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Graph Homomorphism

In general, a homomorphism on a certain structure is an application that preserves essential properties of that struc-
ture. For graphs, this means preserving the presence of edges.

Definition. "A homomorphism is an application φ from a graph G to a graph H such that for all vertices u and v of
G, uv ∈ E(G) ⇒φ(u)φ(v) ∈ E(H).

We denote the existence of a homomorphism from G to H by G → H . A way to see a homomorphism form G to H is
to give labels (numbers fo instance) to the vertices of H , and give the number of a vertex v ∈ H to every vertex u such
that φ(u) = v . Then we just have to make sure that for every edge in G , the corresponding vertices in H also share an
edge

Examples:

• If H is a subgraph of G , then H →G trivially.

• Every bipartite graph has a homomorphism to K2 (just map every vertex of one of the two independent sets to
the same vertex, and the other vertices to the other vertex of K2).

• For every n ∈N, Cn+2 →Cn : from v1...vn+2 to u1...un , we map vi to ui for i ≤ n, vn+1 to un−1 and vn+2 to un .

1
2

3

1
2

3

1 2

3

1 2

3

1
2

3

4
5

6

1
2

1
2

1

2

1 2

Figure 1: Exemples of isomorphisms. The graph on the left has a homomorphism to the graph on the right, defined
as: every vertex is mapped to the vertex on the right with the same number.

Beware, the notion of homomorphism must not be mixed up with that of isomorphism.

Definition. "An isomorphism from a graph G to a graph H is an application φ from V (G) to V (H) such that for all
vertices u and v of G, uv ∈ E(G) ⇒φ(u)φ(v) ∈ E(H), and u 6= v ∧uv ∉ E(G) ⇒φ(u) 6=φ(v)∧φ(u)φ(v) ∉ E(H).

We often do not differentiate between distinct ismomorphic graphs, and only consider the graphs up to isomorphism.
Two isomorphic graphs are essentially "the same" graphs.

Definition. "An endomorphism is a homomorphism from a graph G to an induced subgraph H of G. If such an
endomorphism exists, the induced subgraph H is called a substract of G.

Exemple: Any bipartite graph G with at least one edge uv has an endomorphism to G[uv]. G[uv] is thus a substract
of G .

Definition. "An endomorphism that is an isormorphism, i.e. an isomorphism from a graph to itself, is an automor-
phism.
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Exemples: On any graph, the identity is an endomorphism, and even au automorphism. A function on a cycle
v0v1v2v3v4 that maps for all i vi to vi+1[4], is an automorphism. On a clique, any shuffling of the vertices is an auto-
morphism.

"Finding a homomorphism from a graph G to Kk is exactly the same thing as finding a proper k-coloring of G .
Finding a homomorphism form Kk to G is exactly the same as finding a clique of size k in G .

"→ is a preorder relation (it is reflexive and transitive).

Proof. reflexivity: the identity is a homomorphism, so for all G , G →G .

transitivity: if φ is a homomorphism from G to H , and ψ is a homomorphism from H to Q, then ψ◦φ is a homomor-
phism from G to Q: if uv ∈ E(G), then φ(u)φ(v) ∈ E(H), and thus ψ(φ(u))ψ(φ(v)) ∈ E(Q).

Property. "If G → H, then:

• ω(G) ≤ω(H)

• χ(G) ≤χ(H)

Proof. (∗)This is a direct consequence of the fact that → is transitive.

Since G has a clique of sizeω(G), we know that Kω(G) →G , and as G → H , we also have Kω(G) → H , so H has a clique of
size ω(H), and thus ω(G) ≤ω(H).

Since H is χ(H)-colorable, we know that H → Kχ(H), and as G → H , we also have G → Kχ(H), so G is χ(H)-colorable,
and χ(G) ≤χ(H).

Let ↔ be the associated equivalence relation, that is G ↔ H if and only if G → H and H → G . An equivalence class of
this relation is a set of graphs that are all equivalent (that is a set S of graphs such that for any two graphs G and H in
S, G ↔ H .

Definition. "A core is a smallest element (in terms of number of vertices) in its equivalence class.

Lemma. "Every equivalence class has a unique core up to isomorphism. That is, if two cores are equivalent, then they
are isomorphic.

Proof. (∗)Suppose G and H are cores and G ↔ H . Letφ be a homomorphism from G to H andψ be a homomorphism
from H to G . As G and H are cores, and thus minimal, the images of φ and ψ cannot be proper subsets of V (H) and
V (G) respectively. They are bijections. Moreover, ψ◦φ is a homomorphism from G to G . It maps each edge edge to
an edge, and because the number of edges cannot augments, it also maps each non-edge to a non-edge, so it is an
isomorphism. In particular φ cannot change the number of edges either, and is thus also an isomorphism.

Definition. "A core of a graph G is a substract of G that is a core.

Lemma. "Every graph has a core.

Proof. (∗)Let G be a graph, and H a core of the equivalence class of G . Since G ↔ H , in particular H → G . Let W be
the image of H by a homomorphism from H to G , and G ′ =G[W ]. By definition of a homomorphism, G ′ has at most
as many vertices as H . Moreover, G ′ ←G since G ′ is a subgraph of G , and thus by transitivity G ′ ← H . But H ←G ′ by
definition of G ′, so G ′ is a core.

Lemma. "A graph G is a core if and only if every endomorphism of G is an automorphism.

Proof. (∗)⇒: Let φ be an endomorphism of G . Since G is a core, the image of φ cannot have fewer vertices than G , so
it must be G itself, and thus φ must be an isomorphism and thus an automorphism.

⇐: Let H be a core of G . A homomorphism from G to H is an endomorphism, and thus an automorphism. In particuler
G = H , and thus G is a core.

(∗)if ω(G) =χ(G) = k, then Kk is the core of G .
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Vertex transitive graphs

Definition. "A graph G is vertex transitive if for any two vertices v and w of G, there is an automorphism that maps
v to w.

Example: All cycles and cliques are vertex transitive.

Definition. "The independence ratio of a graph G is i (G) = α(G)
|V (G)| .

Lemma (No homomorphism lemma). Let G and H be two graphs such that H is vertex transitive and G → H, then
i (G) ≥ i (H).

Proof. (∗)Let S(H) be the set of stable sets of H of size α(H). Since H is vertex transitive, we have α(H)|S(H)| = m|H |
(where m is the number of independent sets in S(H) containing a specific vertex v). Let φ be a homomorphism from
G to H . Then for all I ∈ S(H), we have |φ−1(I )| ≤ α(G) (vertices mapped to an independent set must themselves be
independent). Therefore:

∑
I∈S(H)

|φ−1(I )| ≤α(G)|S(H)|

But
∑

I∈S(H) |φ−1(I )| = m|G| (each u ∈ V (G) contributes m times to
∑

I∈S(H) |φ−1(I )| since φ(u) belongs to m members
of S(H)).

Therefore i (G) = α(G)
|G| ≥ m

|S(G)| = α(H)
H = i (H).

Example: "The odd cycles: C2k+1 →C2k ′+1 ⇒ k
2k+1 ≥ k ′

2k ′+1 ⇒ k ≥ k ′. Therefore by the previous lemma, an odd cycle
does not have a homomorphism to a longer odd cycle.

Complexity

"For a fixed graph H , the problem of deciding if a graph G admits a homomorphism to H is called H-colouring. It is
a generalisation of the k-colouring problems (which corresponds to the case when H is the complete graph Kk ).

"The H-colouring problem is in P if H is bipartite, and N P-hard otherwise.

(∗)For the other dirction: given a fixed graph H , the problem of deciding if a graph G is such that H → G is trivially
polynomial (just check every set of size at most |H | of V (G)). If we consider a whole family H and try to decide if there
exists a graph H ∈H such that H →G , then the problem is easy if every graph in H is equivalent (by ↔) to a graph of
bounded treewidth (with the same bound for the whole H ).

3


