges cannot augments, it also maps each non-edge to a non-edge, so it is an isomorphism. In particular ϕ cannot change the number of edges either, and is thus also an isomorphism. \Box

Definition. $\bigwedge A$ core of a graph G is a substract of G that is a core.

Lemma. *Every graph has a core.*

Proof. (*)Let *G* be a graph, and *H* a core of the equivalence class of *G*. Since $G \leftrightarrow H$, in particular $H \rightarrow G$. Let *W* be the image of *H* by a homomorphism from *H* to *G*, and G' = G[W]. By definition of a homomorphism, G' has at most as many vertices as *H*. Moreover, $G' \leftarrow G$ since G' is a subgraph of *G*, and thus by transitivity $G' \leftarrow H$. But $H \leftarrow G'$ by definition of G', so G' is a core.

Lemma. $\bigwedge A$ graph G is a core if and only if every endomorphism of G is an automorphism.

Proof. (*) \Rightarrow : Let ϕ be an endomorphism of *G*. Since *G* is a core, the image of ϕ cannot have fewer vertices than *G*, so it must be *G* itself, and thus ϕ must be an isomorphism and thus an automorphism.

 \Leftarrow : Let *H* be a core of *G*. A homomorphism from *G* to *H* is an endomorphism, and thus an automorphism. In particuler G = H, and thus *G* is a core.

(*) if $\omega(G) = \chi(G) = k$, then K_k is the core of G.

Vertex transitive graphs

Definition. A graph G is vertex transitive if for any two vertices v and w of G, there is an automorphism that maps v to w.

Example: All cycles and cliques are vertex transitive.

Definition. A *The* independence ratio of a graph G is $i(G) = \frac{\alpha(G)}{|V(G)|}$.

Lemma (No homomorphism lemma). Let G and H be two graphs such that H is vertex transitive and $G \rightarrow H$, then $i(G) \ge i(H)$.

Proof. (*)Let S(H) be the set of stable sets of H of size $\alpha(H)$. Since H is vertex transitive, we have $\alpha(H)|S(H)| = m|H|$ (where m is the number of independent sets in S(H) containing a specific vertex v). Let ϕ be a homomorphism from G to H. Then for all $I \in S(H)$, we have $|\phi^{-1}(I)| \le \alpha(G)$ (vertices mapped to an independent set must themselves be independent). Therefore:

$$\sum_{I\in S(H)} |\phi^{-1}(I)| \leq \alpha(G)|S(H)|$$

But $\sum_{I \in S(H)} |\phi^{-1}(I)| = m|G|$ (each $u \in V(G)$ contributes *m* times to $\sum_{I \in S(H)} |\phi^{-1}(I)|$ since $\phi(u)$ belongs to *m* members of *S*(*H*)).

Therefore $i(G) = \frac{\alpha(G)}{|G|} \ge \frac{m}{|S(G)|} = \frac{\alpha(H)}{H} = i(H).$

Example: \bigwedge The odd cycles: $C_{2k+1} \rightarrow C_{2k'+1} \Rightarrow \frac{k}{2k+1} \ge \frac{k'}{2k'+1} \Rightarrow k \ge k'$. Therefore by the previous lemma, an odd cycle does not have a homomorphism to a longer odd cycle.

Complexity

 \bigwedge For a fixed graph *H*, the problem of deciding if a graph *G* admits a homomorphism to *H* is called *H*-colouring. It is a generalisation of the *k*-colouring problems (which corresponds to the case when *H* is the complete graph K_k).

 \bigwedge The *H*-colouring problem is in *P* if *H* is bipartite, and *NP*-hard otherwise.

(*)For the other dirction: given a fixed graph *H*, the problem of deciding if a graph *G* is such that $H \to G$ is trivially polynomial (just check every set of size at most |H| of V(G)). If we consider a whole family \mathcal{H} and try to decide if there exists a graph $H \in \mathcal{H}$ such that $H \to G$, then the problem is easy if every graph in \mathcal{H} is equivalent (by \leftrightarrow) to a graph of bounded treewidth (with the same bound for the whole \mathcal{H}).