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Graph Homomorphism

In general, a homomorphism on a certain structure is an application that preserves essential properties of that struc-
ture. For graphs, this means preserving the presence of edges.

Definition. /\ Ahomomorphism is an application ¢ from a graph G to a graph H such that for all vertices u and v of
G, uv € E(G) = ¢p(wp(v) € E(H).

We denote the existence of a homomorphism from G to H by G — H. A way to see a homomorphism form G to H is
to give labels (numbers fo instance) to the vertices of H, and give the number of a vertex v € H to every vertex u such
that ¢(u) = v. Then we just have to make sure that for every edge in G, the corresponding vertices in H also share an
edge

Examples:
e If His a subgraph of G, then H — G trivially.

¢ Every bipartite graph has a homomorphism to K, (just map every vertex of one of the two independent sets to
the same vertex, and the other vertices to the other vertex of K3).

e Forevery neN, Cpi2 — Cy: from vy...vp542 to Uy...u,, we map v; to u; for i < n, vy to uy—1 and vy42 to uy,.
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Figure 1: Exemples of isomorphisms. The graph on the left has a homomorphism to the graph on the right, defined
as: every vertex is mapped to the vertex on the right with the same number.

Beware, the notion of homomorphism must not be mixed up with that of isomorphism.

Definition. /\ Anisomorphism from a graph G to a graph H is an application ¢ from V(G) to V(H) such that for all
vertices u and v of G, uv € E(G) = ¢(w)p(v) € E(H), and u# v A uv ¢ E(G) = ¢(u) # ¢(v) Ap(w)p(v) ¢ E(H).

We often do not differentiate between distinct ismomorphic graphs, and only consider the graphs up to isomorphism.
Two isomorphic graphs are essentially "the same" graphs.

Definition. /\ An endomorphism is a homomorphism from a graph G to an induced subgraph H of G. If such an
endomorphism exists, the induced subgraph H is called a substract of G.

Exemple: Any bipartite graph G with at least one edge uv has an endomorphism to G[uv]. G[uv] is thus a substract
of G.

Definition. /\ An endomorphism that is an isormorphism, i.e. an isomorphism from a graph to itself, is an automor-
phism.



Exemples: On any graph, the identity is an endomorphism, and even au automorphism. A function on a cycle
Vo U1 V2 V34 that maps for all i v; to v;41(4), is an automorphism. On a clique, any shuffling of the vertices is an auto-
morphism.

/A\Finding a homomorphism from a graph G to K} is exactly the same thing as finding a proper k-coloring of G.
Finding a homomorphism form K} to G is exactly the same as finding a clique of size k in G.

/\— is a preorder relation (it is reflexive and transitive).

Proof. reflexivity: the identity is a homomorphism, so forall G, G — G.
transitivity: if ¢» is a homomorphism from G to H, and v is a homomorphism from H to Q, then y o ¢ is a homomor-
phism from G to Q: if uv € E(G), then ¢p(u)¢p(v) € E(H), and thus y(p(w))w (P(v)) € E(Q). O

Property. /A\IfG — H, then:

e w(G)=w(H)

e v(G)=<y(H)

Proof. (%)This is a direct consequence of the fact that — is transitive.

Since G has a clique of size w(G), we know that K, — G, and as G — H, we also have K, — H, so H has a clique of
size w(H), and thus w(G) < w(H).

Since H is y(H)-colorable, we know that H — Ky(x), and as G — H, we also have G — Ky, so G is y(H)-colorable,
and y(G) < y(H). O

Let — be the associated equivalence relation, that is G — H if and only if G — H and H — G. An equivalence class of
this relation is a set of graphs that are all equivalent (that is a set S of graphs such that for any two graphs G and H in
S,G— H.

Definition. /\ A core is a smallest element (in terms of number of vertices) in its equivalence class.

Lemma. A\ Every equivalence class has a unique core up to isomorphism. That is, if two cores are equivalent, then they
are isomorphic.

Proof. (*)Suppose G and H are cores and G — H. Let ¢ be a homomorphism from G to H and y be a homomorphism
from H to G. As G and H are cores, and thus minimal, the images of ¢p and ¥ cannot be proper subsets of V(H) and
V(G) respectively. They are bijections. Moreover, i o ¢ is a homomorphism from G to G. It maps each edge edge to
an edge, and because the number of edges cannot augments, it also maps each non-edge to a non-edge, so it is an
isomorphism. In particular ¢ cannot change the number of edges either, and is thus also an isomorphism. O

Definition. /\ A core of a graph G is a substract of G that is a core.

Lemma. /\ Every graph has a core.

Proof. (x)Let G be a graph, and H a core of the equivalence class of G. Since G — H, in particular H — G. Let W be
the image of H by a homomorphism from H to G, and G' = G[W]. By definition of a homomorphism, G’ has at most
as many vertices as H. Moreover, G’ — G since G’ is a subgraph of G, and thus by transitivity G’ — H. But H — G by
definition of G', so G' is a core. O

Lemma. A\ A graph G is a core if and only if every endomorphism of G is an automorphism.

Proof. (x¥)=: Let ¢ be an endomorphism of G. Since G is a core, the image of ¢ cannot have fewer vertices than G, so
it must be G itself, and thus ¢ must be an isomorphism and thus an automorphism.

<: Let H be a core of G. Ahomomorphism from G to H is an endomorphism, and thus an automorphism. In particuler
G = H, and thus G is a core. O

(%)if w(G) = x(G) = k, then K is the core of G.



Vertex transitive graphs

Definition. /\ A graph G is vertex transitive if for any two vertices v and w of G, there is an automorphism that maps
viow.

Example: All cycles and cliques are vertex transitive.

a(G)

Definition. /\ The independence ratio of a graph G is i(G) = &7

Lemma (No homomorphism lemma). Let G and H be two graphs such that H is vertex transitive and G — H, then

i(G) =z i(H).

Proof. (x)Let S(H) be the set of stable sets of H of size a(H). Since H is vertex transitive, we have a(H)|S(H)| = m|H|
(where m is the number of independent sets in S(H) containing a specific vertex v). Let ¢) be a homomorphism from
G to H. Then for all I € S(H), we have Iqb‘l(l)l < a(G) (vertices mapped to an independent set must themselves be
independent). Therefore:
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But ¥ jescm |(/)_1(I)I = m|G| (each u € V(G) contributes m times to Y jes(s) ch_l(I)I since ¢(u) belongs to m members
of S(H)).

Therefore i (G) = "i(TG‘) > % = “g” =i(H). O

Example: /\The odd cycles: Cyr1 — Copry1 = ﬁ > #’H = k = k'. Therefore by the previous lemma, an odd cycle

does not have a homomorphism to a longer odd cycle.

Complexity

/\For a fixed graph H, the problem of deciding if a graph G admits a homomorphism to H is called H-colouring. It is
a generalisation of the k-colouring problems (which corresponds to the case when H is the complete graph Kj).

/A\The H-colouring problem is in P if H is bipartite, and N P-hard otherwise.

(*)For the other dirction: given a fixed graph H, the problem of deciding if a graph G is such that H — G is trivially
polynomial (just check every set of size at most | H| of V(G)). If we consider a whole family . and try to decide if there
exists a graph H € # such that H — G, then the problem is easy if every graph in / is equivalent (by —) to a graph of
bounded treewidth (with the same bound for the whole ).



