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Square coloring

X: Minimum number of colors to ensure that

@—® = a#b.
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Square coloring

X: Minimum number of colors to ensure that
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Square coloring

X: Minimum number of colors to ensure that
= a#b.
x2: Minimum number of colors to ensure that

@ ®or@—O—® = ab

A: Maximum degree of the graph.

A?+1>x*>A+1.
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Square coloring

A graph is planar if it can be drawn in a plane without crossing
edges.

Conjecture (Wegner 1977)

If G is a planar graph, then:
e \°<TifA=3
e \’<A+5ifa<ALT
o < || +1ifA>8
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Sparse planar graphs

g : girth = minimum length of a cycle.
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Sparse planar graphs

g : girth = minimum length of a cycle.
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Sparse planar graphs

g : girth = minimum length of a cycle.

Theorem (Bu, Zhu '11)

Wegner's conjecture is true for planar graphs with g > 6.
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Sparse planar graphs (2)

Question (Wang, Lih '01)

g>k A>d=x>=A+1.
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Sparse planar graphs (2)

Question (Wang, Lih '01)

In the case of planar graphs,
7 ko, Vk > ko, 3d,
g>k A>d=y’=A+1.
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Sparse planar graphs (2)

Question (Wang, Lih '01)
In the case of planar graphs,
d? kg, Vk > ko, 3d,
g>k A>d=y’=A+1.

Theorem (Borodin, Glebov, lvanova, Neustroeva, Tashkinov '04)
False for k < 6. True for k > 7.
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State of the art

Theorem (Borodin, Ivanova, Neustroeva '08 & lvanova '11)

For any planar graph, v* — /A + 1 in each of the following cases :
@ g>24and A>3 e g>10and A >6
@ g>15and A >4 @ g>8and A >10
@ g>12and A>5 @ g>7andA>16
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State of the art

Theorem (Borodin, Ivanova, Neustroeva '08 & lvanova '11)

For any planar graph, v* — /A + 1 in each of the following cases :

@ g>24and A>3 e g>10and A >6
@ g>15and A >4 @ g>8and A >10
@ g>12and A>5 @ g>7andA>16

|El = |V|=|F|= -2
(proof)
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Another measure of sparseness

ad: average degree = V=T
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Another measure of sparseness

ad: average degree = Z‘éﬁv):%.

mad: maximum average de = 2| E(H)]
: g gree = max Ty -
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Another measure of sparseness

ad: average degree = E‘éﬁv):%.
: : _ 2|E(H)|
mad: maximum average degree = max VH)]

Lemma (Derived from Euler's Formula)

For any planar graph, (mad —2)(g —2) < 4
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Another measure of sparseness

ad: average degree = E‘éﬁv):%.

mad: maximum average de = 2| E(H)]
: g gree = max Ty -

Lemma (Derived from Euler's Formula)

For any planar graph, (mad —2)(g —2) < 4

mad<m,A2d:>\2fA+1.
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Another measure of sparseness

ad: average degree = E‘éﬁv):%.

mad: maximum average de = 2| E(H)]
: g gree = max Ty -

Lemma (Derived from Euler's Formula)

For any planar graph, (mad —2)(g —2) < 4

M maximal | Vm < M, 3d,
mad<m,A2d:>\2fA+1.
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First results on non-planar sparse graphs

Theorem (B., Lévéque, Pinlou '11, Cranston, Skrekovski '13)

For any graph, in each of the following cases :

° g >24and N> 3

7
omad<§andA24 omad<§andA28

—— ——
g>15 14 £>9
70 8
omad<£andA25 omad<§andA214>10
~—
g>12 g>8

14
omad<gandA26 omad<€andA21200>>16

——— ———
g>10 g>7
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First results on non-planar sparse graphs

Theorem (B., Lévéque, Pinlou '11, Cranston, Skrekovski '13)

For any graph, in each of the following cases :

° g >24and N> 3

7
omad<§andA24 omad<§andA28

—— ——
g>15 14 £>9
70 8
omad<£andA25 omad<§andA214>10
~—
g>12 g>8

14
omad<gandA26 omad<€andA21200>>16

——— ———
g>10 g>7

What about mad < 37
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First results on non-planar sparse graphs (2)

Theorem (B., Lévéque, Pinlou '13)

For a small enough e, mad<3—eandA2€%:> > =A+1.
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First results on non-planar sparse graphs (2)

Theorem (B., Lévéque, Pinlou '13)

For a small enough e, mad<3—eandA2€%:> > =A+1.

Theorem (Borodin, Kostochka, Woodall '97)

For any bipartite multigraph G, if L is an edge list assignment
such that |L(u, v)| > d(u),d(v) for every (u,v),
then G is L-edge-choosable.
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First results on non-planar sparse graphs (2)

Theorem (B., Lévéque, Pinlou '13)

For a small enough e, mad<3—eandA2€%:> > =A+1.

Theorem (Borodin, Kostochka, Woodall '97)

For any bipartite multigraph G, if L is an edge list assignment
such that |L(u, v)| > d(u),d(v) for every (u,v),
then G is L-edge-choosable.

= Global discharging method.
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List coloring?

x2: Minimum size of every L(v) such that

@—® a#£hb

X y =1 acl(x)

be L(y)
y

X
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List coloring?

x2: Minimum size of every L(v) such that

@—® a#£hb

X y =1 acl(x)

be L(y)
y

X

AP +1>x;>*>A+1
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List coloring?

x2: Minimum size of every L(v) such that

—® a#£hb

X y =1 acl(x)

be L(y)
y

X

A2+1>x2>2>A+1

What changes in the previous theorems?
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List coloring.

Conjecture (Kostochka, Woodall '01)

For any graph, \* — \".
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List coloring.

Conjecture (Kostochka, Woodall '01)

For any graph, \* — \".
12 34
13 14 23 24
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List coloring.

Conjecture (Kostochka, Woodall '01)

For any graph, \* — \~

Theorem (Kim, Park '13)

X% — %2 can be arbitrarily large.
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List coloring.

Conjecture (Kostochka, Woodall '01)

For any graph,
1 34
3

1 14

Theorem (Kim, Park '13)

Xe X2 can be

Theorem (Kim, Kwon, Park '13, Kosar, Petrickova, Reiniger,

Yeager '13)
For any k, X? — XX can be
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Upper bounds

A +1>x7>x>A+1
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Upper bounds

Conjecture (Cranston, Kim '08)

If A > 3, no graph satisfies = — /\”.
Cranston, Kim '08: True for A = 3.
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Upper bounds

Conjecture (Cranston, Kim '08)

If A > 3, no graph satisfies = — /\”.

Cranston, Kim '08: True for A = 3.

Conjecture (Borodin, Kostochka '77)

IfFA>9andw <A —1, then v, < A — 1.

Conjecture (Miao, Fan '13)

For any k > 2, and A > 3, no graph satisfies /' — D(k. /).
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Upper bounds

Conjecture (Cranston, Kim '08)

If A > 3, no graph satisfies

Cranston, Kim '08: True for A = 3.

Conjecture (Borodin, Kostochka '77)
IfA>9andw < A —1, then

Conjecture (Miao, Fan '13)

For any k > 2, and A > 3, no graph satisfies

Theorem (B., Bousquet '13)
For any k > 3, and A > 3, no graph satisfies v, >

Theorem (Cranston, Rabern '13)

If A > 3, no graph satisfies
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Conclusion

For any k > 3, and A > 3, no graph satisfies
XK > D(k,A) — k + 2.
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Conclusion

Conjecture
For any k > 3, and A > 3, no graph satisfies

Conjecture

For any C and € > 0,

mad < 4CC$12 eand A > f(C,e) =
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