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1 Definition
" Definition 1 (k-edge-coloring).
Let G “ pV ,Eq be a graph, a k-edge-coloring ϕ of G is a mapping:

EpGq Ñ t1, ¨ ¨ ¨ ,ku

e ÞÑϕpeq

Such that if e and e1 share a common vertex, then ϕpeq ‰ϕpe1q.

Note that this definition is also valid for multigraphs, but we won’t consider them during this lesson.

If such a coloring exists, G is called k-colorable, and the chromatic index, denoted by χ1pGq is the minimum
number of colors to color the edges G .

A k-edge-coloring can equivalently be defined as a vertex coloring of LpGq, the line graph of G .

" Definition 2 (Line graph).

Let G be a graph, the line graph of G , denoted by LpGq is the graph with vertex set EpGq, and such that two
vertices are adjacent in LpGq if the two edges they represent share a common vertex in G .

It is clear that a graph G is k-edge-colorable if and only if LpGq is k-vertex-colorable.

The class of line graphs, is the class of graphs H s.t. there exists a graph G s.t. H “ LpGq. However Beineke
[Bei70] (˚) proved that this class can be characterized by a set of 9 forbidden subgraphs (see Figure 1 ), ie a graph
is in the class if it does not contain as an induced subgraph one of these graphs.

Figure 1: The 9 forbidden subgraphs characterizing the class of line graphs
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(˚)Example 3 (example of line graphs).
Consider a chessboard, a Rook’s graph is a graph that represents all legal moves of the rook chess piece on this
chessboard (see Figure 2). This graph is the line graph of the complete bipartite graph Kn,n (where n is the width and
the height of the chessboard)

Figure 2: A 8 ˆ 8 Rook’s graph

2 Bounding of the chromatic index

2.1 Simple bounds
As all the edges sharing a common vertex should receive a different color, it is easy to see that we’ll need at least
the maximum degree of the graph colors to properly color the edges of G , so we have that:

" χ1pGq ě∆pGq,

where ∆pGq denotes the maximum degree of G . Note that there exist graphs for which ∆pGq colors suffice, for
instance: a star (ie a set of vertices with one vertex connected to every other vertex).

To find an upper bound for χ1pGq, it suffices to consider the bound given by a greedy vertex-coloring algo-
rithm of the line graph of G . Recall that for any graph G , we have that χpGq ď ∆pGq ` 1 (where χpGq is the
minimum number of colors to properly color the vertices of G). So if we apply this bound to LpGq, we have that
χ1pGq “χpLpGqq ď∆pLpGqq` 1.

As we have that ∆pLpGqq “ 2 ˆ∆pGq´ 2, we finally have that:

" χ1pGq ď 2∆pGq´ 1

2.2 Better upper bound: the case of bipartite graphs
The 2∆pGq ´ 1 upper bound is clearly not optimal, and Kőnig proved in 1931 [Kon31] (in Hungarian :-( ) that
∆pGq colors always suffice if G is bipartite.

" Theorem 1 (Kőnig’s theorem).

Let G be a bipartite graph, then χ1pGq “∆pGq.

The proof of this theorem relies on a standard tool in graph coloring : Kempe changes. Kempe changes allows
one to transform a proper coloring into another proper coloring: it can be used to reduce the number of colors
needed to color a graph. Kempe changes where invented by Alfred Kempe in the 19th century to prove the 4-
color theorem (see Section 4). Kempe’s proof was be false, but Kempe changes turned out to be a fruitful tool to
study graph coloring.

2



" Definition 4 (Kempe chain for edge-coloring).
Let G be a graph and ϕ a k-edge coloring of G . We consider the subgraph of G , K pa,bq induced by the color classes
a and b ( ie we only keep the edges colored a or b in G). Let C be a connected component of K pa,bq, C is called a
Kempe chain. A Kempe change consists in switching the colors of the edges inC ( ie, all the edges that were colored a
are now colored b and vice-versa). After the switch, we obtain a new coloring ϕ1 which is also a proper edge-coloring
of G .

Note that this definition can also works for vertex coloring. However, when considering edge-coloring, the
Kempe chains can only be one of these three different graphs:

• An even cycle:

Figure 3: A red-blue Kempe switch on an even cycle

• A path:

Figure 4: A red-green Kempe switch on an path

• A single edge:

Figure 5: A red-green Kempe switch on an single edge

Note that in the case where the Kempe chain is a single edge, it is possible to reduce the number of colors.
The C4 is colored with 3 colors before the Kempe change, and with only 2 after switching the single-edge Kempe
chain.

In the case of vertex-coloring, the Kempe chains can be any arbitrary bipartite graphs, and hence can be less
easy to manipulate.

We are now ready to prove Kőnig’s theorem.

" Proof. The proof is a proof by minimum counter example. Assume that there exist bipartite graphs which
need more that ∆ colors to properly color their edges. Among them, we choose G such that G has the minimum
number of edges, and let e “ uv be an edge of G . Let G 1 “ Gzteu, ie the graph G where we delete the edge e . the
graph G 1 is also a bipartite graph, and has less edges that G , so there exists a ∆-coloring ϕ1 of G 1. We are now
going to extend the coloring ϕ1 of G 1 to a coloring ϕ of G . As the edge e does not have any color yet, the vertices
u and v are only incident with at most ∆pGq´1 different colors, so there exist colors in t1,∆u which are missing
at u and v , we respectively denote them mu and mv . We now have to distinguish two cases:

• If mu Xmv ‰ H, then there exists a color c which is missing at u and at v , and so it suffices to color e with
this color to obtain a proper coloring ϕ of G
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• If mu X mv “ H, then there is no available color for e , and we need to transform the coloring ϕ1 using
kempe changes to free a color for e . Let a P mu , and b P mv , we consider the component Cu of K pa,bq

containing the vertex u.
We now prove that Cu cannot contain the vertex v . Assume it is the case, then Cu is a path connecting u
to v , but as u is missing the color a and b is missing the color b, it means that the length of Cu is even.
However, in G u and v are connected by the edge e , so we have that C “ Cu Yteu is a cycle in G . But the
length of Cu is even, so the length of C is odd, which is a contradiction as G is bipartite (recall that in a
bipartite graph, there are only even cycles, see Figure 6).
So finally we have that Cu does not contain v ,a dn it suffices to switch Cu to obtain a coloring where u and
v are missing the color b, we can hence extend ϕ1 to G by giving to e the color b.

Figure 6: The Kempe chain Cu forms an odd cycle with e

2.3 Better bound: the general case
So bipartite graphs only need ∆ colors to properly color their edges. Moreover, Vizing proved in 1964 [Viz64]
(in Russian :-( ), that with only one more color than the lower bound, it is always possible to properly color the
edges of a graph.

" Theorem 2 (Vizing’s theorem).

Let G be a graph, then χ1pGq ď∆pGq` 1.

The proof of this theorem also relies heavily on the use of Kempe changes, but is more involved than the proof
of Kőnig’s theorem. To prove the theorem, Vizing invented an extension of the Kempe changes : the Vizing’s
fans.

(˚)Definition 5 (Vizing’s fans).
Let G be a graph, and ϕ a k-coloring of G , with k ą ∆. Each vertex u of G is missing at least one color. Let u be
a vertex of G , and tu1, ¨ ¨ ¨ ,u∆ the neighbors of u. A fan around u starting at uui is a maximal sequence of edge
puui “ uui0 ,uui1 , ¨ ¨ ¨ ,uuik q s.t. for any j in t1, ¨ ¨ ¨ ,ku, ϕpuui j q P mui j ´1

where mw is the set of missing colors at
the vertex w .

(˚) Proof.
Similarly to the previous proof, we consider a minimum counter example G , and a p∆` 1q-coloring ϕ1 of G 1 “
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Gzteu where e “ uv is an edge of G . We will extend ϕ1 to a coloring ϕ of G . As ϕ1 is a p∆` 1q-coloring of G 1,
each vertex w of G miss at least one color, and we denote by mw this set of missing color at w .

If there exists a colors c P mu X mv , then this color is available for e , and we can extend ϕ1 to a proper
p∆` 1q-coloring of G .

So there is common missing color at u and v . We will now use the Vizing fans around u starting at uv to
free a color for e . So we consider X “ tuv “ uu0, ¨ ¨ ¨ ,uul u a fan around u starting at uv . As X is maximal, we
only have two cases to consider.

• if mu X mul ‰ H:
Then we can apply a single edge Kempe change on the edge uul and by definition of X obtain a coloring
where mul´1 X mu ‰ H. So we can continue to apply single edge Kempe changes on the edge uui until
we reach a coloring where mu X mv “ mu0 ‰ H, and so we have a free color for e .

Figure 7: A missing color at u is also missing at ul

• there exists j P t0 ¨ ¨ ¨ , l ´ 1u s.t. mu j X mul ‰ H:
In this case, let a P mu , b P mul Xmu j , and letCl be the component of K pa,bq containing u. The component
Cl is a path, and it contains u, so it cannot contain both ul and u j . The two cases are symmetric, so wlog we
can consider that Cl does not contain ul . So we can apply a Kempe change on the component C 1

l of K pa,bq

containing ul without changing the missing colors at the vertices ui , nor the colors of the edges of X . After
the Kempe change, we have a coloring where mul X mu ‰ H, so there is a fan X 1 “ tuv “ uu0, ¨ ¨ ¨ ,uul 1 u

around u starting at uv s.t. mu X mul ‰ H, which correspond to the previous case: so by a sequence of
single-edge Kempe changes we can obtain a coloring where mu X mv ‰ H, and color e with one color of
this set.

5



Figure 8: A missing color at ul is also missing at u j , and the Kempe chain Cl does not contain u j .

Note that the original statement of Vizing’s theorem is on multigraph, he proves that χ1pGq ď∆pGq `µpGq

where µpGq is the edge-multiplicity of G (ie the maximum number of edges between two vertices). Moreover, the
proof of the theorem does not only give a bound on the number of colors, but yields an algorithm to transform
any edge-coloring of G into a p∆` 1q-edge-coloring of G .

3 More on edge coloring

3.1 List edge-coloring
Similarly to vertex-coloring, we can generalize of edge-coloring to list-edge-coloring using lists of available colors
for the edges. Each edge e is assigned a list Lpeq of possible colors for this edge (each edge have its own set of
possible colors). We say that a graph is L-list-edge-colorable if the edges ofG are colorable with the colors in their
list. The question is then: what is the minimum k s.t. G is L-list-edge-colorable with L being a list assignement
with all lists of size at least k . This minimum size of the lists is called (˚) edge choosability number, and is denoted
by ch1pGq.

Using a greedy algorithm, it is easy to see that for any graphG , (˚) ch1pGq ď 2χ1pGq; however it is conjectured
that for any graph G , ch1pGq “ χ1pGq. This conjecture is still widely open, Galvin proved in 1995 [Gal95] that it
is true for complete bipartite graphs.

(˚)Theorem 1 (Galvin).
Let n PN, ch1pKn,nq “χ1pKn,nq “ n.

Note that this has an equivalent reformulation in term of Rook’s graphs.

3.2 Complexity of computing χ1

Despite the fact that by Vizing theorem, χ1pGq can only take two values, ∆ or (∆` 1q, it is (˚) NP-complete
to decide whether χ1pGq “ ∆ or χ1pGq “ ∆` 1 [Hol81], even for very simple classes of graphs (for instance
triangle-free graphs [Kor97]).

(˚)Example 6 (subdividing an edge).
For instance, K4 the complete on 4 vertices is ∆pK4q “ 3-edge colorable, but if we subdivide one of its edge ( ie we
replace an edge by a path of length 2), the graph is no more ∆-colorable.
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(˚)Example 7 (complete graphs).
The case of the complete graph Kn only depends on the parity of n. If n is even, then Kn is pn ´ 1q “ ∆-colorable,
and if n is odd, Kn is n “ p∆` 1q-colorable.

(˚)Example 8 (planar graphs).
The case of planar graphs is almost settled, Vizing proved in 1965 [Viz65] that all planar graphs with ∆ ě 8 are
∆-colorable (the proof uses the discharging method), and it was later proved ([Zha00], [SZ01]), that planar graphs
with maximum degree 7 are also ∆-colorable. On the other hands, for graph with maximum degree less than 5, we
have examples of planar graphs which need p∆`1q colors; the only remaining case are planar graphs with maximum
degree 6.

3.3 Reconfiguration questions
As we have seen in the proof of Vizing’s theorem, the key to reduce the number of colors needed to color the edge
of a graph is to reconfigure an existing coloring in order to free an available color for each edge. However, the
question of reconfiguring edge-coloring is of its own interest. In his paper of 1965,(˚) Vizing asks the question
whether it is always possible to reach an optimal coloring starting from a coloring using more colors, only using
Kempe changes.

This question can be generalized in the following way: starting from a k-edge-coloring (with k ą ∆), can
we reach any χ1-edge-coloring of G using only Kempe changes. It is conjectured that it is true for all graphs,
but it was only proved for specific class of graphs, namely bipartite graphs [Asr09], graphs of maximum degree
4[AC16], and triangle-free graphs[BDK`21]; all these proofs rely heavily on the use of Vizing fans.

4 Edge-coloring as a tool for vertex coloring
Edge-coloring can also be a tool to study problems on vertex coloring. The famous 4-color theorem states that if
G is a planar graph, then 4 colors suffice to properly color the vertices of G . This question was asked by Guthrie
in the 19th century, and it took more than a century to get a formal and complete proof of the theorem. The proof
of the theorem is based on the discharging method, but is so long and involved that it can only be checked using
a computer (see [AH76], or [RSST97] for a more recent proof with the actual code in C to check it). However,
the first step of the proof is to reduce the problem of 4-coloring the vertices of a planar graph G to a problem of
3-edge-coloring or the dual of G .

" Definition 9 (Dual graph).
Let G “ pV ,E ,F q be a planar graph (with F being the set of faces of G), the dual of G , denoted by G˚ is the graph
whose vertex set is F , and two vertices of G˚ are adjacent if the faces they represent share an edge in G ; G is called
the primal of G˚.

Note that taking the dual graph of the dual graph gives back the primal graph G ,a dn that each edge in the primal
graph correspond to an edge in the dual graph.

To prove the 4-color theorem, it suffices to prove it on triangulation (graphs whose faces are only triangles).
It is easy to see that if G is a planar graph, we can add edges to G to build a graph G 1 where all the faces are
triangles: if we can find a 4-coloring ϕ of G 1, then ϕ is also a coloring of G .

Let G be a triangulation, we will prove that G has a 4-vertex coloring if and only if G˚ has a 3-edge coloring.

(˚)Theorem 2. Let G be a triangulation, then G is 4-vertex-colorable if and only if G˚ is 3-edge colorable.

(˚) Proof (sketch). Assume that we have a 4-vertex-coloring ϕ of G using the colors t1,2,3,4u, then we can
partition the edges of G according to the colors of their endpoints. Let A be the set of edges whose endpoints are
colored with t1,2u or t3,4u, B the set of edges whose endpoints are colored with t1,4u or t2,3u, and C the set of
edges whose endpoints are colored with t1,3u, or t2,4u. We now define a coloring ϕ1 of G˚ by coloring the edges
with colors ta,b,0u such that the edges respectively in the sets A, B , or C are colored a, b or 0 (see Figure 9. As
G is a triangulation, all the vertices in G 1 have degree 3. Moreover, it is easy to see that for a triangle f in G , each
edge of f is in a different set (otherwise we would have that the three vertices of a triangle are colored with 4
colors), so for each vertex f ˚ of G˚, each edge incident with f ˚ is colored with a different color, and hence ϕ1 is
a proper edge-coloring of G .
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Figure 9: The edge-coloring of the dual corresponding to a vertex coloring of the primal graph (the three outgoing
edges are connected to the vertex representing the outerface of the primal graphwhich is not drawn for legibility).
Note that the bold edges form a spanning tree of G that can be used to build the vertex-coloring starting from
the edge coloring of G˚

Conversely, assume that we have a 3-edge coloring ϕ1 of G˚ using the colors ta,b,0u. To find a 4-coloring
of G , it suffices to consider a spanning tree T of G , and choose a root r of this tree. We color r with color 1, and
color each vertex u of G according to the color of its parent v in the tree following the same rules defined in the
first part of the proof:

• if ϕ1puvq “ a

– if ϕpvq “ 1, then ϕpuq “ 2

– if ϕpvq “ 2, then ϕpuq “ 1

– if ϕpvq “ 3, then ϕpuq “ 4

– if ϕpvq “ 4, then ϕpuq “ 3

• if ϕ1puvq “ b

– if ϕpvq “ 1, then ϕpuq “ 4

– if ϕpvq “ 4, then ϕpuq “ 1

– if ϕpvq “ 2, then ϕpuq “ 3

– if ϕpvq “ 3, then ϕpuq “ 2

• if ϕ1puvq “ 0

– if ϕpvq “ 1, then ϕpuq “ 3

– if ϕpvq “ 3, then ϕpuq “ 1

– if ϕpvq “ 2, then ϕpuq “ 4

– if ϕpvq “ 4, then ϕpuq “ 2

We leave as an exercise for the reader the proof of the coloring ϕ being a proper vertex coloring of G .
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