CR16: Notes on χ -bounded graph classes^{*}

Marthe Bonamy[†]

January 3, 2022

1 Ramsey's theorem

Theorem 1 (Ramsey '30). For every (non-empty) graph G, we have $\alpha(G) + \omega(G) \ge \frac{1}{2} \cdot \log_2 |V(G)|$.

Proof. By induction on |V(G)|. If |V(G)| = 1, the conclusion holds. Assume now that $|V(G)| \ge 2$. Let $u \in V(G)$. Let $G_u = G[N(u)]$ and $G' = G \setminus N[u]$. Note that $\alpha(G) + \omega(G) \ge \alpha(G_u) + (1 + \omega(G_u))$ and $\alpha(G) + \omega(G) \ge (1 + \alpha(G')) + \omega(G')$.

Since $|V(G)| = 1 + |V(G_u)| + |V(G')|$, one of $|V(G_u)|$ and |V(G')| has size at least $\frac{|V(G)|}{4}$. We obtain $\alpha(G) + \omega(G) \ge 1 + \frac{1}{2}\log_2(\frac{|V(G)|}{4})$, hence the conclusion.

2 No large star

Theorem 2 (Gyárfás '87). For every t, there is a function f_t such that any $K_{1,t}$ -free graph G satisfies $\chi(G) \leq f_t(\omega(G))$.

Proof. Let $t \in \mathbb{N}$. For every vertex $u \in V(G)$, the graph G[N(u)] contains no clique on $\omega(G)$ vertices and no stable set on t vertices. By Theorem 1, we derive that $d(u) \leq 2^{2\omega(G)+2t}$. The conclusion follows immediately.

3 No long path

Theorem 3 (Gyárfás '87). For every t, there is a function f_t such that any P_t -free graph G satisfies $\chi(G) \leq f_t(\omega(G))$.

Proof. We prove by induction on t and $\omega(G)$ that there is a function f_t such that for any connected graph G and any vertex $u \in V(G)$, either $\chi(G) \leq f_t(\omega(G))$ or u is the endpoint of an induced path on t vertices in G. Note that the statement holds trivially when t = 1, and we assume from now on $t \geq 2$.

Consider $G \setminus N[u]$, and let C_1, \ldots, C_p be its connected components. For each *i*, select a vertex $v_i \in N(u)$ that is adjacent to a vertex in C_i , and apply the induction hypothesis on $G[C_i \cup \{v_i\}]$ with v_i . Either $\chi(G[C_i \cup \{v_i\}]) \leq f_{t-1}(\omega(G))$ or v_i is the endpoint of an induced path on t-1 vertices in $G[C_i \cup \{v_i\}]$. In the latter case, by combining with u we obtain an

^{*}I tried to add all the details you could possibly want, and more - please email if anything seems unclear.

[†]All mistakes strictly mine.

induced path on t vertices that has u as an endpoint, hence the conclusion. Therefore, for every i, we have $\chi(G[C_i \cup \{v_i\}]) \leq f_{t-1}(\omega(G))$. It follows that $\chi(G \setminus N[u]) \leq f_{t-1}(\omega(G))$. We observe now that $\omega(G[N(u)]) \leq \omega(G) - 1$. As a consequence, $\chi(G) \leq 1 + (f_t(\omega(G) - 1)) + (f_{t-1}(\omega(G)))$, hence the conclusion.

4 Triangle-free subgraph

Theorem 4 (Rödl '77). For every k, there is p such that every graph G with $\chi(G) \ge p$ contains a triangle-free subgraph H with $\chi(H) \ge k$.

Proof. We will in fact prove the following statement. For every k and q, there is f(k,q) such that every graph G with $\chi(G) \ge f(k,q)$ either contains a triangle-free subgraph H with $\chi(H) \ge k$ or a clique on q vertices. This implies Theorem 4 since there is a triangle-free graph with chromatic number at least k, so it suffices to take q being at least its number of vertices.

We proceed by induction on q. The statement holds when q = 1, so we assume $q \ge 2$. Let G be a graph which contains no clique on q vertices and no triangle-free subgraph with chromatic number k. For every vertex $u \in V(G)$, we have by induction $\chi(G[N(u)]) \le f(k, q - 1)$. For every u, let c_u be a proper colouring of N(u) using at most f(k, q - 1) colours. We order the vertices of G arbitrarily, and assign to every edge uv the colour of v in c_u if $v \prec u$ in the ordering. The resulting edge colouring may not be proper, however we note that every colour class induces a triangle-free subgraph of G, which is by assumption (k - 1)-colourable. To conclude, we use the following easy lemma, applied iteratively to account for all f(k, q - 1) colour classes.

Lemma 5. The union G_3 of two graphs G_1 and G_2 satisfies $\chi(G_3) \leq \chi(G_1) \times \chi(G_2)$.

As a consequence, we have $\chi(G) \leq (k-1)^{f(k,q-1)}$, hence the existence of f(k,q). \Box