/******************************************************************************************** Jonathan Narboni

Jonathan Narboni

Contact and current situation

Post-Doctoral Researcher
Jagiellonian University, Krakau
ul. prof. S. Łojasiewicza 6, 30-348 Kraków
Room: 3014
✉ jonathan.narboni@uj.edu.pl
image

Bio

I am currently a post-doctoral researcher at the Theoretical Computer Science Department of Jagiellonian University, supervised by Bartosz Walzcak. My research interests primarily revolve around graph coloring, combinatorial reconfiguration, and geometric graph theory. My PhD was conducted at Labri (Université de Bordeaux), where I focused on graph coloring and graph coloring reconfiguration, with Marthe Bonamy, František Kardoš , and Éric Sopena as my supervisors.

Research Interests

Throughout my PhD, my primary research has been centered around graph coloring and graph coloring reconfiguration, with a particular emphasis on reconfiguration of edge coloring and vertex coloring in signed graphs. Currently, I am directing my attention towards combinatorial reconfiguration and geometric graphs.
Jonathan Narboni

Current Situation

PhD Subject

Publications

Published

  1. On Vizing's edge colouring question. (Bonamy, M., Defrain, O., Klimošová, T., Lagoutte, A., & Narboni, J. (2023).Journal of Combinatorial Theory, Series B, 159, 126-139.arXiv).

  2. Lower bound for constant-size local certification. (Ardévol Martínez, V., Caoduro, M., Feuilloley, L., Narboni, J., Pournajafi, P., & Raymond, J. F. (2023).In Stabilization, Safety, and Security of Distributed Systems: 24th International Symposium, Proceedings (pp. 239-253).arXiv).

  3. A note on connected greedy edge colouring. (Bonamy, M., Groenland, C., Muller, C., Narboni, J., Pekárek, J., & Wesolek, A. (2021)). Discrete Applied Mathematics, 304, 129-136. arXiv).

  4. A note on deterministic zombies. (Bartier, V., Bénéteau, L., Bonamy, M., La, H., & Narboni, J. (2021). Discrete Applied Mathematics, 301, 65-68. arXiv).

  5. On the 4-color theorem for signed graphs. (Kardoš, F., & Narboni, J. (2021). European Journal of Combinatorics, 91, 103215. arXiv).

Submited

  1. On a recolouring version of Hadwiger's conjecture. (Bonamy, M., Heinrich, M., Legrand-Duchesne, C., & Narboni, J. (2021). arXiv preprint arXiv:2103.10684. arXiv).

  2. Circular (4−ε)-coloring of some classes of signed graphs. (Kardoš, F., Narboni, J., Naserasr, R., & Wang, Z. (2021). arXiv preprint arXiv:2107.12126. arXiv).

Talks

  1. Jagiellonian University TCS seminar (January 2023, Krakau, Poland)
    Vizing's edge-recoloring conjecture holds.,Narboni, J.

  2. ICGT (Internation Colloquium on Graph Theory and combinatorics) 2022 (July 2022, Montpellier, France)
    Vizing's edge-recoloring conjecture holds.,Narboni, J.

  3. Banff workshop on reconfiguration (May 2022, Banff, Canada)
    Vizing's edge-recoloring conjecture holds.,Narboni, J.

  4. Bratislava Graph Seminar (Decembre 2021, online)
    On a recolouring version of Hadwiger's conjecture. , Bonamy, M., Heinrich, M., Legrand-Duchesne, C., & Narboni, J.

  5. Journées Graphes et Algorithmes (JGA) 2021 (October 2021, online)
    Vizing’s edge-coloring conjecture holds. , Narboni, J.

  6. CanaDAM minisymposium on reconfiguration (May 2021, online)
    On Vizing's edge colouring question , M. Bonamy, O. Defrain, T. Klimošová, A. Lagoutte, J. Narboni.

  7. Hosigra ANR anual meeting (May 2021, online)
    Coloring signed graph with a given cyclomatic number , J. Bok, N. Jedlickova, E. Sopena, J. Narboni.

  8. Bratislava Graph Seminar (March 2021, online)
    On Vizing's edge colouring question , M. Bonamy, O. Defrain, T. Klimosova, A. Lagoutte, J. Narboni.

  9. Journées Graphes et Algorithmes (JGA) 2020 (November 2020, online)
    On the 4-color theorem for signed graphs , F. Kardoš, J. Narboni.

  10. Bordeaux Graph Seminar (November 2020, online)
    On Vizing's edge colouring question , M. Bonamy, O. Defrain, T. Klimosova, A. Lagoutte, J. Narboni.

  11. Journées Graphes et Algorithmes (JGA) 2019 (Bruxelles, Belgique, November 13th-15th 2019)
    On the 4-color theorem for signed graphs , F. Kardoš, J. Narboni.

  12. Bordeaux Graph Workshop (BGW) 2019 (Bordeaux, France, October 28th-31st 2019)
    On the 4-color theorem for signed graphs , F. Kardoš, J. Narboni.

Research visits

Teaching

Other

Contact

Ⓒ 2023 Jonathan Narboni. All rights reserved