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Problem statement

Input: A Boolean formula φ (e.g. x1 ∨ x2) and two
satisfying assignments s and t (e.g. 01 and 10).

Output: Smallest number of flips to transform s to t,
where a flip negates a single variable so that
the resulting assignment is also satisfying.

Example: φ = x1 ∨ x2, s = 01, and t = 10.
01→ 11→ 10 is valid.
01→ 00→ 10 is NOT valid.
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Walking in the solution space
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The result

P (navigable)

NPC (tight)

PSPACEC

Theorem
For any “class” of Boolean formulas computing the shortest
reconfiguration path is either in P, NP-complete, or
PSPACE-complete.
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A bit of history

Schaefer’s Theorem (1978)

2-SAT, Horn-SAT, Dual-Horn-SAT, and Affine-SAT are the
only (non-trivial) classes in P. Every other class is NP-complete.

Ladner’s Theorem (1975)

If P 6= NP then there are an infinite number of non-equivalent
SAT classes in NP that are neither in P nor NP-complete.

Catch: Schaefer’s definition of “class” is restrictive.
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Rest of the talk

- Schaefer’s framework

- st-connectivity (Gopalan et al., 2009)

- st-shortest path
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Schaefer’s framework

I Let S be a finite set of Boolean relations of constant arity.

I A Boolean formula φ belongs to the class CNF(S) if each
clause in φ is “built” from a relation R ∈ S.

R0 = {0, 1}3\{000}
R1 = {0, 1}3\{100}
R2 = {0, 1}3\{110}
R3 = {0, 1}3\{111}

S = {R0, R1, R2, R3}
CNF(S) ≡ 3CNF

(x1 ∨x2 ∨x3)∧ (¬x1 ∨x2 ∨¬x3) ≡ R0(x1, x2, x3)∧R2(x1, x3, x2)
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The reconfiguration graph

I For any relation R, we let GR = (V,E) be the graph
consisting of one node for each element v ∈ R and two
nodes u and v are connected whenever Ham(u,v) = 1.

I For a formula φ, we let Rφ denote the relation containing
all satisfying assignments for φ and we let Gφ = GRφ

.
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The reconfiguration graph

I st-connectivity: check if s and t belong to the same
connected component of Gφ.

I st-shortest path: compute the length of a shortest path
from s to t in Gφ.
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st-connectivity

Theorem (Folklore)

st-connectivity is in P for 2CNF formulas.

Proof.
We only need to flip variables that are assigned different values
in s and t. So just keep flipping such variables as long as
possible. If we get stuck then there is no path from s to t.
Otherwise, we will eventually find a (shortest) path.
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st-connectivity

Theorem (Gopalan et al., 2009)

st-connectivity is in P for any formula φ where each connected
component of Gφ can be “written” as a 2CNF formula, also
called component-wise bijunctive formulas.

Proof.
Generalizes the 2CNF case (also produces shortest paths).
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st-connectivity

Definition
A k-ary relation R is called NAND-free (OR-free) if no k − 2 of
its variables can be assigned values such that the relation
induced on the remaining two variables is a NAND (OR), i.e.
¬x ∨ ¬y (i.e. x ∨ y).

001101100
010010010
010110010
010011010
001101100

001101100
010111010
010110010
010011010
001101100

A formula φ is NAND-free (OR-free) if it consists entirely of
NAND-free (OR-free) relations.
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st-connectivity

Theorem (Gopalan et al., 2009)

For a NAND-free formula φ, any sequence of flips can be
reordered so that all 0→ 1 flips occur before all 1→ 0 flips.
The reserve is true for OR-free relations.

Proof. (NAND-free case)

..0..1..→ ..0..0..→ ..1..0.. becomes ..0..1..→ ..1..1..→ ..1..0... If
not possible then some relation is not NAND-free.
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st-connectivity

Corollary

For a NAND-free (OR-free) formula φ, any connected
component of Gφ contains a unique local maximum (minimum)
with respect to hamming weight (polynomial diameter if Gφ is
connected).
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st-connectivity

Definition (Gopalan et al., 2006)

S is tight if at least one of the following conditions holds:

(1) Every relation in S is component-wise bijunctive.

(2) Every relation in S is OR-free.

(3) Every relation in S is NAND-free.
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st-connectivity

Theorem (Gopalan et al., 2006)

For a CNF(S) formula φ, st-connectivity is in P if S is tight and
PSPACE-complete otherwise.

Proof. (NAND-free case)

Try to reach the same assignment by doing 0→ 1 flips from
both s and t (i.e. try to reach the local maximum).
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Finding shortest paths

- If not tight → PSPACE-complete

- 2CNF and component-wise bijunctive ∈ P (symmetric
difference)

Is there a tight formula for which finding the shortest path is
NP-complete?
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NP-completeness

- Let φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4) (NAND-free).

- Let s = 0000 and t = 1100.

- If x3 = x4 = 0, then neither x1 nor x2 can be flipped.

- Hence we need at least one of them to be 1.

- Reduction from Vertex Cover (two clauses per edge).

- Since the formula is tight Gφ has polynomial diameter.
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A false (but useful) conjecture

- Hardness crucially relied on deciding which common
variables should be flipped.

- Conjecture: whenever we have to flip common variables the
problem becomes hard.
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A false (but useful) conjecture

- Let P = {000, 100, 101, 111, 011}. So GP is a path:
000↔ 100↔ 101↔ 111↔ 011.

- There exists formulas in CNF({P}) where any path
between two assignments needs to flip common variables.

- However computing the shortest path between any two
assignments is in P for any formula in CNF({P}).

- Each clause specifies a unique order on flips.
- We just need to check if two clauses are in conflict.
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The trichotomy

Definition
S is navigable if at least one of the following conditions holds:

(1) Every relation in S is component-wise bijunctive.

(2) Every relation in S is OR-free and Horn-free.

(3) Every relation in S is NAND-free and dual-Horn-free.

Theorem
For a CNF(S) formula φ, st-shortest path is in P if S is
navigable, NP-complete if S is tight but not navigable, and
PSPACE-complete otherwise.
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Proof ideas

(1) Component-wise bijunctive: Use the symmetric difference.

(2) OR-free and Horn-free: Unique local minimum +
partial order.

(3) NAND-free and dual-Horn-free: Unique local maximum +
partial order.
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Open problems

I Generalize the dichotomy/trichotomy beyond the Boolean
domain.

I How about weighted SAT and/or CSPs?

I Study the variations in the (parameterized) complexity
landscape if we consider simultaneous flips.
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Thank you
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